
In Proceedings of the Workshop on Reasoning, Representation, and Learning in Computer Games,
International Joint Conference on Artificial Intelligence (IJCAI), Edinburgh, Scotland, July 31, 2005, 49-54.

Path Planning in Triangulations

Marcelo Kallmann
USC Institute for Creative Technologies

13274 Fiji Way
Marina del Rey CA 90292

kallmann@ict.usc.edu

Abstract
This paper presents in detail how the techniques

described in my previous work [Kallmann et al., 2003]
can be used for efficiently computing collision-free
paths in a triangulated planar environment.

The method is based on a dynamic Constrained
Delaunay Triangulation (CDT) where constraints are
the obstacles in the planar environment. The main
advantage of relying on a triangulated domain is that
the size of the adjacency graph used for searching paths
is usually much smaller than in grid-based search
methods. As a result much more efficient planning can
be achieved.

1 Introduction and Related Work
The Delaunay Triangulation and its constrained version

[Preparata et al., 1985] [Anglada, 1997] [Floriani et al.,
1992] are important tools for representing planar domains
and have been used in several applications.

This work focuses on using the Constrained Delaunay
Triangulation (CDT) as the main data structure to represent
planar environments composed of polygonal obstacles, in
order to efficiently determine collision-free paths.

Obstacles are considered to be constraints, and specific
constraint insertion and removal routines are available for
updating the CDT whenever obstacles appear, disappear or
change position [Kallmann et al., 2003].

Let n be the total number of vertices in a given set of
obstacles. The initial construction of the CDT can be done
in optimal O(n log n) time using a divide-and-conquer
algorithm [Chew, 1987]. After the initial construction, the
CDT can be updated in order to reflect eventual changes in
the obstacle set. For this matter, several insertion and
removal routines are available in the Computational
Geometry literature.

Having the CDT up-to-date, a path joining any two given
points (or a failure report) is obtained in two phases. First, a
graph search performed over the CDT triangles adjacency

graph determines a sequence of free triangles (a channel)
joining both points. Finally, a linear pass algorithm
computes the shortest path inside channels. The obtained
path is the shortest in the homotopy class [Hershberger et
al., 1994] determined by its channel, but it might not be the
globally shortest one.

The main advantage of the method is that, due to the
underlying CDT, the size of the graph used for searching for
paths is O(n), reducing the time required for determining
shortest paths to the time required by the graph search itself,
which can be performed in O(n log n) time with any
Dijkstra-type search method [Cormen et al., 1993]. In
addition to that, as already mentioned, the CDT can be
efficiently updated when obstacles change position.

The main application that motivated the development of
this method is the navigation of characters in planar
environments for virtual reality and game-like applications.
Based on high-level decision mechanisms, characters decide
where to go and determine a goal position to walk to. The
path planner module is responsible to find a collision-free
path towards the desired position. In such applications,
handling dynamic environments and fast determination of
paths are important; guaranteed shortest paths are not
required.

The classical problem of finding shortest paths in the
plane [Mitchell et al., 1998] has been studied since a long
time. Efficient sub-quadratic approaches are available
[Mitchell et al., 1996] and an optimal algorithm has been
proposed taking O(n log n) time and space, where n is the
total number of vertices in the obstacle polygons
[Hershberger et al., 1999].

However practical implementations are still based on
grid-based search [Koenig, 2004] or on visibility graphs
[Kreveld et al., 2000]. Unfortunately, grid-based methods
lead to large graphs when fine grids are used and visibility
graphs can have Ω(n2) edges in the worst case.

Even if not popular in real applications, good alternatives
are available, as the pathnet graph [Mata et al., 1997],
constructed from a planar subdivision. The sparsity of

pathnets can be controlled in order to get as close as desired
to the global shortest path. This control is done by choosing
the number k of rays emanating from the source node,
resulting in a graph of size O(kn).

The method presented herein is also based on a planar
subdivision, but speed is preferred over control of the global
optimality of paths. A graph of fixed size O(n) is used,
which is implicitly defined by the subdivision. This choice
allows faster determination of paths and allows to
dynamically update the subdivision in order to cope with
dynamic environments.

2 Method Overview
The method can be divided in three main steps.
Step 1 Given a set of polygonal obstacles, a CDT having

as constraints the edges of the obstacles is constructed. In
order to consider discs of arbitrary radius r, obstacles can be
grown by r [Laumond, 1987] before insertion in the CDT,
reducing the problem to planning paths for a point
[Latombe, 1991] (see Figure 1).

