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Abstract— A central challenging problem in humanoid robotics
is to plan and execute dynamic tasks in dynamic environments.
Given that the environment is known, sampling-based online
motion planners are best suited for handling changing environ-
ments. However, without learning strategies, each task still has
to be planned from scratch, preventing these algorithms from
getting closer to realtime performance. This paper proposes a
novel learning-based motion planning algorithm for addressing
this issue. Our algorithm, called the Attractor Guided Planner
(AGP), extends existing motion planners in two simple but
important ways. First, it extracts significant attractor points
from successful paths in order to reuse them as guiding
landmarks during the planning of new similar tasks. Second, it
relies on a task comparison metric for deciding when previous
solutions should be reused for guiding the planning of new
tasks. The task comparison metric takes into account the
task specification and as well environment features which
are relevant to the query. Several experiments are presented
with different humanoid reaching examples in the presence of
randomly moving obstacles. Our results show that the AGP
greatly improves both the planning time and solution quality,
when comparing to traditional sampling-based motion planners.

I. INTRODUCTION

The ability to plan realistic tasks in realtime is important
for many applications, for example: indoor service robotics,
human-computer interactions, virtual humans for training,
animation, and computer games.

When applied to realistic scenarios, existing sampling-based
motion planning algorithms are not yet capable to compute
collision-free motions for humanoids in real time. This paper
proposes to improve the performance of these planners
by integrating the ability to reuse learned skills on new
tasks. Our approach is especially beneficial when applied
to complex and changing environments.

We provide a method designed to learn from several tasks to
be planned in a realistic dynamic environment. Our method
learns and reuses attractor points extracted from previously
planned reaching paths. The choice of using attractor points
is based on evidence gathered from studies with human
subjects showing that human arm movements may basically
be described as discrete segments between start point, inter-
mediate points, and end point. In addition, these segments
appear to be piecewise planar in three-dimensional move-
ments [1]. Inspired by this fact, and based on the observation
that sampling-based planners also perform straight connec-
tions between landmarks, we propose to select meaningful

landmarks to be reused as attractor points (Figure 1), which
are then used to guide subsequent paths in new similar tasks.
Note that in most realistic environments, planned solutions
for similar tasks often share common structural properties.
The proposed method is able to learn such structures by
learning and reusing the attractor points.

We apply our Attractor Guided Planner (AGP) to en-
hance a bidirectional Rapidly-Exploring Random Tree (RRT)
planner. It proceeds as follows. Every successful executed
reaching task is represented by a group of configurations
including the initial point, goal point, attractors, and as well
the position of relevant obstacles in the environment. This
information is then stored in a task database. When a new
reaching task is being queried, AGP searches in the database
for a similar task previously planned. Whenever a similar
task in the database is found, the random sampling strategy
of the original RRT is replaced by a biased sampling process,
where samples are selected according to dynamic Gaussian
distributions around the group of attractors being reused.
The process significantly bias the search to the successful
locations in the previous path, preserving similar structures of
the solutions. If a partial set of the attractors is no more valid
due to a change in the environment, the method gradually
changes back to a non-biased random search.

We present experiments simulating several humanoid reach-
ing scenarios. In all the scenarios, the AGP planner shows a
significant improvement over the RRT in both computational
time and the solution quality. Results also show that even
when a good task comparison method is not available, the
AGP can still outperform traditional planners. Although all
the experiments are performed on humanoids, we believe
that the AGP planner will also be beneficial in several other
generic motion planning problems.

II. RELATED WORK

Sampling-based motion planning algorithms have proven to
be useful for manipulators with several degrees of freedom,
such as a human-like structures [2] [3] [4]. These algorithms
are mostly based on Probabilistic Roadmaps (PRMs) [5]
and/or Rapidly-exploring Random Trees (RRTs) [6], de-
pending on the requirements of the problem. For instance,
PRM-like methods are mostly used for multi-query problems
but are limited to static environments due to the high cost
of building and maintaining roadmaps. In contrast, RRT-
like methods are usually efficient single-query planners,
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Fig. 1. A sequence of attractors (grey spheres) derived from a solution path (red line) generated by a bidirectional RRT planner (green and blue branches).
Note that the attractors specifically represent postures that are trying to avoid collisions, as shown in the third and fourth images. In addition, our Attractor
Guided Planning results in much less tree expansions and a smoother solution path (last image).

which construct search trees specifically for each task and
environment. Therefore the trees expanded by the RRT are
difficult to be reused in a different environment. Due to
these limitations, current sampling-based planners scale very
poorly to task planning in dynamic environments. We review
in the next paragraphs the main approaches for motion
planning in non-static environments.

