
In Handbook of Virtual Humans, N. Magnenat-Thalmann and D. Thalmann
(Eds.), John Wiley & Sons, UK, 2004, 303-322

Interaction with 3-D Objects
Marcelo Kallmann

Abstract. Among the several issues related to real-time animation of virtual human ac-
tors, the ability to interact with virtual objects requires special attention. Take as exam-
ple usual objects as: automatic doors, general furniture, or a lift. Interaction with such
objects can easily become too complex for real-time applications. Some of the related
problems involve: recognition of manipulation places, automatic arm and hand anima-
tion, and motion synchronization between actors and objects. The smart object ap-
proach is described here and can overcome many of these difficulties by storing all
needed interaction information within the object description. Interaction information is
defined during modeling phase, forming a complete “user guide” of the object. In this
way, virtual actors can simply access and follow such interaction descriptions in order
to accomplish some given task. Solutions to related sub-problems such as programming
object’s behaviors, interactions with multiple actors, or actor animation to manipulate
objects are discussed here, and detailed case studies are analyzed.

9.1 Introduction

Computer graphics systems are no longer synonym of a static scene showing 3D objects. In
most nowadays applications, objects are animated, they have deformable shapes and realistic
movements. Such objects “exist” in virtual environments and are being used to simulate a
number of different situations. For instance, costs are saved whenever it is possible to simu-
late and predict the result of a product before manufacture.

Although many technical issues are not fully solved, a lot of attention has been given to a
next step: lifelike behaviors. The issue is to have virtual entities existing in virtual environ-
ments, deciding their actions by their own, manipulating virtual objects and etc. As a natural
consequence, computer animation techniques today are strongly related to artificial intelli-
gence and robotics techniques.

It is still a challenge to animate a virtual actor that can decide its motions, reacting and in-
teracting with its virtual environment, in order to achieve a task given by the animator. This
virtual actor might have its own way to decide how to achieve the given task, and so, many
different sub-problems from many areas arise.

One of these sub-problems is how to give enough information to the virtual actor so that it
is able to interact with each object of the scene. That means, how to give to an actor the abil-
ity of interaction with general objects, in a real-time application. This includes different types
of interactions that can be considered. Some examples are: the action of pushing a button,
opening a book, pushing a desk drawer, turning a key to then open a door and so on.

A human-like behavior would recognize a given object with vision and touch, and then,
based on past experiences and knowledge, the correct sequence of motions would be de-

 2

duced and executed. Such approach is still too complex to be handled in a general case, and
not suited for interactive systems where real-time execution is required.

To avoid complex and time-consuming algorithms that try to model the full virtual actor’s
“intelligence”, an alternate approach is to use a well defined object description where all
properties, functionality features and descriptions of the steps to perform each available in-
teraction are added to the geometrical shape description of the object. In that way, part of the
most difficult thing to model, the knowledge of the virtual actor, is avoided. Instead, the de-
signer of the object will use his/her own knowledge assigning to the object all information
that the virtual actor needs to access in order to interact with the object. This more direct
approach has been called the smart object approach [1] to animate actor-object interactions.

9.2 Related Work

The necessity to model actor-object interactions appears in most applications of computer
animation and simulation. Such applications encompass several domains, as for example:
autonomous agents in virtual environments, human factors analysis, training, education,
virtual prototyping, and simulation-based design. A good overview of such areas is pre-
sented by Badler [2], and one example of a training application is described by Johnson and
Rickel [3].

The term object interaction has been employed in the literature mainly for the direct inter-
action between the user and the environment [4], but less attention has been given to the
actor-object interaction case.

Actor-object interaction techniques were first specifically addressed in a simulator based
on natural language instructions using an object specific reasoning (OSR) module [5]. The
OSR keeps a relational table informing geometric and functional classification of objects, in
order to help the interpretation of natural language instructions. The OSR mo dule also keeps
some interaction information: for each object graspable site, the appropriate hand shape and
grasp approach direction. This set of information is sufficient to decide and perform grasping
tasks, but no considerations are done concerning interactions with more complex objects with
some proper functionality.

In most of the cases, actors and objects have proper behaviors, and behavioral animation
techniques [6] [7] can be employed. Behaviors can follow the agent approach, where actions
are decided based on sensing the environment [8] [9]. These domains give techniques that
can be employed to approach some issues of the general actor-object interaction problem.
The term object functionality will be sometimes employed here instead of object behavior,
reflecting the fact that the objects considered here have simpler behaviors than actors. The
following two sections will present the related work done divided into two main categories:
the definition of object’s functionality, and the actor animation to perform interactions.

9.2.1 Object Functionality

In general, objects contain some proper functionality that needs to be defined. Some simple
examples are: after pressing a button the lift door will open, or only after turning on the printer
that it can print. Such rules need somehow to be programmed inside objects, and different
techniques may be employed.

 3

Okada [10] proposes to compose object parts equipped with input and output connectors
that can be linked to achieve different functionalities. State machines are also widely used. In
particular, most game engines [11] [12] use hierarchical finite state machines, defined graphi-
cally through user interfaces.

An important point to be taken into account is the ability to interpret the defined function-
ality in parallel, in a synchronized way. As it will be shown later, it may happen that several
actors interact with a same object, e.g. to enter a lift.

