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Abstract

This paper presents scalable solutions for achieving vir-
tual humans able to manipulate objects in interactive
virtual environments. The scalability trades computa-
tional time with the ability of addressing increasingly
difficult constraints. In time-critical environments, arm
motions are computed in few milliseconds using fast an-
alytical Inverse Kinematics. For other types of applica-
tions where collision-free motions are required, a ran-
domized motion planner capable of generating motions
of average complexity in about a second of computa-
tion time is employed. The steps required for defining
and computing different types of manipulations are de-
scribed in this paper.

Introduction

Virtual humans able to manipulate objects in interactive vir-
tual environments have direct applications in several do-
mains, such as: Design, Ergonomics, Virtual Reality and
Computer Games.

Besides being tedious and time-consuming, it is not possi-
ble to pre-design motions when objects to manipulate can
arbitrarily change position in the scene. Alternatively, ma-
nipulations can be synthesized by computing arm motions
exactly reaching given hand target locations in the virtual
environment (see Fig. 1). In its simplest form, this type of
problem involves solving the Inverse Kinematics (IK) (Watt
& Watt 1992) of the character’s arm.

For object manipulations such as pressing buttons, opening
drawers or grasping, additional issues must be addressed:
collisions, closing fingers, synchronization with moving ob-
jects, etc. Among these, the most complex issue is the gen-
eration of collision-free motions in arbitrary environments.
This is a motion planning problem and is mainly addressed
in the robotics literature (Latombe 1990).
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Figure 1: A hand target attached to a book.

This paper presents new techniques based on fast analytical
IK (Tolani & Badler 1996) and on randomized on-line mo-
tion planning (Kuffner & LaValle 2000) for solving several
types of object manipulations in a scalable fashion.

For time critical applications motions are solely computed
using an analytical IK solver with extensions for address-
ing: spine motions, anatomical articulation range limits, and
for avoiding collisions. These extensions can be selected
according to specific needs and the computation can be per-
formed in the range of few milliseconds.

When collision-free motions among arbitrary obstacles are
required, motion planning is employed and the computation
time is increased to about one second for planning motions
of average complexity. Even if restrictive in many cases,
such computational time may be acceptable in several ap-
plications involving one or few characters, as for instance in
the case of virtual humans demonstrating complex machines
and procedures (Rickel & Johnson 1999).

A scalable approach is therefore sought for addressing such
different requirements in an unified framework.

Related Work

Only few animation frameworks have focused on virtual
humans manipulating objects in interactive virtual envi-
ronments. While grasping has been the primary interest
(Geib, Levison, & Moore 1994), manipulations such as
opening drawers and pressing buttons were also addressed
(Kallmann 2004). The main idea behind these works is
to annotate the environment with interaction information



such as sequences of grasps (Aydin & Nakajima 1999;
Rijpkema & Girard 1991) for each object to be manipulated.

Motions are mainly synthesized by Inverse Kinematics (IK)
(Watt & Watt 1992). Jacobian-based numerical IK solvers
can address arbitrary kinematic chains and several exten-
sions are available, e.g. for minimizing multiple objective
functions (Baerlocher & Boulic 1998). For simple linkages
(like arms and legs) analytical methods exist and are much
more efficient. In this paper, the method proposed by (Tolani
& Badler 1996) is used and extended for taking into account
joint limits, spine motions and collision avoidance.

IK alone is not capable of generating collision-free mo-
tions, which always involve the use of some searching pro-
cedure. Searching can be either performed on-line for each
problem or reduced to a graph search by pre-computing
roadmaps (Kavraki et al. 1996) (Geraerts & Overmars
2002). However roadmaps are well suited only to static en-
vironments, even if alternatives exist (Kallmann et al. 2003;
Kallmann & Matarić 2004).

On-line planners, also known as single-query methods, ex-
plore the search space specifically for each query. When ex-
ploration is limited to the workspace (Bandi & Thalmann
2000; Liu & Badler 2003; Yamane, Kuffner, & Hodgins
2004), the planner searches for a sequence of suitable hand
locations and relies on an IK algorithm to compute the pos-
tures passing by them. The final valid motion is obtained
trough interpolation of the postures.