During run-time obstacles are allowed to be inserted,
removed or displaced in the CDT as required. The CDT is
able to dynamically take into account these changes and
detailed algorithms are available in previous work
[Kallmann et al., 2003].

The CDT implicitly defines the polygonal domain used
by the path search. It fills with triangles both the interior and
the exterior of obstacles and ensures that the edges of
obstacles are also edges of the triangulation (see Figure 2).
If an edge of the triangulation is an obstacle edge, the edge
is said to be constrained. Therefore triangulation edges can
be of two types: constrained or non-constrained.

Step 2 Given two points p1 and p2, a graph search is
performed over the adjacency graph of the triangulation,
defining the shortest channel (according to the graph)
connecting p1 and p2. This process first locates the triangle
containing p1, and then applies an A* search in the
adjacency graph until the triangle containing p2 is found. If
the entire graph is searched and p2 is not reached, a failure
report is generated. Section 3 describes this process.

Step 3 Obtained channels are equivalent to triangulated
simple polygons, and thus the funnel algorithm [Chazelle,
1982] [Lee et al., 1984] can be applied in order to determine
the shortest path joining p1 and p2 inside the channel. This
takes linear time with respect to the number of vertices in
the channel. For completeness purposes, the funnel
algorithm is briefly described in section 4.

Figure 1. Obstacles inside a rectangular domain (top) and
their grown versions (bottom). Growing obstacles ensures

that paths maintain a given distance from the original
objects.

Figure 2. Grown obstacles inserted in the CDT. Edges of
obstacles become constrained edges.

3 Channel Search
The polygonal domain considered by the path planner is

implicitly defined as all triangles sharing non-constrained
edges, starting from one given triangle.

Point Location Given two points p1 and p2, the first step
is to determine the triangle t1 that contains p1. A point
location routine is required for finding t1. For robustness
purposes, the same routine may also determine if p1 lies
outside the CDT domain.

Good results were obtained with the visibility walk
approach [Devillers, 2001]. Starting with a seed
triangulation vertex v, one triangle t adjacent to v is selected.
Then, t is switched to the adjacent triangle t’ such that the
common edge of t and t’ divides p1 and t in different semi
planes. If more than one edge can be selected, a random
choice is taken in order to avoid possible loops. Intuitively,
t’ is now closer to p1 than t. This process of switching
triangles is continuously repeated. At a certain point it is no
more possible to switch of triangles, and the last triangle t
visited contains p1. Rare cases may produce an exponential
search, and for avoiding that, whenever the visibility walk is
detected to traverse the total number of triangles a linear
search over the remaining triangles is performed. The point
location routine needs to be carefully crafted, specifically in
relation to the used geometric primitives.

Graph Search Once triangle t1 is found, a graph search
over the triangulation adjacency graph is performed, starting
from t1 until the triangle containing p2 is found, without
traversing constrained edges. Note that it is essential to have
the triangulation described by an efficient data structure
[Guibas et al., 1985], permitting to retrieve all adjacency
relations in constant time. This is the case not only for the
graph search step, but also for several other computations
presented in this paper.

The considered connectivity graph is depicted in figure 3.
A starting node has the same position as p1. This node is
then connected to the midpoint of each non-constrained
edge of triangle t1. This process is continuously repeated,
expanding each node of the graph to the two opposite edges
of the same triangle, if these edges were not yet reached and
are not constrained. At each step, the edge with less cost
accumulated is selected to be expanded. The cost is the
Euclidian distance measured along the graph edges. The
search finishes when the triangle containing p2 is reached,
and the shortest channel is determined by the history of
traversed triangles in the branch from p1 to p2.

An additional A* heuristic cost function was included
based on the Euclidian distance from the current leaf node to
p2. Additional cost information can be associated to triangles
in order to indicate, for instance, different properties of the
terrain being traversed. Note that constrained edges are not
expanded guaranteeing that a path will never traverse them.

The graph shown in figure 3 captures the cost of a
canonical path passing through the center of the non-
constrained triangulation edges. This solution has shown to
be more accurate than using the center of each triangle.

At the end of the search process, a channel joining p1 and
p2 is determined. Figure 4 illustrates such a channel. We

define the first and last triangles of the channel by
connecting additional edges to p1 and p2 respectively.