Several techniques used for general behavior definition cover some of these aspects. One
specific structure to define parallel behaviors is the parallel transitions network (PaTNets)
[13] [14]. Other works [15] cover the aspect of sharing resources with concurrent state ma-
chines.

It is natural to think that the description of the object functionality should be associated
with the object geometric description as well. Current standards for object description [16] are
normally based on scene graphs containing some nodes to connect animation to external
events, such as events from the user interface (mouse, keyboard, etc). This provides a primi-
tive way to describe basic object functionality, but as it is not generic enough, it is always
needed to make use of complete programming languages such as Java scripts. Thus, there is
still place for standards on the description of functionalities.

A similar scenario appears in the feature modeling area, mainly on the scope of CAD/CAM
applications [17] where the main concern is to represent not only the shape of the object, but
also all other important features regarding its design choices and even manufacture proce-
dures. In fact, suppliers of CAD systems are starting to integrate some simulation parameters
in their models [18]. The knowledgeware extension of the Catia system [19] can describe
characteristics like costs, temperature, pressure, inertia, volume, wetted area, surface finish,
formulas, link to other parameters, etc; but still no specific considerations are done to define
object functionality or interactivity.

The main point is that none of these techniques cover specifically the problem of describ-
ing object functionality for actor-object interaction purposes. As it will be presented later,
object functionality, expected actor behaviors, parallel interpretation of behaviors, and re-
sources sharing need to be solved in an unified way.

9.2.2 Actor Animation

Once the object functionality is somehow defined and available, actors need to access this
information and decide which motions to apply in order to complete a desired interaction.

The actor motion control problem is very complex, and has been mostly studied from the
computer graphics community, mainly targeting movie and game industries. Boulic [20] pro-
poses a good overview of the employed techniques. Recently the motion control problem has
also received contributions from the robotics and artificial intelligence domains.

For instance, from the robotics area, a classification of hand configurations for grasping is
proposed by Cutkosky [21]. Following the same idea, but targeting animation of virtual actors,
Rijpkema [22] introduces a knowledge-based grasping system based on pre-defined hand
configurations with on-line adaptation and animation. Huang [23] also proposes a system for
automatic decision of hand configurations for grasping, based on a database of predefined
grasping postures.

Also from the robotics domain, planning algorithms are able to define collision-free paths
for articulated structures. Koga [24] has applied such algorithms for the animation of the arms
of a virtual actor obtaining interesting results. The main drawback of the method is con-

 4

versely also its main advantage: because of its random nature, complicated motions can be
planned, but with high and unpredictable computational cost, thus not currently applicable
for interactive simulations. A huge literature about motion planning is available, mainly target-
ing the motion control of different types of robots [25] [26], and companies start to appear to
provide this technology [27].

Artificial intelligence techniques such as neural networks and genetic algorithms have
been applied for the control of virtual bodies [28] [29] [30] [31]. Currently, these algorithms are
too costly and can be only applied to limited cases. However, artificial intelligence techniques
will probably become more powerful and usable in a near future.

Inverse kinematics [32] is still the most popular technique for articulated structure anima-
tion. Some works can handle the animation of complex structures, taking into account several
constraints [33]. Some works present specific implementations regarding only the movement
of the actor’s arm [34] [35]. Although interesting results can be obtained it is still difficult to
obtain realistic postures, specially concerning the automatic full body animation for reaching
objects with hands. For instance, to determine a coherent knee flexion when the actor needs
to reach with its hand a very low position. For a complete overview of the possibilities of
Inverse Kinematics techniques, as well as other related issues, please refer to the Motion
Control chapter of this book.

In another direction, database driven methods can easily cope with full body postures. The
idea is to define pre-recorded (thus realistic) motions for reaching each position in the space
inside a discrete and fixed volumetric grid around the actor. Then, when a specific position is
to be reached the respective motion is obtained through interpolation of the pre-recorded
motions relative to the neighboring cells. This is exactly the approach taken by [36] with good
results achieved, but limited to the completeness of the database. Complementary, some
works [37] propose techniques to adapt pre-recorded motions for respecting some given
constraints. Database methods were also successfully used to determine grasping postures
[38]. The main drawback of such methods is that they are not general enough: it is difficult to
adapt motions to all given cases and also to handle collisions with the environment. However,
some works start to propose solutions to handle collisions [39].

As a final conclusion, table 9.1 makes a comparison of these many methods, from the point
of view of animating actors for general interactions with objects.

 Realism Real-Time Generality Collisions
Motion Database + + - -

Path Planning - - + +
Inverse kinematics - + + -

Table 9.1. Comparison of the many motion control methods, regarding: the realism of the generated
movements, the real-time ability of computation, generality for being applied to different types of
interactions, and the ability to handle and solve collisions with the environment and self collisions

 5

9.3 Smart Objects

In order to simplify the simulation of actor-object interactions, a complete representation of
the functionality and interaction capabilities of a given object is proposed to be used. The
idea is that each interactive object contains a complete description of its available interac-
tions, like forming a “user guide” to be followed by actors during interactions. Once objects
contain such information, they are considered here to become “smart”.

9.3.1 Interaction Features

A feature modeling approach is used, and a new class of features for simulation purposes is
proposed: interaction features. Interaction features can be seen as all parts, movements and
descriptions of an object that have some important role when interacting with an actor. For
example, not only buttons, drawers and doors are considered to be interaction features in an
object, but also their movements, purposes, manipulation details, etc.