Another approach is to search in the configuration space
(Koga et al. 1994; Kuffner & Latombe 2000), which is de-
fined by the degrees of freedom (DOFs) of the linkage. Sim-
pler algorithms (not requiring IK during the search) address-
ing the entire solution space are achieved. However, as the
search space grows exponentially with its dimension, sim-
plifying control layers are required (Kallmann et al. 2003)
for generating whole body motions.

This paper addresses these issues by including spine mo-
tions and leg flexion only during the determination of goal
postures with IK. Collision-free arm motions are computed
with an implementation of the Rapidly-Exploring Random
Tree (RRT) (LaValle 1998) planner in its bidirectional ver-
sion (Kuffner & LaValle 2000). The planner search is lim-
ited to the configuration space of a 7-DOF arm (only 1 di-
mension higher than the workspace). In addition, a new
sampling routine is proposed for generating more pleasant
arm postures. As a result, more human-like motions can be
achieved and simple queries can be solved very efficiently
due to the RRT greedy behavior.

Paper Overview

Let hl = (p, q) be a hand location specification where: p ∈
R3 is the position in global coordinates of the wrist joint, and
q ∈ S3 is the orientation in global coordinates of the same
joint, in quaternion representation (Watt & Watt 1992).

Given a desired hand location hl to be reached, the prob-
lem of computing an arm motion bringing the character’s
hand to hl is first addressed using an Inverse Kinematics
(IK) solver, with extensions for addressing: joint limits, leg
flexion, spine motion, and collision avoidance.

The IK collision avoidance only corrects the elbow position
during a straight line hand trajectory. A bidirectional RRT
planner is used for obtaining collision-free motions.

Let now hs be a hand shape specified by the joint values of
the finger articulations of one hand of the character. Note
that by symmetry it is possible to apply any given hs to ei-
ther the right or left hand.

A complete hand target ht = (hl, hs) is specified with both
a hand location and shape. Hand targets are annotated in the
environment and indicate how to reach, grasp or manipulate
objects (see Fig. 1).

After presenting the used IK and motion planner in the fol-
lowing sections, alternatives for using these methods in dif-
ferent types of manipulations are given. The example of a
virtual human relocating books in a bookshelf is presented
and computation times are given.

Inverse Kinematics and Extensions

The used analytical IK solver (Tolani & Badler 1996) can be
applied to either the arms or legs of a character. For each
arm or leg, there are 7 degrees of freedom (DOFs) to be de-
termined for reaching a given goal hand target with 6 DOFs.
The missing DOF is modeled as the orbit angle (also called
as the swivel angle).

Given a desired hand location hl and orbit angle α, the IK
solver is then capable of providing the 7 DOF arm pose
reaching hl. The orbit angle is defined as zero when the
elbow is in its lowest possible position, and as α grows, the
elbow gets higher by rotating outwards. Fig. 2 left shows an
arm posture with orbit angle of 20 degrees.

It is clear that not all given α will lead to anatomically feasi-
ble arm postures. A method that automatically determines α
values respecting joint limits and avoiding collisions is given
in this section.

Joint Limits Bounding anatomically correct postures starts
with imposing joint range limits to the articulations of the
skeleton. For anatomical articulations with a 3-DOF rotation
R, e.g. the shoulder, using maximum and minimum Euler
angles is not meaningful. The simplest solution is to use the
swing-and-twist decomposition (Grassia 1998) :

R = RtwistRswing ,

where Rtwist = Rz(θ), and Rswing = [Sx Sy 0]

The swing rotation is parameterized by the above axis-angle,
having ‖Rswing‖ as rotation angle, and Rswing as rotation
axis, which always lies in the x-y plane of the local frame.
The axial rotation (or twist) that follows occurs around the
z-axis of the same local frame.



The one singularity of the parameterization is reached when
the swing vector has norm π. Consequently, the singular-
ity is easily avoided by choosing an appropriate zero posture
(i.e., when Sx = Sy = 0). For the shoulder joint for in-
stance, the reference (zero) posture has the arm outstretched.