Some works have proposed to combine the advantages of
both the multiple-query and single-query techniques in order
to obtain efficient solutions for multiple queries in dynamic
environments. For instance, dynamic roadmaps have been
proposed for online motion planning in changing environ-
ments [7] [8], however with limited performance improve-
ment for humanoid reaching tasks.

Other works have explored improvements to single query
planners for making them solve multiple queries more effi-
ciently. For instance, the work of [9] uses the RRT as the
local planner of PRM, i.e. RRTs are grown between each pair
of milestones in the PRM. The RRF planner introduced in
[10], builds a random forest by merging and pruning multiple
RRTs for future use. A roadmap is then built and maintained
for keeping the final set of RRTs concise.

Some other works focus on exploring sampling methods
that are more adaptive to the environment [11] [12] [13]. A
model-based motion planning algorithm is also proposed in
[14]. This method incrementally constructs an approximate
model of the entire configuration space using a machine
learning technique, and then concentrates the sampling to-
ward difficult regions. While these methods can learn from
previous successful experiences to improve future plans, they
involve building a model for the entire environment, and thus
are not well suited to dynamic environments.

Our method, in contrast, focuses on learning relevant features
from successfully planned motions. The learned information

is therefore mainly related to the structure of successful
paths, capturing not only the structure of the environment
but as well specific properties related to the tasks being
solved. It is our own experience that the maintenance of
complex structures (such as roadmaps) [8] may not scale
well to humanoid reaching tasks and that lighter structures
can lead to better results [15]. The work proposed in this
paper builds on these previous conclusions.

III. THE AGP PLANNER

A. Problem Formulation and Method Overview

We represent the humanoid character as an articulated figure
composed of hierarchical joints. Let the full configuration of
the character be c = (p,q1, ...,qn), where p is the position of
the root joint, and qi, i ∈ {1, ...,n}, is the rotational value
of the ith joint, in quaternion representation. Assume the
character is given a list of random reaching tasks in an
environment with a set of moving obstacles O = (o j

1, ...,o
j
m).

The variable o j
i ∈ O here describes the position of the ith

obstacle when the jth task is being executed.

A single query motion planner, such as RRT, solves a
reaching task T as follows. Let cinit be the initial character
configuration of the reaching task and let cgoal be the
target configuration. Two search trees Trinit and Trgoal are
initialized having cinit and cgoal respectively as root nodes,
and are expanded iteratively by adding randomly generated
landmarks that are free of collision. When a valid connection
between the two trees can be concluded, a successful motion
is found. We denote this valid path as a sequence of landmark
configurations p = (c1, ...,cn).

Different from RRT, our method guides the expansion of the
search trees by following a set of attractors derived from a
similar previous path. The AGP planner consists with three
main parts:
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1. Attractor Extraction. Everytime a successful path p is
obtained, we extract a sequence of attractors A = (a1, ...,ak)
from it, where ai, i ∈ {1, ...,k}, is a configuration point on
p. These attractors represent important structural features of
p and will be reused for similar tasks.

2. Task comparison. Solved tasks are stored in a task
database. Each task T is represented by its initial config-
uration, goal configuration, the attractors, and positions of
relevant obstacles, i.e., T = (cinit ,cgoal ,A,O). Note that here
O is a subset of all the obstacles. Whenever a new task is
requested, we find a previously solved task from the database
that has the largest similarity to serve as an example. If the
value of similarity is lower than a threshold, AGP will decide
to operate as a non-biased RRT planner.

3. Guided planning. If an example task has been found from
the database, its attractor set A is used to guide the planning
for the new task. In order to increase the probability that
regions around previously successful landmarks are sampled,
we form a dynamic Gaussian distribution centered at each
attractor point a ∈ A. Samples are then generated according
to the Gaussian distribution.

Algorithm 1 summarizes how these three parts take place;
their details will be explained in the next sub-sections.

