
A Simple Experiment on the Effect of Biasing
Sampling Distributions for Planning Reaching
Motions with RRTs

Marcelo Kallmann

mkallmann@ucmerced.edu

Computer Graphics Lab
University of California, Merced
5200 N. Lake Road - Merced CA 95343

Abstract
This paper reports experiments performed with a simple sampling cache mechanism

used to bias the configuration sampling of a RRT-based motion planner. The Planner is
used for synthesizing reaching motions for a humanlike character performing object relo-
cation tasks in a virtual environment. Experiments are reported showing that the method
can significantly reduce the computational time required for planning arm motions.

1 Introduction

Human-like characters able to manipulate objects in interactive virtual environments
have direct applications in several domains, such as: Design, Ergonomics, Virtual Real-
ity, Human-Computer Interfaces, Training and Computer Games. Most of the current
techniques for animating characters in these applications are still based on the use of
pre-defined (captured or designed by hand) motions. Besides being tedious and time-
consuming to be created, pre-defined motions cannot be easily reused for manipulating
objects that can be arbitrarily located among obstacles in a scene.

Alternatively, motions can be synthesized on-line with the use of motion planners
[Lat90]. The difficulty of applying motion planners to interactive characters in virtual
environments is mainly due the high, sometimes unpredictable, computational time re-
quired for finding valid motions. In addition, it is difficult to achieve realistic humanlike
results.

However, when the goal is to achieve characters able to perform given tasks au-
tonomously, motion planners still represent the best approach for computing collision-free
reaching motions on-line. In a previous work [DKM04] an on-line bidirectional random-
ized planner is shown to be generally faster and finding more solutions when compared
to using Jacobian-based Inverse Kinematics integrated with collision avoidance.

This paper presents a simple sampling cache mechanism for improving the perfor-
mance of an arm planner based on Rapidly Exploring Random Trees (RRTs) [LaV98].
The mechanism is presented as an optimization over the RRT sampling strategy: instead
of only using random samples, successfull samples from previous plans are reused. This
approach is inspired by a similar mechanism previously proposed in the context of mobile

mkallmann
Text Box
School of Engineering Technical Report TR-2007-001
University of California, Merced - February 2007



2 Marcelo Kallmann

robotics [BV02]. Other learning strategies have also been proposed to motion planners
[BB05b] [BB05a], however they do not focus on exploring learning strategies based on
succesfull previous experiences, which is the main approach presented here. The exper-
iments reported here demonstrate that the presented method can significantly improve
the performance of RRTs.

2 The Cache Optimization Method

The bidirectional planner described in [Kal05] is used as starting point. This arm plan-
ner solves reaching tasks in two phases. (1) First, an analytical Inverse Kinematics (IK)
[TB96] formulation including collision avoidance is used for computing a goal arm config-
uration reaching a desired location for the hand. (2) Then, a bidirectional RRT is applied
for producing a collision-free arm motion to the goal arm configuration. After a motion
is found, a smoothing phase can be optionally employed to improve the quality of the
produced motion.

Note that the IK phase is only used to generate goal configurations for the motion
planner, and therefore this paper focuses on measuring the effect of the proposed cache
optimization on the motion planning phase only. The planning phase is described below.

2.1 Algorithm

Algorithm 1 summarizes the used implementation of the bidirectional RRT. Let cinit be
the current arm configuration of the character and let cgoal be the target configuration
given by the IK. Two search trees Tinit and Tgoal are initialized having cinit and cgoal

respectively as root nodes, and are sent to the planner. The trees are iteratively expanded
by adding valid landmarks. When a valid connection between the two trees can be con-
cluded, a successful motion is found. Otherwise when a given amount of time has passed,
the algorithm fails.

Algorithm 1 RRT Planner (T1, T2)
1: while elapsed time ≤ maximum allowed time do
2: csample ← SampleConfiguration().
3: c1 ← closest node to csample in T1.
4: c2 ← closest node to csample in T2.
5: if InterpolationValid (c1, c2) then
6: return MakePath (root(T1), c1, c2, root(T2)).
7: end if
8: cexp ← NodeExpansion (c1, csample, ε).
9: if cexp 6= null and InterpolationValid (cexp, c2) then

10: return MakePath (root(T1), cexp, c2, root(T2)).
11: end if
12: Swap T1 and T2.
13: end while
14: return failure.

