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Abstract
This  paper  presents  in  detail  how  the  techniques 

described in my previous work [Kallmann et al., 2003] 
can  be  used  for  efficiently  computing  collision-free 
paths in a triangulated planar environment.

The  method  is  based  on  a  dynamic  Constrained 
Delaunay  Triangulation  (CDT)  where  constraints  are 
the  obstacles  in  the  planar  environment.  The  main 
advantage of relying on a triangulated domain is that 
the size of the adjacency graph used for searching paths 
is  usually  much  smaller  than  in  grid-based  search 
methods. As a result much more efficient planning can 
be achieved.

1   Introduction and Related Work
The Delaunay Triangulation and its constrained version 

[Preparata  et  al.,  1985]  [Anglada,  1997]  [Floriani  et  al., 
1992] are important tools for representing planar domains 
and have been used in several applications.

This  work  focuses  on  using  the  Constrained  Delaunay 
Triangulation (CDT) as the main data structure to represent 
planar  environments  composed  of  polygonal  obstacles,  in 
order to efficiently determine collision-free paths.

Obstacles are considered to be constraints, and specific 
constraint insertion and removal routines are available for 
updating the CDT whenever obstacles appear, disappear or 
change position [Kallmann et al., 2003].

Let  n be the total number of vertices in a given set of 
obstacles. The initial construction of the CDT can be done 
in  optimal  O(n log  n)  time  using  a  divide-and-conquer 
algorithm [Chew, 1987]. After the initial construction, the 
CDT can be updated in order to reflect eventual changes in 
the  obstacle  set.  For  this  matter,  several  insertion  and 
removal  routines  are  available  in  the  Computational 
Geometry literature.

Having the CDT up-to-date, a path joining any two given 
points (or a failure report) is obtained in two phases. First, a 
graph search performed over the CDT triangles adjacency 

graph determines a sequence of free triangles (a  channel) 
joining  both  points.  Finally,  a  linear  pass  algorithm 
computes  the  shortest  path  inside  channels.  The  obtained 
path is the shortest in the homotopy class [Hershberger  et 
al., 1994] determined by its channel, but it might not be the 
globally shortest one.

The main  advantage  of  the  method is  that,  due  to  the 
underlying CDT, the size of the graph used for searching for 
paths  is  O(n),  reducing the time required for  determining 
shortest paths to the time required by the graph search itself, 
which  can  be  performed  in  O(n log  n)  time  with  any 
Dijkstra-type  search  method  [Cormen  et  al.,  1993].  In 
addition  to  that,  as  already  mentioned,  the  CDT  can  be 
efficiently updated when obstacles change position.

The main application that motivated the development of 
this  method  is  the  navigation  of  characters  in  planar 
environments for virtual reality and game-like applications. 
Based on high-level decision mechanisms, characters decide 
where to go and determine a goal position to walk to. The 
path planner module is responsible to find a collision-free 
path  towards  the  desired  position.  In  such  applications, 
handling dynamic environments and fast  determination of 
paths  are  important;  guaranteed  shortest  paths  are  not 
required.

The  classical  problem of  finding  shortest  paths  in  the 
plane [Mitchell  et al., 1998] has been studied since a long 
time.  Efficient  sub-quadratic  approaches  are  available 
[Mitchell  et al.,  1996] and an optimal algorithm has been 
proposed taking O(n log  n) time and space, where  n is the 
total  number  of  vertices  in  the  obstacle  polygons 
[Hershberger et al., 1999].

However  practical  implementations  are  still  based  on 
grid-based  search  [Koenig,  2004]  or  on  visibility  graphs 
[Kreveld  et  al.,  2000].  Unfortunately,  grid-based methods 
lead to large graphs when fine grids are used and visibility 
graphs can have Ω(n2) edges in the worst case.

Even if not popular in real applications, good alternatives 
are  available,  as  the  pathnet graph  [Mata  et  al.,  1997], 
constructed  from  a  planar  subdivision.  The  sparsity  of 



pathnets can be controlled in order to get as close as desired 
to the global shortest path. This control is done by choosing 
the  number  k of  rays  emanating  from  the  source  node, 
resulting in a graph of size O(kn).

The method presented herein is  also based on a planar 
subdivision, but speed is preferred over control of the global 
optimality  of  paths.  A  graph  of  fixed  size  O(n)  is  used, 
which is implicitly defined by the subdivision. This choice 
allows  faster  determination  of  paths  and  allows  to 
dynamically update the subdivision in  order  to cope with 
dynamic environments.

2   Method Overview
The method can be divided in three main steps.
Step 1 Given a set of polygonal obstacles, a CDT having 

as constraints the edges of the obstacles is constructed. In 
order to consider discs of arbitrary radius r, obstacles can be 
grown by  r [Laumond, 1987] before insertion in the CDT, 
reducing  the  problem  to  planning  paths  for  a  point 
[Latombe, 1991] (see Figure 1).