Figure 3. The connectivity graph (solid lines) is implicitly
defined by the triangulation (dashed lines).

Figure 4. Channel (solid lines) joining point p1 to p2.

4 Paths Inside Channels
With the channel determined, the problem is now reduced

to find the closest path inside a triangulated simple polygon.
For this, the funnel algorithm [Chazelle, 1982] [Lee et

al., 1984] can be applied for linearly determining the
shortest path inside the channel. This algorithm is briefly
reviewed here for completeness purposes, following the
description of Hershberger and Snoeyink [Hershberger et
al., 1994].

Let p be a point and uv be a segment (figure 6). The
shortest paths from p to v and from p to u may travel
together for a while. At some point a they diverge and are
concave until they reach u and v. The funnel is the region
delimited by segment uv and the concave chains to a, and a
is its apex. The vertices of the funnel are stored in a double-
ended queue, a deque.

Figure 5 illustrates the insertion process of a new vertex
w. Points from the v end of the deque are popped until b is

p
1

p
1

p
2

reached, because the extension of edge ab is not below w as
occurred with previous popped points. If the apex of the
previous funnel is popped during the process, then b
becomes the new funnel apex. Note that edge bw is on the
shortest path from p to w. A similar symmetrical process is
performed if the new vertex is between the extended edges
of the upper concave chain of the funnel. Figures 7 and 8
show some examples of paths and channels obtained from
CDTs.

Figure 5. The funnel algorithm.

5 Results and Extensions
Examples of obtained channels and paths are presented in

Figures 6, 7, 8 and 9. For instance it can be noticed in Figure
6 that the number of cells (i.e. triangles) in the triangulation
is much smaller than the number of cells that would be
required in a fine grid. Furthermore, the contour of obstacles
is precisely described and not subject to a cell resolution
choice.

Direct Visibility Test Given points p1 and p2, the
obtained path joining the two points is not necessarily the
globally shortest one. For instance, it is possible to obtain a
case where p1 and p2 are visible through a straight line, but
the path obtained from the planner is a different path. This
kind of situation mostly happens when several possible
solutions with similar lengths are available, as in Figure 7. A
specific direct visibility test was implemented in order to
detect such cases. When this test is activated, before
performing the graph search to find a path, a straight walk in
the triangulation [Devillers, 2001] is performed. The walk
consists in traversing all the triangles that are intersected by
the line segment p1p2, starting from p1, towards p2. If during
the traversal a constrained edge is crossed, the test fails.
Otherwise, the triangle containing p2 is reached and the test
succeeds, meaning that a straight line segment is the global
shortest path between p1 and p2.

This test has shown to be beneficial in particular for the
application of controlling characters in virtual environments
when users usually remark if characters don’t choose a
straight line path whenever possible.

Figure 6. Example of a path and its channel.

Figure 7. A path, its channel, and the CDT of 500
heptagons.

Other useful routines have been efficiently implemented
based on the underlying CDT: ray-obstacle intersections,
point-in-obstacle queries, and Boolean operation of
obstacles.

Obstacles may also be defined as open polygons, i. e. as
polygonal lines. Polygonal lines can be grown and inserted
in the CDT, similarly to closed polygons. Figure 8
exemplifies one case based on line segments.

p
a

v

u

w

b

Figure 8. A maze composed of 2600 segments and one
example path obtained. Each segment is considered to be

one open obstacle (the CDT is not shown for clarity).

6 Conclusions
This paper presents methods for fast path planning in

triangulated planar environments. The presented techniques
were fully implemented.

The algorithms presented here are also useful for several
other related purposes. For instance, the algorithm does not
only computes shortest paths, but also the channels
containing the paths. Such information can be very useful
for spatial reasoning algorithms, and for bounding steering
maneuvers when following planned paths.

The implemented software is being integrated with
several other grid-based search methods for the purpose of
evaluation, and will be soon available for research purposes.

Acknowledgments
The project or effort described here has been sponsored

by the U.S. Army Research, Development, and Engineering
Command (RDECOM). Statements and opinions expressed
do not necessarily reflect the position or the policy of the
United States Government, and no official endorsement
should be inferred.

References
[Anglada, 1997] M. V. Anglada. “An Improved

Incremental Algorithm for Constructing Restricted
Delaunay Triangulations”, Computer & Graphics,
21(2):215-223, 1997.