Interaction features can be grouped in four different classes:
• Intrinsic object properties: properties that are part of the object design, for example: the

movement description of its moving parts, physical properties such as weight and center of
mass, and also a text description for identifying general objects purpose and the design in-
tent.

• Interaction information: useful to aid an actor to perform each possible interaction with
the object. For example: the identification of interaction parts (like a knob or a button), specific
manipulation information (hand shape, approach direction), suitable actor positioning, de-
scription of object movements that affect the actor’s position (as for a lift), etc.

• Object behavior: to describe the reaction of the object for each performed interaction. An
object can have various different behaviors, which may or may not be available, depending
on its state. For example, a printer object will have the “print” behavior available only if its
internal state variable “power on” is true. Describing object’s behaviors is the same as defin-
ing the overall object functionality.

• Expected actor behavior: associated with each object behavior, it is useful to have a de-
scription of some expected actor behaviors in order to accomplish the interaction. For exa m-
ple, before opening a drawer, the actor is expected to be in a suitable position so that the
drawer will not collide with the actor when opening. Such suitable position is then proposed
to the actor during the interaction.

This classification covers most common actor-object interactions. However, many design
choices still appear when trying to specify in details each needed interaction feature, in par-
ticular concerning features related to behavioral descriptions. Behavioral features are herein
specified using pre-defined plans composed with primitive behavioral instructions. This has
proved to be a straightforward approach because then, to perform an interaction, actors will
only need to “know” how to interpret such interaction plans.

In the smart object description, a total of eight interaction features are identified, which are
described in table 9.2.

 6

Feature Class Data Contained

Descriptions Object Property Contains text explanations about the ob-
ject: semantic properties, purposes, design
intent, and any general information.

Parts Object Property Describes the geometry of each comp onent
part of the object, their hierarchy, position-
ing and physical properties.

Actions Object Property Actions define movements, and any other
changes that the object may undertake, as
color changing, texture, etc.

Commands Interaction Info. Commands parameterize and associate to a
specific part the defined actions. For exa m-
ple, commands open and close can use the
same translation action.

Positions Interaction Info. Positions are used for different purposes,
as for defining regions for collision avoid-
ance and to suggest suitable places for
actors during interactions.

Gestures Interaction Info. Gestures are any movement to suggest to
an actor. Mainly, hand shapes and loca-
tions for grasping and manipulation are
defined here, but also specification of other
actions or pre-recorded motions can be
defined.

Variables Object Behavior Variables are generally used by the behav-
ioral plans, mainly to define the state of the
object.

Behaviors Object and Actor
Behavior

Behaviors are defined with plans composed
of primitive instructions. Plans can check or
change states, trigger commands and ges-
tures, call other plans, etc; specifying both
object behaviors and expected actors’
behaviors. These plans form the actor-
object communication language during
interactions.

Table 9.2. The eight types of interaction features used in the smart object description

9.3.2 Interpreting Interaction Features

Once a smart object is modeled, a simulation system is able to load and animate it in a VE. For
this, the simulator needs to implement a smart object reasoning module, able to correctly
interpret the behavioral plans.

There is a trade-off when choosing which features to be considered in an application. As
shown in figure 9.1, when taking into account the full set of object features, less reasoning

 7

computation is needed, but less general results are obtained. As an example, minimum comp u-
tation is needed to have an actor passing through a door following strictly a proposed path to
walk. However, such solution would not be general in the sense that all agents would pass
the door using exactly the same path. To achieve better results, external parameters should
also take effect, as for example, the current actor emotional state.

Fig. 9.1. The choice of which interaction features to take into account is directly related to many im-
plementation issues in the simulation system

Note that the notion of a realistic result is context dependent. For example, pre-defined

paths and hand shapes can make an actor to manipulate an object very realistically. However,
in a context where many actors are manipulating such objects exactly in the same way, the
overall result is not realistic.

A design choice appears while modeling objects with too many potential interactions. Es-
pecially in the case of composed objects, it is possible to model the object as many independ-
ent smart objects, each one containing only basic interactions. For example, to have an actor
interacting with a car, the car can be modeled as a combination of different smart objects: car
door, radio, and the car dashboard. In this way, the simulation application can explicitly con-
trol a sequence of actions like: opening the car door, entering inside, turning on the radio, and
starting the engine. On the other hand, if the simulation program is concerned only with traffic
simulation, the way an agent enters the car may not be important. In this case, a general be-
havior of entering the car can be encapsulated in a single smart object car.

The smart object approach introduces the following main characteristics in a simulation
system:

• Decentralization of the animation control. Object interaction information is stored in the
objects, and can be loaded as plug-ins, so that most object-specific computation is released
from the main animation control.

• Reusability of designed smart objects. Not only by using the same smart object in differ-
ent applications, but also to design new objects by merging any desired feature from previ-
ously designed smart objects.

• A simulation-based design is naturally achieved. Designers can take full control of the
loop: design, test and re-design. Designed smart objects can be easily connected with a simu-
lation program, to get feedback for improvements in the design.

9.4 SOMOD

The Smart Object Modeler application (SOMOD) [40] was developed specifically to model
smart objects. It was developed using Open Inventor [41] as graphics library, and FLTK [42]
for the user interface.

Interaction Info.