The swing-and-twist decomposition is used to model the
shoulder (3 DOFs). The elbow has flexion and twist rota-
tions defined with two Euler angles (2 DOFs), and the wrist
has a swing rotation (2 DOFs) parameterized exactly as the
described swing-and-twist, however considering the twist
rotation θ always 0.

Such representation allows the use of spherical polygons
(Korein 1985) for restricting the swing motion of the shoul-
der and wrist. Spherical polygons can be manually edited for
defining a precise bounding curve. However a simpler, more
efficient, and still acceptable solution for bounding swing
limits is followed based on spherical ellipses. In this case, a
swing rotation can be checked for validity simply by replac-
ing the axis-angle parameters into the ellipse’s equation. For
precise details, see (Baerlocher 2001). The twist and flex-
ion rotations of the remaining DOFs are correctly limited by
minimum and maximum angles.

Collisions Collision geometries are attached to the joints of
the character as needed for the purpose of collision detec-
tion. These are rigid models which in general are simpler
than the models used for visualization of the character.

The VCollide package (Gottschalk, Lin, & Manocha 1996)
is employed for querying if body parts self-intersect or inter-
sect with the environment. At initialization phase, the char-
acter is required to be in a guaranteed valid posture. Several
collisions will be reported between pair of models which are
adjacent. These pairs are detected and disabled in all future
queries. For testing a new character pose, the transformation
matrices of the collision geometries are updated accordingly,
and a new query reports if any collisions are found.

Orbit Angle Determination For maximum efficiency, the
analytical IK solver proposed in (Tolani & Badler 1996) was
rewritten for giving joint values directly in the considered
representation based on swing-and-twist parameterizations.
Still, the orbit angle α has to be determined.

The solution proposed here is to start with a given low an-
gle, e.g. of 20 degrees. Then, the posture given by the IK
solver is checked for validity in terms of joint limits and col-
lisions. If the posture is not valid, a quick iterative method is
performed for verifying if other α values can lead to a valid
posture.

At each iteration, α is incremented and decremented by ∆,
and the two new postures given by the IK solver are checked
for validity. If a valid posture is found the process success-
fully stops. Otherwise, if given minimum and maximum α
values are reached, failure is returned. Better performance
is achieved in a greedy fashion, i.e. when the increment ∆
increases during the iterations.

As the search range is small this simple process is very ef-

ficient. By setting a range from -15 to 130 degrees, and
correctly adjusting the increments, the whole process can
be limited to few collision tests. Note that both joint lim-
its and collisions are addressed in an unified way. Fig. 2
shows an example of an emergent joint coupling automati-
cally achieved, and Fig. 3 shows a self-collision avoided.

Figure 2: Starting from its orbit angle of 20 degrees (left),
as the wrist rotates downwards, the elbow rotates to a higher
position (right), ensuring the wrist respects its joint limits.

Figure 3: If collisions are detected (left) the orbit angle is
updated and a valid posture is eventually found (right).

Spine Motion and Leg Flexion Before applying the IK
solver for reaching a given hand location hl, simple checks
can be used in order to determine if a spine motion or leg
flexion should be applied.

For example, more natural postures are achieved when the
joints of the spine are simply rotated towards hl: if hl is
close to the torso, a very small rotation is applied, and if hl

is distant, a larger rotation is used. If hl is too low and not
reachable, leg flexion might turn hl into a reachable loca-
tion. Leg flexion can be simply implemented by lowering
the skeleton root while using IK to maintain the feet fixed in
their original position. Fine tunning is inevitable for achiev-
ing the intended overall behavior, and designers can define
the parameters in order to create custom behaviors. As an
example, Fig. 1 shows the character with a standard spine
posture while in Fig. 4 the spine is slightly bent.

Collision-Free Motions

Let s denote the 7-DOF arm configuration plus any addi-
tional DOFs in case spine motion and/or leg flexion are con-
sidered by the IK solver. In any case, configuration s is re-
ferred to as an arm configuration.

Let hl be the location to reach with a collision-free motion.
Let sinit be the arm configuration of the character in its cur-
rent, initial posture. Let sgoal be the arm configuration given
by the IK solver for reaching hl. Note that, even if the IK



solver has a built-in collision avoidance mechanism, a fail-
ure can be reported and in this case hl is considered to not
be reachable.