The sampling cache optimization is implemented in the sampling routine of Line 2 and
is explained in section 2.2. Lines 3 and 4 require searching for the closest configurations
in each tree. A linear search suffices as the trees are not expected to grow much. The



Biasing Sampling Distributions for Planning Reaching Motions 3

metric used is the maximum distance between the positions (in global coordinates) of
corresponding joints in each configuration.

Lines 5 and 9 check if the interpolation between two configurations is valid. It is con-
sidered valid if the interpolation produces collision-free intermediate postures that respect
joint limits. Discrete collision checks along the interpolation between two configurations
are performed for checking its validity. In order to promote early detection of collisions,
the popular recursive bisection up to a desired resolution is used. Note that continuous
tests not requiring a resolution limit are available and can be integrated [SSL02].

Routine MakePath(c1, c2, c3, c4) (lines 6 and 10) is called whenever a solution is
found. It connects the tree branch joining c1 and c2 to the tree branch joining c3 and c4,
by inserting the path segment obtained with the interpolation between c2 and c3.

The node expansion in line 8 uses csample as growing direction and computes a new
configuration cexp as follows:

cexp = interp(c1, csample, t), where
t = ε/d, d = dist(c1, csample).

Null is returned in case the expansion is not valid, i.e. if the interpolation between c1 and
cexp is not valid. Otherwise cexp is linked to c1, making the tree grow by one node and one
edge. The factor ε represents the incremental step taken during the search. Large steps
make the trees grow quickly but with more difficulty in capturing the free configuration
space around obstacles. Inversely, too small values generate roadmaps with too many
nodes, slowing down the algorithm.

After a solution is found, a final step for smoothing the path is often required and the
popular approach of applying several linearization steps is used. Note however that the
smoothing phase is not included in the comparison tests of Section 3. The full geometries
of the character and the environment are taken into account for checking collisions and
the VCollide package [GLM96] is employed for that.

The next section presents the cache mechanism for improving the performance of the
RRT planner.

2.2 Configuration Sampling

The sampling routine used by the RRT planner (Line 2 of algorithm 1) has to generate
valid configurations for guiding the growth of the two search trees efficiently. The sam-
pling routine guides the whole search and is of extreme importance in determining how
fast a solution is found.

A cache is employed for storing and reusing configurations that were part of successful
paths in previous calls to the planner. The idea is that when several motions are planned
in a similar environment, the solutions may have several similarities. The goal is in fact to
learn sampling heuristics that can better guide the search for the specific kind of motions
being planned. The cache is updated every time a successful path is found, therefore it
adapts to new tasks as they are solved by the planner.

The cache mechanism is parameterized with 3 parameters:

• The cache size n specifies how many configurations are stored in the cache.
• A probability p controls how often sampled configurations come from the cache instead

of being randomly generated. This means that, at each iteration, a configuration is
taken from the cache with probability p, and randomly generated with probability
1 − p. Parameter p can be seen as controlling the exploration versus exploitation
tradeoff. Random configurations are always sampled inside range limits and using the



4 Marcelo Kallmann

appropriate joint parameterization based on swing, twists and Euler angles [Kal05].
Algorithm 2 shows how p is implemented by using function RandomNumber(),
which returns a random number in [0, 1].

• The cache update ratio r controls how many nodes of each solution path found should
be stored in the cache. For example if r is 1 all nodes in successful paths are stored in
random positions in the cache (replacing the previous cached configurations in those
positions). Thus, if r is 0.5, only half the nodes are stored, etc. Note that the cache
is updated from the original solution found (before any smoothing operation).

Algorithm 2 SampleConfiguration ()
1: crand ← null.
2: if RandomNumber() < p then
3: crand ← configuration from a random position in the cache.
4: else
5: while crand is null do
6: crand ← RandomConfiguration().
7: if crand is not valid then
8: crand ← null.
9: end if

10: end while
11: end if
12: return crand.