Less Computation, Easier Usage - Less General, Less Adaptability

Agent Behaviors Object Behaviors Object Properties

 8

SOMOD permits to import geometric models of the component parts of an object, and then
to interactively specify all needed interaction features. Features are organized by type, and a
main window permits to manage lists of features. According to the feature type, specific dia-
log boxes permit to edit the related parameters.

9.4.1 Object Properties

Text input windows are used to enter any text descriptions, with specific fields to describe a
semantic name for the object, and its overall characteristics. These definitions can then be
retrieved by simulators for any kind of processing.

An object is composed by assembling its different parts. The geometry of each part is im-
ported from commercial modeling applications. Parts can then be positioned interactively
using Open Inventor manipulators (figure 9.2). The same technique of using manipulators is
adopted to define the movement actions that can be applied to each part. For example to de-
fine a translation, the user displaces a part using a manipulator, and the transformation
movement from the initial position to the user-selected position is then saved as an action.
Note that actions are saved independently of parts, so that they can be later parameterized
differently (defining commands) and applied to different parts.

Fig. 9.2. Defining the specific parameters of a drawer. The drawer is a part of the smart object desk,
which contains many other parts. The image shows in particular the positioning of the drawer in rela-
tion to the whole object

9.4.2 Interaction Information

Commands are specified simply by associating actions to parts, and giving a parameterization
of how the motion should be applied to that part. Commands fully specify how to apply an
action to a part and are directly referenced from the behavioral plans whenever a part of the
object is required to move.

Positions and directions (figure 9.3) can be specified for different purposes. Each position
(as each feature) is identified with a given name for later referencing from the interaction
plans.

 9

Note that all features related to graphical parameters can be defined interactively, what is
important in order to see their location in relation to the object. Positions are defined in rela-
tion to the object skeleton’s root, so that they can be transformed to the same reference frame
of the actor whenever is needed, during the simulation. Note that smart objects can be loaded
and positioned anywhere in the virtual environment and all associated information need to be
transformed accordingly.

Fig. 9.3. Positions can be defined for different purposes. In the figure, many different positions (and
orientations) are placed to propose possible places for actors to walk when arriving from any of the
door sides

Gestures are normally the most important interaction information. Gestures parameters are

defined in SOMOD and proposed to actors during interactions. The term gesture is used to
refer to any kind of motion that an actor is able to perform. A gesture can only reference a pre-
recorded animation to be played, but the most used gesture is to move the hand towards
reaching a location in space using inverse kinematics. Figure 9.4 illustrates the process of
defining hand configurations and locations to be reached. Such information can then be used
during simu lations to animate the actor’s arm to perform manipulations with the object. It is
left to the simulator to decide which motion algorithm should be applied. As it will be shown
in section 9.5, inverse kinematics was used for the exa mples shown here.

Some extra parameters can be set in order to define if after the reaching motion is com-
pleted, the associated part should be taken, put, or just followed. Following is used to simu-
late interactions such as pressing buttons or opening drawers.

 10

Fig. 9.4. The left image shows a hand shape being interactively defined. The right image shows all used
hand shapes being interactively located with manipulators

9.4.3 Behaviors

The behavioral animation solutions presented here are specific for the actor-object interaction
problem. For a more general and complete overview on behavioral animation techniques,
please refer to the chapter Behavioral Animation of this book.

In smart objects, behaviors are defined using pre-defined plans formed by primitive in-
structions. It is difficult to define a closed and sufficient set of instructions to use, and a com-
plex script language to describe behaviors is not the goal. The idea is to keep a simple format
with a direct interpretation to serve as guidance for reasoning algorithms, and that non-
programmers are able to create and test it.

A first feature to recognize in an interactive object is its possible states. States are directly
related to the behaviors one wants to model for the object. For instance, a desk object will
typically have a variable state for its drawers, which can be assigned two values: “open”, or
“close”. However, depending on the context, it may be needed to consider another midterm
state value. Variables are used to keep the states of the object and can be freely defined by
the user to approach many different situations. Variables are defined by assigning a name and
an initial value, and can be also used for other purposes from the interaction plans, as for
instance to retrieve the current position of the actor in order to decide from which side of a
door the actor should enter.

Interaction plans are defined using a specific dialog box (figure 9.5), which guides the user
through all possible primitive instructions to use. The following key concepts are used for the
definition of interaction plans:

• An interaction plan describes both the behavior of the object and the expected behavior
of actors. Instructions that start with the keyword “user” are instructions that are proposed to
the user of the object, i.e., the actor. Examples of some user instructions are: UserGoto to
propose it to walk to some place, UserDoGest to tell it to manipulate some part using pre-
defined gesture parameters (figure 9.5), UserAttachTo to say that the actor should be
attached to some object part, as when entering a lift, etc.

• In SOMOD, an interaction plan is also called a behavior. Many plans (or behaviors) can
be defined and they can call each other, as subroutines. Like programming, this enables build-
ing complex behaviors based on simpler behaviors.

• There are three types of behaviors (or plans): private, object control, and user selectable.
Private behaviors can only be called from other behaviors. An object control behavior is a

 11

plan that is interpreted all the time since the object is loaded in a virtual environment. They
enable objects to act like agents, for example sensing the environment to trigger some motion,
or to have a continuous motion as for a ventilator. Object control behaviors cannot have
user-related instructions. Finally, user selectable behaviors are those that are visible to be
selected by actors, in order to perform a desired interaction.