During  run-time  obstacles  are  allowed  to  be  inserted, 
removed or displaced in the CDT as required. The CDT is 
able  to  dynamically  take  into  account  these  changes  and 
detailed  algorithms  are  available  in  previous  work 
[Kallmann et al., 2003].

The CDT implicitly defines the polygonal domain used 
by the path search. It fills with triangles both the interior and 
the  exterior  of  obstacles  and  ensures  that  the  edges  of 
obstacles are also edges of the triangulation (see Figure 2). 
If an edge of the triangulation is an obstacle edge, the edge 
is said to be constrained. Therefore triangulation edges can 
be of two types: constrained or non-constrained.

Step  2 Given  two points  p1 and  p2,  a  graph  search  is 
performed  over  the  adjacency  graph  of  the  triangulation, 
defining  the  shortest  channel  (according  to  the  graph) 
connecting  p1 and  p2. This process first locates the triangle 
containing  p1,  and  then  applies  an  A*  search  in  the 
adjacency graph until the triangle containing p2 is found. If 
the entire graph is searched and p2 is not reached, a failure 
report is generated. Section 3 describes this process.

Step 3 Obtained channels are equivalent to triangulated 
simple polygons, and thus the  funnel algorithm [Chazelle, 
1982] [Lee et al., 1984] can be applied in order to determine 
the shortest path joining  p1 and  p2 inside the channel. This 
takes linear time with respect to the number of vertices in 
the  channel.  For  completeness  purposes,  the  funnel 
algorithm is briefly described in section 4.

Figure 1. Obstacles inside a rectangular domain (top) and 
their grown versions (bottom). Growing obstacles ensures 

that paths maintain a given distance from the original 
objects.

Figure 2. Grown obstacles inserted in the CDT. Edges of 
obstacles become constrained edges.

3   Channel Search
The polygonal domain considered by the path planner is 

implicitly  defined  as  all  triangles  sharing  non-constrained 
edges, starting from one given triangle.



Point Location Given two points p1 and p2, the first step 
is  to  determine  the  triangle  t1 that  contains  p1.  A  point 
location  routine  is  required  for  finding  t1.  For  robustness 
purposes,  the  same  routine  may also  determine  if  p1 lies 
outside the CDT domain.

Good  results  were  obtained  with  the  visibility  walk 
approach  [Devillers,  2001].  Starting  with  a  seed 
triangulation vertex v, one triangle t adjacent to v is selected. 
Then,  t is switched to the adjacent triangle  t’ such that the 
common edge of  t and  t’ divides  p1 and t in different semi 
planes.  If  more than one edge can be selected,  a  random 
choice is taken in order to avoid possible loops. Intuitively, 
t’ is  now  closer  to  p1 than  t.  This  process  of  switching 
triangles is continuously repeated. At a certain point it is no 
more possible to switch of triangles, and the last triangle  t 
visited contains p1. Rare cases may produce an exponential 
search, and for avoiding that, whenever the visibility walk is 
detected to traverse the total  number of  triangles  a  linear 
search over the remaining triangles is performed. The point 
location routine needs to be carefully crafted, specifically in 
relation to the used geometric primitives.

Graph Search Once triangle  t1 is found, a graph search 
over the triangulation adjacency graph is performed, starting 
from  t1 until  the  triangle  containing  p2 is  found,  without 
traversing constrained edges. Note that it is essential to have 
the  triangulation  described  by  an  efficient  data  structure 
[Guibas  et  al.,  1985],  permitting to  retrieve  all  adjacency 
relations in constant time. This is the case not only for the 
graph search step, but also for several other computations 
presented in this paper.

The considered connectivity graph is depicted in figure 3. 
A starting node has the same position as  p1.  This node is 
then  connected  to  the  midpoint  of  each  non-constrained 
edge of triangle  t1.  This process is  continuously repeated, 
expanding each node of the graph to the two opposite edges 
of the same triangle, if these edges were not yet reached and 
are not  constrained. At each step,  the edge with less cost 
accumulated  is  selected  to  be  expanded.  The  cost  is  the 
Euclidian  distance  measured  along  the  graph  edges.  The 
search finishes when the triangle containing  p2 is reached, 
and  the  shortest  channel  is  determined  by  the  history  of 
traversed triangles in the branch from p1 to p2.

An additional  A*  heuristic  cost  function  was  included 
based on the Euclidian distance from the current leaf node to 
p2. Additional cost information can be associated to triangles 
in order to indicate, for instance, different properties of the 
terrain being traversed. Note that constrained edges are not 
expanded guaranteeing that a path will never traverse them. 

The  graph  shown  in  figure  3  captures  the  cost  of  a 
canonical  path  passing  through  the  center  of  the  non-
constrained triangulation edges. This solution has shown to 
be more accurate than using the center of each triangle.

At the end of the search process, a channel joining p1 and 
p2 is  determined.  Figure 4 illustrates  such a  channel.  We 

define  the  first  and  last  triangles  of  the  channel  by 
connecting additional edges to p1 and p2 respectively.