Once the IK solver can successfully determine sgoal, two
search trees T1 and T2 are initialized having sinit and sgoal

respectively as root nodes. Algorithm 1 can then be called
and it presents an implementation of the bidirection RRT
planner (Kuffner & LaValle 2000).

Algorithm 1 PLANPATH ( T1, T2)
1: while elapsed time ≤ maximum allowed time do
2: ssample ← SAMPLEPOSTURE().
3: s1 ← closest node to ssample in T1.
4: s2 ← closest node to ssample in T2.
5: if INTERPOLATIONVALID ( s1, s2 ) then
6: return MAKEPATH (root(T1), s1, s2, root(T2)).
7: end if
8: sexp ← NODEEXPANSION (s1, ssample, ε).
9: if sexp 6= null and INTERPOLATIONVALID (sexp, s2)

then
10: return MAKEPATH (root(T1), sexp, s2, root(T2)).
11: end if
12: Swap T1 and T2.
13: end while
14: return failure.

Line 2 of algorithm 1 requires a configuration sampling rou-
tine. This routine guides the whole search and therefore is of
main importance. The basic process samples random valid
joint values inside their range limits, which are defined ei-
ther by maximum and minimum angle values or by a spher-
ical ellipse in case of swing rotations. A sample is only re-
tained if it implies no collisions, otherwise another sample
is determined until a collision-free one is found.

Randomly sampling valid postures has the effect of biasing
the search towards the free spaces. Although large volumes
of free space are located at the sides of the character, re-
alistic manipulations are mainly carried out in front of the
character.

A simple correction technique consists of highly biasing the
elbow flexion to almost full flexion. This has the effect of
avoiding solutions with the arm outstretched, resulting in
more natural motions. As we perform a bidirectional search,
it also contributes to decomposing the manipulation in nat-
ural two phases: bringing the arm closer to the body and
then extending it towards the goal. The biasing method starts
sampling the elbow flexion DOF with values in the interval
between 100% and 90% of flexion, and as the number of
iterations grow, the sampling interval gets larger until reach-
ing the joint limits.

The wrist swing rotation is also highly biased to a smaller
range than its valid range, resulting in more pleasant pos-
tures as this joint is only secondarily used for avoiding obsta-
cles. Finally, when spine DOFs and/or root translation DOFs
(for knee flexion) are used, they are sampled with very small
variation, only to give an overall human-like movement, and
therefore these DOFs do not augment the dimension of the
considered search space.

Lines 3 and 4 of algorithm 1 require searching for the clos-
est configuration in each tree. A linear search suffices as the
trees are not expected to grow much. The used distance met-
ric takes the maximum of the Euclidian distances between
the position of corresponding joints, posed at each configu-
ration.

Lines 5 and 9 check if the interpolation between two config-
urations is valid. This can be done by performing several
discrete collision checks along the interpolation between
the two configurations. However more efficient continuous
methods are available (Schwarzer, Saha, & Latombe 2002).

The expanded node sexp in line 8 uses ssample as growing
direction and is determined as follows:

sexp = interp(s1, ssample, t), where

t = ε/d, d = dist(s1, ssample)

Null is returned in case the expansion is not valid, i.e. if the
interpolation between s1 and sexp is not valid. Otherwise
sexp is linked to s1, making the tree to grow by one node
and one edge. Factor ε gives the incremental step taken dur-
ing the search. Large steps make trees to grow quickly but
with more difficulty to capture the free configuration space
around obstacles. Too small values generate roadmaps with
too many nodes, slowing down the tree expansion.

Whenever a valid connection between T1 and T2 occurs, a
path is computed and returned as a valid solution. Routine
MAKEPATH(s1, s2, s3, s4) (lines 6 and 10) connects the tree
branch leading s1 to s2 with the tree branch joining s3 with
s4 by the interpolation between s2 and s3.