[Chazelle, 1982] B. Chazelle. A Theorem on Polygon
Cutting with Applications. In Proceedings of the 23rd
IEEE Symposium on Foundations of Computer Science,
339-349, 1982.

[Chew, 1987] L. P. Chew, “Constrained Delaunay
Triangulations”, Proceedings of the Annual Symposium
on Computational Geometry ACM, 215-222, 1987.

[Cormen et al., 1993] T. Cormen, C. Leiserson, and R.
Rivest. “Introduction to Algorithms”, MIT Press,
Cambridge, MA, 1993.

[Devillers, 2001] O. Devillers, S. Pion, and M. Teillaud,
“Walking in a Triangulation”, ACM Symposium on
Computational Geometry, 2001.

[Floriani et al., 1992] L. de Floriani and A. Puppo. “An On-
Line Algorithm for Constrained Delaunay
Triangulation”, Computer Vision, Graphics and Image
Processing, 54:290-300, 1992.

[Guibas et al., 1985] L. Guibas and J. Stolfi. “Primitives for
the Manipulation of General Subdivisions and the
Computation of Voronoi Diagrams”, ACM Transaction
on Graphics, 4:75-123, 1985.

[Hershberger et al., 1994] J. Hershberger and J. Snoeyink.
“Computing Minimum Length Paths of a given
Homotopy Class”, Computational Geometry Theory and
Application, 4:63-98, 1994.

[Hershberger et al., 1999] J. Hershberger and S. Suri. An
optimal algorithm for Euclidean shortest paths in the
plane. SIAM J. Comput., 28(6):2215-2256, 1999.

[Kreveld et al., 2000] M. V. Kreveld, M. Overmars, O.
Schwarzkopf, and M. de Berg. “Computational
Geometry: Algorithms and Applications”, ISBN 3-540-
65620-0 Springer-Verlag, 2000.

[Latombe, 1991] J.-C. Latombe. Robot Motion Planning.
Kluwer Academic Publishers, ISBN 0-7923-9206-X,
Boston, 1991.

[Laumond, 1987] J.-P. Laumond, “Obstacle Growing in a
Nonpolygonal World”, Information Processing Letters
25, 41-50, 1987.

[Lee et al., 1984] D. T. Lee and F. P. Preparata.
Euclidean Shortest Paths in the Presence of rectilinear
barriers. Networks. 14(3):393-410, 1984.

[Mitchell et al., 1996] J. S. B. Mitchell. “Shortest paths
among obstacles in the plane”, International Journal on
Computation Geometry Applications 6, 309-332, 1996.

[Mitchell et al., 1998] J. S. B. Mitchell. “Geometric shortest
paths and network optimization”, in J.-R. Sack and J.
Urrutia, editors, Handbook of Computational Geometry,
Elsevier Science, Amsterdam, 1998.

[Mata et al., 1997] C. S. Mata, and J. S. B. Mitchell. “A
New Algorithm for Computing Shortest Paths in
Weighted Planar Subdivisions”. Proceedings ACM
Symposium on Computational Geometry, 264-273, Nice,
France, 1997.

[Preparata et al., 1985] F. P. Preparata and M. I. Shamos.
Computational Geometry: An Introduction. Springer-
Verlag, ISBN 3540961313, 1985.

[Kallmann et al., 2003] M. Kallmann, H. Bieri, and D.
Thalmann, “Fully Dynamic Constrained Delaunay
Triangulations”, In Geometric Modelling for Scientific

Visualization, G. Brunnett, B. Hamann, H. Mueller, L.
Linsen (Eds.), ISBN 3-540-40116-4, Springer-Verlag,
Heidelberg, Germany, pp. 241-257, 2003.

[Koenig, 2004] S. Koenig, “A Comparison of Fast Search
Methods for Real-Time Situated Agents”, AAMAS’04,
July 19-23, New York, 2004.

Figure 9. The image shows an interactive application where the virtual human is able to walk to a selected location
without colliding with the boxes inside the room. Note that in this application the polygons representing the boxes
are not grown before insertion in the CDT. Therefore found paths are further optimized to maintain a desired
clearance distance from the obstacles. This illustrates a possible tradeoff between the number of triangles
considered during the channel search and additional computation required to derive paths for the given channels.