• Selectable behaviors can be available or not, depending on the state of specified vari-
ables. For example for a door, one can design two behaviors: to open and to close the door.
However, only one is available at a time depending on the open state of the door. Behavior
availability is controlled with an instruction CheckVar. Its use is exemplified in figure 9.5,
and will be explaining in section 9.6 (case studies).

Fig. 9.5 Defining interaction plans: menu-buttons are used to list all possible instructions to use, and
for each instruction, the possible parameters are listed in additional menu-buttons. In this way complex
behaviors can be easily created.

Multi-Actor Interactions. If the object is required to interact with many actors at the same
time, synchronization issues need to be taken into account. There are two levels of synchro-
nization. The first one is to guarantee the interaction coherence. For this, interaction plans are
responsible to correctly make use of variables to, for example, count the number of actors
currently interacting with the object, correctly setting states and testing conditions to ensure
correctness when multiple actors are accessing the same object, etc. Section 9.6.2 details a
smart object door that is able to deal with several actors at the same time.

Another level of synchronization is to correctly manage the interpretation of several inter-
action plans in parallel. This is independent of the object type and should be done by the
simulator. A proposed procedure for this kind of synchronization is described in section 9.5.1.

Graphical State Machines. SOMOD plans are very simple to use for describing simple in-
teractions and functionalities. They can still cope with much more complex cases, but then
plans start to get more complex to design. It is like trying to use a specific purpose language
to solve any kind of problems.

To simplify modeling the behaviors of more complex objects, SOMOD proposes a dialog
box to graphically design finite state machines. The proposed solution is to start designing
basic interaction plans, using the standard behavior editor (figure 9.5). Then, when all com-
ponents have their functionality defined, the state machine window is used, permitting to
define the states of the whole object, and the connections between the comp onents. At the
end, designed state machines are automatically translated into interaction plans so that, from
the simulator point of view, a single representation is kept, and all behaviors are treated as
plans. Section 9.6.3 exemplifies how a state machine is used to simplify the creation of a smart
lift.

 12

Templates. One important concept is to reuse previously defined objects and functional-
ities, and a specific template loader was designed for this goal. The template loader window
can import any kind of features from other smart objects. Note that some features have de-
pendencies on other features. These dependencies need to be tracked and coherently loaded.
In addition, names are automatically updated whenever conflicts with previously created
names appear.

Extensions. SOMOD has been used for different purposes and different types of exten-
sions have been integrated. Positions can be automatically generated to delimitate regions for
collision avoidance when actors are walking. Behavioral instructions can simply call a user-
defined function in Python language [43], virtually enabling any complex behavior to be
coded. A VRML [16] exporter was also developed, however with limited animation capabili-
ties.

9.5 Interacting with Smart Objects

When a smart object is loaded in a virtual environment, actors are able to access available
interaction plans and interpret them. Two main issues should be considered when interpreting
plans: how to synchronize the interpretation of plans in parallel, and how to animate the ac-
tor’s skeleton whenever a manipulation action is required.

9.5.1 Interpretation of Plans

Each time an actor selects an interaction plan to perform, a specific thread is created to fol-
low the instructions of the plan (figure 9.6). The situation is that a simultaneous access to the
smart object is done when interpreting instructions, for example, that access variables or trig-
ger motions.

A simple synchronization rule to activate and block the many processes interpreting plans
in parallel is adopted. However, interaction plans still need to be well designed in order to
cope with all possible comb inations of simultaneous access. For example, complex situations
as the dining philosophers problem [44] are not automatic solved.

Long and local instructions. A simple built-in synchronization rule between threads is
used. For this, plans instructions are grouped into two categories: long instructions, and
local instructions. Long instructions are those that cannot start and complete in a single time
step of the simulation. For example, instructions that trigger movements will take several
frames to be completed, depending on how many frames the movement needs to finish. All
other instructions are said to be local.

Plans are interpreted instruction by instruction, and each instruction needs to be finished
before the next one is executed. When a plan is being interpreted by some thread T, all other
threads are suspended until a long instruction is found. In this way, T will fully execute se-
quences of local instructions, while all other threads remain locked. When a long instruction
is reached, it is initialized, the other threads are activated, and T stays observing if the instruc-
tion has finished. This scheme results with the situation where all activated threads are in fact
monitoring movements and other long instructions, and each time local instructions appear,
they are all executed in a single time step, while other threads are locked.

This approach automatically solves most common situations. For example, suppose that a
smart lift has an instruction like: “if state of calling button is pressed do nothing; otherwise

 13

set state of calling button to pressed and press it”. Suppose now that two actors, exactly at
the same time, decide to call the lift. The synchronization rule says that while one thread is
interpreting local instructions, all others are locked. In this way, it is guaranteed that only one
actor will actually press the button. Without this synchronization, both actors would press
the button together at the same time, resulting serious inconsistent results.

Fig. 9.6. For each actor performing an interaction with an object, a thread is used to interpret the se-
lected interaction plan. Each thread accesses and controls, in a synchronized way, its related actor and
object, according to the plan’s instructions

9.5.2 Manipulation Actions

To animate the actor’s skeleton for manipulation actions, Inverse kinematics is used, with
different constraints based on the type of manipulation and on the goal location to reach with
the hand.

An unified approach was designed targeting general manipulations with one arm. First of
all, a manipulation movement is divided in three phases: reaching, middle, and final phases
(figure 9.7).