Note that, when the planner is called for the first time the cache is empty and therefore
it is not used. The cache is created only after a first path is found, and usually with size
smaller than the target size n. During the time the cache has size s smaller than the
target size n, an intermediate probability p ∗ (s/n) is used.

Deciding the best parameters for the cache is not an easy task. Intuitively, the size
of the cache should be related to the average number of intermediate configurations
(i.e. nodes) in the motions being generated by the planner. Probability p should be
high if the tasks being solved seem to be very similar, making sense to reuse successful
configurations. The choice for parameter r is also related to how similar are the several
tasks being solved. If r is small the cache tends to contain configurations contributed
from a larger number of solved tasks, otherwise the most recent solutions will have more
influence. Several experimental results are presented in the next section.

3 Experiments

Several experiments were performed for evaluating the use of the sampling cache method
within the RRT planner.

The task of relocating books in a book shelf was chosen and a routine was developed
for automatically generating book relocation tasks. Each task consists of relocating a
book already attached to the character’s hand to a new target location randomly chosen.
The task generation routine specifies random positions for the target location, the initial
arm configuration, and also for all the objects in the shelf. The routine ensures that
generated tasks are valid by continued sampling until the relocation task is verified to be
well defined, i.e., to not have any collisions. Figure 1 shows few examples of generated
tasks.



Biasing Sampling Distributions for Planning Reaching Motions 5

Fig. 1. Example of automatic relocation tasks generated. Each task consists of relocating the
grasped book to a new location specified by a target hand location to be reached.

After each task is generated, it is solved two times. First by the bidirectional RRT
planner without using the sampling cache mechanism and then with the cache sampling
mechanism activated. In the presented tests, the planners were limited to use at most
5 seconds of computation time, after that they were just stopped. Figure 2 shows one
found solution as an example. Note that the IK algorithm is used to translate the target
hand location into the goal arm configuration for the planner. A small root translation
with leg flexion is also being considered by the planner in these experiments.

Fig. 2. Example of one of the solutions obtained (after smoothing).

3.1 Discussion

The book relocation scenario was chosen because it represents a dynamic scenario with
some structure. The objects in the shelf all change of position in each new relocation
task, however there are no additional moving obstacles outside of the shelf. Also, the re-
location motions exhibit some similarity between them, and yet they are always different.
Intuitively, it seems there is an optimal subspace for efficiently sampling arm postures
specifically for solving the tasks being simulated. In some sense, the goal here is to assess
how far the proposed simple cache mechanism can adapt and capture such a subspace.

First, several tests were performed for determining the best parameters for the cache
mechanism. Each test consisted of solving 100 relocation tasks consecutively. A total of
600 tests were performed with the possible combinations of parameters from the following
sets: n ∈ {20, 40, ..., 400}, p ∈ {0.5, 0.6, ..., 0.9}, and r ∈ {1, 1/2, 1/3, ..., 1/6}. Nearly
all the tests (except only 2) demonstrated that the cache optimization improved the
performance of the RRT. The average increase of performance (among all 600 tests) was
1.19 and the best results were around 1.50.

The data also revealed that several tests with similar parameters had a significant
variation in their performance increase. This indicates the unpredictability of the perfor-



6 Marcelo Kallmann

mance gain due to the high randomness involved in the planner. The same sort of vari-
ation is observed in the time performance of each test. For instance, Figure 3 illustrates
the variation in the planning times obtained in one of the tests, even if the cumulative
performance over time demonstrates a stable increase in performance (Figure 4).

Fig. 3. Computation times in seconds obtained for solving 100 consecutive relocation tasks.
Despite the curve variation, it is possible to note that one line (the red one) predominantly stays
lower. This line represents the faster performances obtained by using the cache optimization.
In the upper line (blue) the cache optimization is not used. Parameters in this test: n = 200,
p = 0.9, r = 1/6.

Fig. 4. Cumulative performance in seconds. The lower line (red) shows the faster cumulative
performance obtained when solving 100 consecutive relocation tasks using the cache optimiza-
tion. In the upper line (blue) the cache is not used. In this example the performance gain was
of 1.36 and the test data is the same as in Figure 3.