Algorithm 1 AGP Planner(cinit , cgoal , obstacles)
1: attractors←DBPICKTASK(cinit ,cgoal ,obstacles)
2: solution path←GUIDEDPLANNING(cinit ,cgoal ,attractors)
3: current task←ATTRACTOREXTRACTION(solution path)
4: DBINSERTTASK(current task)
5: return solution path

Line 1 requires selection of an example task from the
database that has the largest similarity to the current task.
The similarity value is computed by our task comparison
function (subsection C). By defining a similarity threshold,
we ensure that both the motion query and the environment
of the selected example share some common features with
the new task. Otherwise, the attractor set A is set to null and
the new task will be executed by a non-biased RRT planner.

Line 2 calls the guided planning which returns a solution
path. In line 3, the newly generated path is further in-
vestigated by fitting it into approximate staight segments
divided by a sequence of attractors. These attractors are
then considered as a representation of solution path, together
with the initial, goal configurations and obstacle positions,
stored into the task database, as shown in line 4. To keep the
database concise, and also make sure the attractors represent
general information of a path, tasks that are generated from
scratch always have the priority to be stored in the database.
The final step returns the solution path.

B. Attractor Extraction

As stated before, a set of configurations of the character
are extracted as attractors from each solution path. Since

the right wrist of the character is the main end effector for
reaching tasks, we fit the path of the right wrist approxi-
mately into a sequence of piecewise linear segments, and
then detect the configuration points as attractors where two
segments connect. Given a set of 3D points denoting the
global positons of the right wrist, we employ a variation of
the LineTracking algorithm [16], which was further exper-
imented and modified by [17]. Although the LineTracking
algorithm deals with fitting and extracting lines from 2D
Laser data scans, we believe it is also well suited for 3D
data sets.

The modified LineTracking algorithm starts by constructing
a data window containing the first two points, and fits a
line with them. Then it adds the next point to the current
line model, and recomputes the new line parameters. If the
new parameters satisfy the line condition up to a threshold,
the data window incrementally moves forward to include the
next point. Otherwise, the new included data point is detected
as an attractor point, and the window restarts with the first
two points starting from this attractor. Since in our problem
the number of configuration points contained by a path is
always less than a hundred, we limit the length of the window
by ten.

After a list of attractors are detected from LineTracking, we
perform a validation procedure in order to ensure all the
segments connecting the attractors are valid, i.e., collision
free. Suppose a collision is detected on a straight segment
(ai,ai+1). We find an extra attractor a′, which is the middle
point on the original path between ai and ai+1, and insert it
to A between ai and ai+1. This attractor insertion procedure
iterates until all of the straight segments are free of collision.
The idea is, in addition to LineTracking, the validation
procedure will detect extra attractors in difficult regions
around obstacles that always cause collisions. If we apply the
sequence of valid straight segments to the same task in the
same environment, the solution path will be trivially solved
by the attractors.

C. Task Comparison

In order to select a previous path to reuse, We need to define
a task comparison metric. Consider the case of comparing the
query task T with an example task T ′ from the database. T ′

is considered reusable only when its solution path will share
similar groups of attractor points with the solution of T . The
question at this stage is what information mostly determines
the positions of attractor points. One possible approach is to
define the metric as the distance between the initial and goal
configurations:

dist(T,T ′) = dist(cinit ,c′init)+dist(cgoal ,c′goal).

The distance between two configurations is computed in
the joint space. This naive metric works well with dynamic
queries in a static environment, where all the obstacles are
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not moving. When it comes to a dynamic environment, the
change of obstacle positions may largely affect the structure
of a solution path, as illustrated in figure 2. This motivates
us to include the changes of obstacle positions in the task
comparison metric.

Fig. 2. A planning environment with moving obstacles A and B. Task 1
and task 2 are previously solved (images a and b), and the query task selects
an example from the database. v1, v2 and v3 denote the local coordinates of
obstacle A with respect to the three initial configurations. Note that obstacle
B is out of the local coordinate system range, thus is not included in the
comparison metric. Although the initial and goal configurations of task 1
are closer, the query task chooses task 2 as example because v2 is closer
to v3.

When considering obstacles, one important factor is how
much influence an obstacle has on the solution path. In figure
2, obstacle B shows a great change of position from task
2 to the query task (images b to c), but since this change
has limited impact on the solution path, we should avoid
including this obstacle in the comparison. Our comparison
techinque represents obstacles in local coordinates in respect
to the initial and goal configurations.

