
Robust Navigation Meshes from
Polygonal Obstacles

Marcelo Kallmann

University of California, Merced
http://graphics.ucmerced.edu

mkallmann@ucmerced.edu

Introduction

Navigation meshes are commonly used for representing the 
free space characters are allowed to navigate in computer games.
This work proposes the use of Dynamic Constrained Delaunay 
Triangulations [1] for robustly constructing navigation meshes 
from any set of given polygonal obstacles.

References

Examples

World map with 2800 constraints Random hexagons

Implementation

[1] M. Kallmann, H. Bieri, and D. Thalmann, “Fully Dynamic Constrained Delaunay Triangulations”, In Geometric Modeling for Scientific 
Visualization, G. Brunnett, B. Hamann, H. Mueller, L. Linsen (Eds.), Springer-Verlag, Heidelberg, Germany, pp. 241-257, 2003.
[2] D. Demyen and M. Buro, “Efficient Triangulation-Based Pathfinding”, Proceedings of the AAAI conference, Boston 2006, pp.942-947.

Further Examples

Path in maze Character navigation

The software has been integrated in the Graphsim toolkit of 
the UCM Graphics Lab, and it is now freely available for 
noncommercial use.

Computer Graphics Lab

The presented implementation of Dynamic Constrained 
Delaunay Triangulations has unique features for robustly handling 
polygonal obstacles:

(1) It automatically detects and handles polygonal obstacles 
that overlap, intersect with each other, and that have self-
intersections or duplicated points, always generating a correctly 
triangulated navigation mesh as output.

(2) Each polygonal obstacle receives a unique id that can be 
later on used for obstacle removal from the triangulation with local 
operations. Therefore obstacle displacement can be achieved by 
successive removals and insertions in the triangulation.

Furthermore, efficient algorithms for path planning in the 
maintained triangulation can be employed. The size of the 
adjacency graph used for searching paths is often much smaller 
than in grid-based methods, and the triangulated domain precisely 
describes polygonal regions (no approximation as in grids). 
Extensive tests have demonstrated that path planning in 
triangulations greatly outperforms grid-based methods [2].

Availability

The examples below demonstrate the result of 
dynamically displacing several polygonal obstacles (or 
constraints). The triangulation is correctly managed and always 
represents a valid navigation mesh.

A navigation mesh is obtained by 
computing the Constrained Delaunay 
Triangulation of given polygonal 
obstacles. Only intersections between 
obstacles are added as additional 
vertices to the triangulation.

Modifications and rearrangements of 
obstacles are dynamically handled, 
for example to form walls and rooms. 
While the triangulation is being 
maintained, collision-free paths can 
be computed at anytime. 

Paths can also be computed according 
to the agent size*. Here the obtained 
path shown is different in order to 
accommodate an agent of larger size. 
If agents have equal sizes, obstacles 
can be dilated before triangulation.

*under development