A final post-processing step for smoothing the path is re-
quired. The simplest approach is to pass few random lin-
earization iterations. Each linearization consists of selecting
two random configurations s1 and s2 (not necessarily nodes)
along the solution path and replacing the sub path between
s1 and s2 by the straight interpolation between them, if the
replacement is a valid path (Schwarzer, Saha, & Latombe
2002). Fig. 4 shows the graph of a search and the solution
path, before smoothing.

Figure 4: The polygonal line joining the character’s hand to
the target hand represents the trajectory of the wrist joint for
a valid collision-free motion.



Scalable Specification of Manipulations
Consider now the problem of moving the character’s hand
from its current location and shape ht(0) = {hl(0), hs(0)}
to a given hand target ht(1) = {hl(1), hs(1)}.

Neuroscience research provides several computational mod-
els (2/3 power law, Fitts’ law, etc) (Schaal 2002) that can
help synthesizing realistic arm motions. The simplest model
states that in point-to-point reaching movements, the hand
path approximates a straight line, and the tangential veloc-
ity resembles a symmetrical bell-shape. Such guidelines are
followed here.

Let ht(t) = {hl(t), hs(t)}, t ∈ [0, 1] be the interpolated
hand target. Linear interpolation is used for the wrist posi-
tion and spherical linear interpolation is used for the wrist
orientation. The rotations of the finger joints defining the
hand shapes are interpolated according to their parameteri-
zation. Finally, for each t, the IK solver is used for deriving
the arm configuration s(t) reaching hl(t).

When collision-free motions are required, the motion plan-
ner is used for generating a motion as a sequence of arm
configurations. Such motion can be re-parameterized and
can have added finger movements from the interpolation be-
tween the initial and goal hand shapes. The result is a com-
plete reaching motion s(t), t ∈ [0, 1], where the target ht(1)
is reached with configuration s(1).

For both the planned and the IK-based motion, when param-
eter t varies in [0, 1] with constant velocity, the wrist joint
will also move with constant velocity in the workspace. The
simple cubic spline variable change t = −2h3 + 3h2 will
introduce a bell-shape velocity profile when h varies with
constant velocity in [0, 1].

It is now possible to choose between three approaches for
computing arm motions:

• IK-based motion without performing the collision avoid-
ance tests requires less than 1 millisecond of computation
time and does not depend on the complexity of the scene.

• IK-based motion with the collision avoidance tests re-
quires from 1 to 30 milliseconds, depending on how much
search was performed.

• In scenarios with average complexity, the motion plan-
ner requires computation times from 20 milliseconds to 2
seconds. The performance depends on the complexity of
the solution, which is related to how cluttered is the envi-
ronment. The book relocation example shown in Fig. 5
required 1.3 seconds. These times do not include the path
smoothing step, that can take from 0.5 to 1.5 seconds de-
pending on the desired quality. Such experiments were
conducted in a 3GHz pentium, with collision detection
handling 12K triangles.

Several types of manipulations can be specified by using the
presented techniques:

• Grasping can be modeled trough a sequence of hand tar-
gets. A simple sequence consists of an initial arm move-

ment towards a pre-target, followed by a slower motion
towards the final target with final hand shape. Simi-
lar sequences are described in the neuroscience litera-
ture (Schaal 2002). Optional extensions such as finger-
object collision tests for perfect finger closure and multi-
ple grasping styles per object can be added as needed.

• Object relocation is treated exactly as a reaching prob-
lem: after attaching the grasped object to the wrist joint,
the object is considered making part of the hand and a
new motion towards the desired object placement can be
computed (see Fig. 5).

• Pushing and pulling can be performed with the IK solver.
Consider the case of opening a drawer. After the drawer
handle is grasped, a translation motion is applied to the
drawer and the hand follows the drawer’s motion, while
the arm posture is updated with the IK solver.

Conclusions

This paper presents new techniques based on analytical In-
verse Kinematics and on randomized on-line motion plan-
ning for synthesizing object manipulations.

Besides the overall system, the main contributions are: a
new orbit angle search mechanism for the analytical IK
solver that achieves joint coupling and collision avoidance,
and new sampling strategies for achieving more natural
whole-body postures with motion planners. The techniques
have straightforward implementation.

As computers get faster, randomized motion planners might
significantly improve the motion autonomy of characters in
interactive applications.
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