For each task, we build two coordinate systems with origins
respectively located at the initial and goal configurations.
Obstacles that are too far away from an origin are not
included in the respective coordinate system. Our comparison
metric accumulates the distance between each obstacle o
from the query task and o′ from the example task that is
closest to o, computed by their local coordinates. The metric
is described as follows.

dist(T,T ′) = h1∗dist(cinit ,c′init)+h1∗dist(cgoal ,c′goal)

+h2∗∑o′mino dist(o,o′), where

o ∈ O from T and o′ ∈ O′ from T ′.

The weights of the motion query distance and the obstacle
distance are tuned by heuristics h1 and h2.

D. Guided Planning

Once a set of attractors is decided to be reused, the sampling
strategy in the motion planner is biased toward regions
around the attractors. Taking advantage of the attractors is
beneficial in two-folds: first, it highly preserves the structure
of a successful solution path. Second, whenever a moving
obstacle collides with part of the solution path, a large
portion of the path is still reusable. Note that since only
similar tasks are used by the query, we ensure that the
environment does not differ much.

Algorithm 2 summarizes the AGP guided planning algo-
rithm. Suppose a new task T with cinit and cgoal has selected
a task T ′ = (c′init ,c

′
goal ,A,O) from database as example.

When planning starts, two search trees Trinit and Trgoal
are initialized, and the first and last attractor from set A
respectively are selected as sampling guidance, as shown in
lines 3 and 4.

Algorithm 2 AGPPLANNER(cinit , cgoal , A)
1: attractors← A;
2: if attractors = null then

return RRT Planner(cinit , cgoal);
3: a1← first attractor;
4: a2← last attractor;
5: radius1← 0;
6: radius2← 0;
7: while elapsed time ≤ maximum allowed time do
8: crand ← SAMPLE(a1, radius1).
9: c1← closest node to csample in Trinit .

10: c2← closest node to csample in Trgoal .
11: if INTERPOLATIONVALID (c1,c2) then
12: return MAKEPATH(root(Trinit),c1,c2,root(Trgoal)).
13: end if
14: cexp← NODEEXPANSION(c1, crand , e).
15: if cexp = null then
16: INCREASE(radius1).
17: if radius1 > threshold1 then
18: radius1← ∞.
19: end if
20: end if
21: cn← closest node to a1 in T1.
22: if DISTANCE(cn,a1) < threshold2 then
23: a1← next attractor.
24: radius1← 0.
25: end if
26: Swap Trinit and Trgoal .
27: end while
28: return failure.

We form a dynamic Gaussian distribution around each attrac-
tor point in the configuration space. It works as a replacement
of the random sampling strategy in the original RRT. The
scale of the Gaussian distribution is initialized as zero (line
5 and 6), which means we try to sample on the attractor
point as a start(line 8). Lines 9 and 10 require searching for
the closet configurations in each tree to the sample. If the
interpolation between the two configurations is valid (line
11), Routine MakePath is called to connect the tree branch
joining root(Trinit) and c1 to the tree branch joining c2 and
root(Trgoal), by inserting the path segment obtained with the
interpolation between c1 and c2.

The node expansion in line 14 uses crand as growing direction
and computes a new configuration cexp, as the same as
RRT. The difference is, when cexp is returned as void,
it means the straight segment leading to the current used
attractor is not valid. As a result, in line 16, the scale of the
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Gaussian distribution is increased. The increased Gaussian
sampler picks samples that are close to the attractor. As time
proceeds, if it remains difficult to find a valid sample close
to the current attractor, the dynamic Gaussian distribution
gradually decreases the bias on the sampling strategy. In line
17, when the scale is larger than a threshold, the sampling
changes to non-biased as a RRT planner.

Line 21 finds the closet configuation cn in each tree to the
current attractor. If the distance between cn and the attractor
is small enough, AGP starts to sample on the next attractor
point. For the tree rooted at the initial configuration, the order
to use the attractors is the same as in the set A, and for the
tree started at the goal configuration, the order is opposite.

Deciding the best parameters for the guided sampling is not
an easy task. Intuitively, the increase of the sampling radius
needs to be small at first and then gradually increase. Also,
the two values threshold1 and threshold2 need to be tuned
such as the non-biased sampling will be activated before
threshold2 switches the current attractor to the next.