Figure 3. The connectivity graph (solid lines) is implicitly 
defined by the triangulation (dashed lines).

Figure 4. Channel (solid lines) joining point p1 to p2.

4   Paths Inside Channels
With the channel determined, the problem is now reduced 

to find the closest path inside a triangulated simple polygon.
For this, the  funnel algorithm [Chazelle,  1982] [Lee  et 

al.,  1984]  can  be  applied  for  linearly  determining  the 
shortest  path inside the channel.  This  algorithm is briefly 
reviewed  here  for  completeness  purposes,  following  the 
description  of  Hershberger  and  Snoeyink  [Hershberger  et  
al., 1994].

Let  p be a  point  and  uv be a  segment (figure 6).  The 
shortest  paths  from  p to  v and  from  p to  u may  travel 
together for a while. At some point  a they diverge and are 
concave until they reach  u and  v. The funnel is the region 
delimited by segment uv and the concave chains to a, and a 
is its apex. The vertices of the funnel are stored in a double-
ended queue, a deque.

Figure 5 illustrates the insertion process of a new vertex 
w. Points from the v end of the deque are popped until b is 
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reached, because the extension of edge ab is not below w as 
occurred  with previous  popped points.  If  the  apex of  the 
previous  funnel  is  popped  during  the  process,  then  b 
becomes the new funnel apex. Note that edge  bw is on the 
shortest path from p to w. A similar symmetrical process is 
performed if the new vertex is between the extended edges 
of the upper concave chain of the funnel. Figures 7 and 8 
show some examples of paths and channels obtained from 
CDTs.

Figure 5.  The funnel algorithm.

5   Results and Extensions
Examples of obtained channels and paths are presented in 

Figures 6, 7, 8 and 9. For instance it can be noticed in Figure 
6 that the number of cells (i.e. triangles) in the triangulation 
is  much  smaller  than  the  number  of  cells  that  would  be 
required in a fine grid. Furthermore, the contour of obstacles 
is  precisely described and not subject  to  a  cell  resolution 
choice.

Direct  Visibility  Test Given  points  p1 and  p2,  the 
obtained path joining the two points is not necessarily the 
globally shortest one. For instance, it is possible to obtain a 
case where p1 and p2 are visible through a straight line, but 
the path obtained from the planner is a different path. This 
kind  of  situation  mostly  happens  when  several  possible 
solutions with similar lengths are available, as in Figure 7. A 
specific  direct  visibility  test  was implemented in  order  to 
detect  such  cases.  When  this  test  is  activated,  before 
performing the graph search to find a path, a straight walk in 
the triangulation [Devillers, 2001] is performed. The walk 
consists in traversing all the triangles that are intersected by 
the line segment p1p2, starting from p1, towards p2. If during 
the  traversal  a  constrained  edge  is  crossed,  the  test  fails. 
Otherwise, the triangle containing p2 is reached and the test 
succeeds, meaning that a straight line segment is the global 
shortest path between p1 and p2.

This test has shown to be beneficial in particular for the 
application of controlling characters in virtual environments 
when  users  usually  remark  if  characters  don’t  choose  a 
straight line path whenever possible.

Figure 6.  Example of a path and its channel.

Figure 7. A path, its channel, and the CDT of 500 
heptagons.

Other useful routines have been efficiently implemented 
based  on  the  underlying  CDT:  ray-obstacle  intersections, 
point-in-obstacle  queries,  and  Boolean  operation  of 
obstacles.

Obstacles may also be defined as open polygons, i. e. as 
polygonal lines. Polygonal lines can be grown and inserted 
in  the  CDT,  similarly  to  closed  polygons.  Figure  8 
exemplifies one case based on line segments.
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Figure 8. A maze composed of 2600 segments and one 
example path obtained. Each segment is considered to be 

one open obstacle (the CDT is not shown for clarity).

6   Conclusions
This  paper  presents  methods  for  fast  path  planning  in 

triangulated planar environments. The presented techniques 
were fully implemented.

The algorithms presented here are also useful for several 
other related purposes. For instance, the algorithm does not 
only  computes  shortest  paths,  but  also  the  channels 
containing the paths. Such information can be very useful 
for spatial reasoning algorithms, and for bounding steering 
maneuvers when following planned paths.

The  implemented  software  is  being  integrated  with 
several other grid-based search methods for the purpose of 
evaluation, and will be soon available for research purposes.
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Figure 9. The image shows an interactive application where the virtual human is able to walk to a selected location 
without colliding with the boxes inside the room. Note that in this application the polygons representing the boxes 
are not grown before insertion in the CDT. Therefore found paths are further optimized to maintain a desired 
clearance  distance from  the  obstacles.  This  illustrates  a  possible  tradeoff  between  the  number  of  triangles 
considered during the channel search and additional computation required to derive paths for the given channels.