All manipulation movements start at the reaching phase. In this phase, inverse kinematics
is used in order to animate the actor’s skeleton to have its hand in the specified position.
Then three cases can happen, depending on the parameters retrieved from the smart object:
follow, take, or put. Parameters follow and take are used to specify the attachment of objects
to the actor’s hand. The follow parameter indicates that the actor’s hand should then follow a
specified movement. This is the case for example to press buttons and open drawers: the
specified translation movement to animate the object part is followed by the actor’s hand,
while inverse kinematics is used in order to adjust the posture of the actor’s skeleton. The
final phase has the default behavior to either keep the actors posture unchanged or to change
it to a standard rest posture. This can be configurable and permits to chain other actions
instructions or to left the actor in the rest posture. In this way long and complex manipula-
tions can be subdivided in small pieces, each piece matching the schema of figure 9.7.

Thread 2 Thread 1 Thread n

BEHAVIOR
…
END

Actor 1

Smart Object

BEHAVIOR
…
END

BEHAVIOR
…
END

Actor 2

Actor n

 14

Fig. 9.7. Considered phases for a manipulation instruction

Additionally to the inverse kinematics motion to control the actor’s arm towards the speci-

fied location, the current hand fingers configuration is interpolated towards the specified final
configuration, and the actor’s head is set to look to the place of manipulation.

Constraints Distribution. The used inverse kinematics module was developed by Paolo

Baerlocher [33] (see the Motion Control chapter of this book), and is able to control the full
actor body with different types of constraints. The skeleton’s root is a node between the
pelvis and the spine, and which separates the hierarchies of the legs and feet from the hierar-
chies of the spine, head and arms.

At the beginning of a manipulation, the actor’s skeleton sizes and the task position to
reach with the hand are analyzed and different constraints are set.

• First, the inverse kinematics module is set to only animate the joints of the arm, shoulder,
clavicle, and the upper part of the spine. This set of joints makes the reach volume space
larger, as the actor can reach further positions by flexing the spine. However, a side effect is
that even for closer positions to reach, the spine can move, generating weird results. To over-
come this, two new constraints are created. Positional and orientation constraints, with low
priority, are used in order to keep the spine straight as long as it is possible (figure 9.8).

• Secondly, if the goal position to reach with the hand is lower than the lowest position
achievable with the hand in a straight rest position, a special knee flexion configuration is set.
The joints of the hip, knee, and ankle are added to the allowed joints to be animated by the
inverse kinematics module, and two new constraints, with high priorities, are added to keep
each foot on its original position and orientation. This configuration makes the actor to flex
the knees, keeping its feet attached to the ground, while the actor’s skeleton root is gradually
lowered (figure 9.9).

After the initial phase of constraints and joints control distribution is done, the hand task
is set with highest priority. In order to animate the arm from the initial configuration to the
desired one, the initial hand position and orientation are extracted and interpolated towards
the goal hand position and orientation, generating several interpolated sub-goals. Interpola-
tions can be simply linear, but should consider biomechanical properties. Inverse kinematics
is then used to generate the final actor posture for each interpolated sub-goal.

After the reaching phase is completed, a follow movement might be required (figure 9.7). In
this case, the hand keeps its orientation, and only its position is updated to follow the move-

Reaching
Phase

Final
Phase

Middle
Phase

R
ea

ch
in

g
M

ov
em

en
t Follow

Movement

Object Attach

Object Detach

Rest Posture

Keep Posture

Rest Posture

follow

take

put

Fi
ni

sh

St
ar

t

Pa
ra

m
et

er
 C

he
ck

in
g

 15

ment of the object being manipulated. Figures 9.10 and 9.11 exemplify both reaching and mid-
dle phases.

Fig. 9.8. Specific constraints are used to keep the actor’s spine as straight as possible

Fig. 9.9. When the position to reach with the hand is too low, additional constraints are used in order to
obtain knee flexion. The images show, from left to right, the postures achieved when reaching each time
lower positions

 16

Fig. 9.10. The reaching phase of a button press manipulation. Note that the actor’s head is also con-
trolled to look to the button, and the hand configuration is gradually interpolated towards the final
button press shape

Fig. 9.11. The reaching and follow movements used to close a drawer. Note that during the “follow
phase” (closing the drawer) the knee flexion is maintained

9.6 Case Studies

This section details how interaction plans can be actually coded. The focus is on explaining
how different issues can be solved using simple scripted plans, and not to give a complete
description of SOMOD instructions. The first case shows how simple interactions such as
opening a drawer can be defined. The second example shows how concurrent object access
can be handled when multiple actors want to interact with a same automatic door. And a final
example shows how the graphical state machine editor can be used to simplify the definition
of more complex interactions.

The examples shown here were generated with the Agents Common Environment
(ACE) system [45], which integrates smart objects with higher-level behavioral control mo d-
ules. For more information about ACE, and for higher-level animation examples obtained with
ACE, please refer to the chapter Behavioral Animation of this book.