IV. ANALYSIS AND RESULTS

Fig. 3. Reaching tests scenarios.

We tested a number of different humanoid reaching tasks in
dynamic environments to evaluate the use of the attractor
guided sampling method within the RRT planner. Each test
involved planning 200 tasks consecutively. Figure 3 shows
snapshots of some of the test scenarios. In Figure 3, scenario
(a) represents a single-query problem where every task has
the same initial and goal configurations, while the environ-
ment is cluttered by three randomly moving obstacles. In
scenario (b) we tested dynamic motion queries in a static
environment, where tasks are defined as initial and goal

TABLE I
ACCUMULATED COMPUTATION TIME OF AGP (FIRST ROW) AND RRT

(SECOND ROW) IN SECONDS FOR 200 CONSECUTIVE TASKS. THE THIRD

ROW SHOWS THE NUMBER OF ENTRIES IN THE AGP TASK DATABASE.

3(a) 3(b) 3(c) 3(d)

274.058 341.754 226.879 153.342
518.133 671.404 302.501 221.329

11 11 13 13

configurations randomly generated in the free space on both
sides of a narrow passage. In scenario (c) and (d) both the
motion queries and the positions of obstacles are dynamic:
each task consists of relocating a book already attached to the
character’s hand to a new target location randomly chosen.

While we can conclude from table 1 that AGP outperforms
RRT in all the scenarios, the amount of improvement varies.
It is obvious that in some complicated environments where
obstacles occlude in most of the problem-solving region,
such as the narrow passage scenario in Figure 3(b), AGP
shows a better performance than others. On the other hand,
for simpler tasks such as relocating books on a shelf or a
table, obstacles do not collide with the large portion of free
space in front of the shelf, hence the task comparison metric
included some information that is not directly relevant to the
motion query. This makes the difference between the initial
configurations and goal configurations less detectable by the
task similarity metric.

Figure 4 shows an example of the solution paths generated
by AGP and RRT. It is possible to observe that due to the
limited size of the free reachable space, in many cases RRT
fails to find a solution in a 5-second time allowance. As
revealed by figure 5, AGP successfully solved 98.5% of the
tasks, a higher rate than the ratio of success of RRT, which
is 94%.

Fig. 4. A reaching problem solved by AGP (left) and RRT (right). The
red line denotes a successful path, green and blue branches represent the
bidirectional RRT trees. AGP finds solutions within one second with the
help of the task database, in comparison, RRT fails to find a solution within
the maximum time allowance(5 seconds).
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Fig. 5. Computation time (red and blue curved lines) in seconds obtained
for solving 200 consecutive reaching tasks, and task database size of AGP
(black solid lines). Note that the red solid curved lines (AGP) predominantly
stays lower than the blue dashed curved lines (RRT), especially when the
database size line stays parallel to the horizontal axis (which means AGP
is reusing previous tasks from the database). The accumulated computation
time is shown in the small rectangle box.

Note that our algorithm uses attractors extracted from so-
lution paths directly generated by RRT, without any path
smoothing being applied. We observed in several experi-
ments that such set of attractors better represent the structure
of the task and environment. When attractors are extracted
from smoothed paths, besides the extra computation, they
are closer to obstacles and therefore more sensitive to envi-
ronment changes.

V. CONCLUSION

This paper presents an attractor guided planning algorithm
(AGP) that learns from previous experiences. The algorithm
is able to learn structural features of existing solutions and
store them in a task database for later reuse when solving new
tasks. Our experiments show that the method is well suited
for humanoid reaching problems in changing environments.
AGP can also be applied to other generic planning problems,
and will show better performance in problems involving the
repetition of similar tasks.

In summary, the following main contributions are proposed
in this paper:

• the use of a line fitting algorithm for extracting mean-
ingful attractor points from a given path before being
smoothed.

• the AGP sampling method which avoids exploring
spaces that are irrelevant to the planning query by dy-
namically biasing the sampling around attractor points.

• a simple but efficient task comparison technique which
represents obstacles in local coordinates in respect to
the initial and goal configurations.

Many future improvements on our methods are possible. For
example, we intend to explore the advantages and drawbacks

of defining attractor points in workspace, instead of in
configuration space.
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