Two sets of parameters were selected for further testing. Table 1 presents additional
tests performed with these two sets of parameters. In these new experiments, 100 tests of
100 relocation tasks each were performed for each set of parameters. In these experiments
the cache optimization resulted in 1.28 and 1.25 faster results in average. These two sets
of parameters were chosen due to their good performance in the first tests. The extensive



Biasing Sampling Distributions for Planning Reaching Motions 7

tests reported in Table 1 show the best performances that could be obtained with the
method.

Table 1. Further tests with two different cache sizes (n). All tests showed some performance
increase. The last three columns show the minimum, maximum and average increase in perfor-
mance.

n p r min max average

80 0.8 1/3 1.08 1.53 1.28
120 0.8 1/3 1.07 1.54 1.25

Further Analysis

After analysis and experimentation with the presented relocation tasks, it was possi-
ble to manually determine a specific sampling heuristic that also greatly improved the
performance of the RRT planner.

This heuristic was found after observing that all the relocations in this example are
performed in front of the character and with the elbow flexed. The relocations are also
always composed of two distinct phases: bringing the arm closer to the body and then
extending it toward the goal location.

By simply sampling random configurations for the arm, but with a constant fixed
elbow flexion to almost full flexion it was possible to observe an increase in performance
of up to 1.6. This indicates that although the cache sampling mechanism is a generic
mechanism that does improve the performance of the RRT planner, it is still not able to
capture an optimal sampling heuristic for the specific type of task being solved.

4 Conclusions

A simple technique based on biasing the sampling method of a RRT algorithm was
presented for the efficient planning of reaching tasks for humanlike characters in virtual
environments. The method leads to a more efficient and practical algorithm for planning
reaching motions of average complexity in few seconds.

The proposed cache optimization was extensively tested, demonstrating that learning
sampling heuristics can be a powerful approach for easily optimizing sampling-based
motion planners. Different sampling heuristics could be learned per task type, and just
selected on-line according to the task to be solved.

The presented techniques are simple and robust, therefore suitable to practical appli-
cations. Even if not real-time, the presented methods can already be applied to several
interactive applications of virtual humans.

References

[BB05a] Burns B., Brock O.: Sampling-based motion planning using predictive models. In
In Proceedings of the IEEE International Conference on Robotics and Automation
(Barcelona, Spain, April 2005).

[BB05b] Burns B., Brock O.: Toward optimal configuration space sampling. In In Proceedings
of Robotics: Science and Systems (Cambridge, USA, June 2005).



8 Marcelo Kallmann

[BV02] Bruce J., Veloso M.: Real-time randomized path planning for robot navigation.
In Proceedings of IROS-2002 (Switzerland, October 2002). An earlier version of this
paper appears in the Proceedings of the RoboCup-2002 Symposium.

[DKM04] Drumwright E., Kallmann M., Matarić M.: Towards single-arm reaching for
humanoid robots in dynamic environments. In Proceedings of the IEEE-RAS Int’l
Conference on Humanoid Robotics (Humanoids) (Santa Monica, CA, November 2004).

[GLM96] Gottschalk S., Lin M. C., Manocha D.: Obbtree: A hierarchical structure for
rapid interference detection. Computer Graphics SIGGRAPH’96 30, Annual Confer-
ence Series (1996), 171–180.

[Kal05] Kallmann M.: Scalable solutions for interactive virtual humans that can manipulate
objects. In Proceedings of the Artificial Intelligence and Interactive Digital Entertain-
ment (AIIDE’05) (Marina del Rey, CA, June 1-3 2005), pp. 69–74.

[Lat90] Latombe J.-C.: Robot Motion Planning. Kluwer Academic Publisher, December
1990.

[LaV98] LaValle S.: Rapidly-Exploring Random Trees: A New Tool for Path Planning. Tech.
Rep. 98-11, Iowa State University, Computer Science Department, October 1998.

[SSL02] Schwarzer F., Saha M., Latombe J.-C.: Exact collision checking of robot paths.
In Proceedings of the Workshop on Algorithmic Foundations of Robotics (WAFR’02)
(Nice, decmeber 2002).

[TB96] Tolani D., Badler N.: Real-time inverse kinematics of the human arm. Presence
5, 4 (1996), 393–401.