 17

9.6.1 Opening a Drawer

Interaction plans are grouped as a set of behaviors, each one containing a list of instruc-
tions, similarly to procedures of a program. The following code exemplifies interactions of
opening and closing a drawer, as showed in figures 9.9 and 9.11:

BEHAVIOR open_drawer
 CheckVar var_open false
 UserGoTo pos_front
 UserDoGest gest_drawer
 DoCmd cmd_open
 SetVar var_open true
END

BEHAVIOR close_drawer
 CheckVar var_open true
 UserGoTo pos_front
 UserDoGest gest_drawer
 DoCmd cmd_close
 SetVar var_open false
END

The instruction CheckVar determines if the behavior is available or not. For example, the
behavior open_drawer is only available if the state variable var_open is false. In this
way, at any time, actors can ask for a list of available interaction plans, i.e, available object
behaviors according to the objects state.

Fig. 9.12. Several interactions similar to the opening drawer case: all are based on reaching a position
and following an object’s movement

In the example, when an actor receives the plan open_drawer, it will execute each primi-
tive instruction in the plan starting with the User keyword. That is, it will walk to the pro-
posed position and then it will apply inverse kinematics to animate the actor to perform the

 18

specified motion in the gesture gest_drawer. In this case, the motion includes a follow
movement that is set to follow the movement of the drawer part. The drawer itself will be ani-
mated by the smart object, according to the specified cmd_close parameters. At the end,
the object state is changed, allowing the close_drawer behavior to be available. Note that
both instructions, which are interpreted by the object and by the actor, are mixed in the same
behavior.

This same kind of solution can be applied to all interactions consisted of reaching a place
and then following an object’s movement. This is the case of interactions such as: pushing a
button, opening the cover of a book, opening doors, etc (figure 9.12).

9.6.2 Multiple Actors Interaction

The following code exemplifies how state variables are used to synchronize multiple actors
passing a same automatic door:

BEHAVIOR open
 Private
 IncVar var_passing 1
 CheckVar var_passing 1
 DoCmd opendoor
END

BEHAVIOR close
 Private
 IncVar var_passing -1
 CheckVar var_passing 0
 DoCmd cmd_close
END

BEHAVIOR enter_l_r
 Private
 UserGoTo pos_l_in
 DoBh open
 UserGoTo pos_r_out
 DoBh close
END

BEHAVIOR enter_r_l
 Private
 UserGoTo pos_r_in
 DoBh open
 UserGoTo pos_l_out
 DoBh close
END

BEHAVIOR enter
 UserGetClosest pos pos_l_in, pos_r_in
 If pos==pos_l_in
 DoBh enter_l_r
 Else
 DoBh enter_r_l
 EndIf
END

Each time an actor desires to pass the door, it will interpret the behavior enter, that will

give it the correct positions to pass the door without colliding with other actors. The behavior
enter is the only one visible to the actor, as all others are declared private. It starts by de-
ciding from which side the actor will enter, using the UserGetClosest instruction that

 19

asks if the actor is closest to a position on the left side (pos_l_in), or on the right side
(pos_r_in). Then, according to the result, the behavior to enter from the correct side is
called.

Behaviors enter_l_r and enter_r_l simply: send the actor to an initial position,
open the door, send the actor to the final position on the other side, and close the door. But
some more things are needed in order to cope with multiple actors. When modeling this smart
object, several positions were created for each of four cases: going in from the left and right
side, and going out from the left and right sides. Positions of a same case are given a same
name, so that when the instruction UserGoTo is called, the object is able to keep track,
among all defined positions with the same name, those that currently have no actor using it.
Figure 9.3 illustrates this automatic door and the used positions. The figure shows four posi-
tions for each case, which are associated to orientations and are represented as arrows. Note
however that such strategy relies entirely on the correct definition of the positions, for a more
general solution, actors should be also equipped with sensors to avoid colliding with other
entities which are out of the smart object control.

Behaviors open and close are called to actually close or open the door. These behav-
iors maintain a state variable that counts how many actors are currently passing the door
(var_passing) to correctly decide if the door needs really to be open or closed. Remember
that actors interpret the same script concurrently, so that all actors will ask to close the door,
but only the last one will actually close it.

9.6.3 Complex Behaviors

Consider the case of modeling a two-stage lift. Such a lift is composed of many parts:
doors, calling buttons, a cabin, and the lift itself. These parts need to have synchronized
movements, and many details need to be taken into account in order to correctly control ac-
tors interacting with the lift.

Similarly to the examples already explained, the modeling of the lift functionality is done in
two phases. First, all basic behaviors are programmed, e.g., opening and closing doors, press-
ing the calling button, and moving the lift from one stage to another. If the lift is to be used by
multiple actors, then all corresponding details need to be taken into account. Then, a higher-
level interaction of just entering the lift from the current floor to go to the other floor is coded
using calls to the basic behaviors.

 To simplify modeling behaviors of such complex objects, a state machine can be used
permitting to define the states of the object as a whole, and the connections between the
component behaviors.

Figure 9.13 shows a state machine example for the lift case. This state machine has two
global states: floor_1 and floor_2. When the lift is in floor_1, the only possible
interaction is enter_12, that will call a private behavior which calls the full sequence of
instructions: pressing the calling button, opening the door, entering inside, closing the door,
move the cabin up, opening the other door, and going out.

In the lift behavior example of figure 9.13, there is a single interaction of entering the lift,
which can be too long, giving no options to the actor during the interaction. Figure 9.14
shows another solution, which models the functionality of the lift by taking into account
possible intermediate states. In this case, the actor needs to select, step by step, a sequence
of interactions in order to take the lift to the other floor. As illustration, figure 9.15 shows
some snapshots of the animation sequence of an actor entering the lift.

 20

Fig. 9.13. A state machine for a two-stage lift functionality. The double circle state is the current state,
and the rectangular boxes show the interaction needed to change of state. For example, to change from
floor_1 to floor_2 state, interaction enter_12 is required

Fig. 9.14. A state machine considering intermediate states. The figure also shows behaviors associated
with states, to be triggered whenever the object enters that state

 21

Fig. 9.15. An actor entering the smart lift

9.7 Remaining Problems

The smart object approach proposes software architecture able to coherently control actor-
object interactions for real-time applications. However, this architecture relies that difficult
sub problems can be solved:

• Simple yet powerful definition of concurrent behaviors. The smart object approach pro-
poses a simple script language organized as interaction plans to describe the object function-
ality. Even if such solution can cope with complex cases, a more general, intuitive and simple
way to define functionalities and behaviors is still a topic of intense research.

• Planning and learning low-level manipulation procedures. Rather then always using pre-
defined geometric parameters for general manipulations, robust algorithms still need to be
developed in order to calculate feasible motions, taking into account collision detection with
the manipulation space, and automatic decision and dynamic update of hand configurations
and placements. For instance, the actor’s hand configuration should change during opening a
door, and the same for the whole skeleton configuration. Opening a door realistically would
also involve a combination of walking and hand manipulation.

• Realistic human motion. Even when a feasible and correct motion is calculated, how to
make this motion display natural and realistic? This is a difficult issue, which involves psy-
chological states, and comfort issues. The most reasonable direction to research is to fill the
gap between motion-capture animation and simulation/procedural animation. Some ideas are
to mix pre-recorded motion (database driven or not), corrected with simple interpolation or
inverse kinematics methods. The goal is to reuse realistic recorded human movements, param-
eterized for a wide range of object manipulations, and optimized to reach comfort criteria.

• Learning and adaptation. Virtual actors should be able to learn the motions, and also the
usefulness of objects, while interacting with them. This would an adaptation of the motions

 22

towards more realistic results. Learning and adaptation processes from the Artificial intelli-
gence field are still to be applied to enhance actor-object interactions. Smart objects have
been used connected to rule-based systems (figure 9.16) and or virtual life algorithms (figure
9.17) controlling the decisions of which interactions to perform, but still nothing has been
done on learning and adaptation on the motion level.

Fig. 9.15. Snapshots of a simulation controlled with Lisp plans, in order to follow a given storyboard
[45].

Fig. 9.16. A snapshot of a virtual life simulation based on smart objects. The curves on the left show
the variation of the internal motivational parameters of the virtual human, at different levels in the ac-
tion selection model. When actions are selected a corresponding object interaction is retrieved and exe-
cuted [46]

 23

References

[1] M. Kallmann, “Object Interaction in Real-Time Virtual Environments”, DSc Thesis 2347, Swiss
Federal Institute of Technology - EPFL, January 2001.

[2] N. Badler, “Virtual Humans for Animation, Ergonomics, and Simulation”, IEEE Workshop on Non-
Rigid and Articulated motion, Puerto Rico, June 97.

[3] W. Johnson, and J. Rickel, “Steve: An Animated Pedagogical Agent for Procedural Training in Vir-
tual Environments”, SIGART Bulletin, ACM Press, 8(1-4), 16-21, 1997.

[4] C. Hand, “A Survey of 3D Interaction Techniques”, Computer Graphics Forum, 16(5), 269-281,
1997.

[5] L. Levinson, “Connecting Planning and Acting: Towards an Architecture for Object-Specific Rea-
soning”, PhD thesis, University of Pennsylvania, 1996.

[6] R. J. Millar, J. R. P. Hanna, and S. M. Kealy, “A Review of Behavioural Animation”, Computer &
Graphics, 23, 127-143, 1999.

[7] T. Ziemke, “Adaptive Behavior in Autonomous Agents”, Presence, vol. 7, no. 6, 564-587, december
1998.

[8] M. Wooldridge, and N. R. Jennings, “Intelligent Agents: Theory and Practice”, Knowledge Engineer-
ing Review, 10(2), June, 1995.

[9] S. Franklin, and A. Graesser, “Is it an Agent, or Just a Program?: a Taxonomy for Autonomous
Agents”, Proceedings of the Third International Workshop on Agent Theories, Architectures, and
Languages, Springler Verlag, Berlin/Heidelberg, Germany, 1996.

[10] Y. Okada, K. Shinpo, Y. Tanaka and D. Thalmann, “Virtual Input Devices based on motion Cap-
ture and Collision Detection”, Proceedings of Computer Animation 99, Geneva, May, 1999.

[11] Motivate game engine from motion Factory (www.motion-factory.com).
[12] NeMo game engine (www.nemosoftware.com).
[13] J. Granieri, W. Becket, B. Reich, J. Crabtree, and N. Badler, “Behavioral Control for Real-Time

Simulated Human Agents”, Symposium on Interactive 3D Graphics, 173-180, 1995.
[14] R. Bindiganavale, W. Schuler, J. Allbeck, N. Badler, A. Joshi, and M. Palmer, “Dynamically Alter-

ing Agent Behaviors Using Natural Language Instructions”, Proceedings of the 4th Autonomous
Agents Conference, Barcelona, Spain, June, 293-300, 2000.

[15] F. Lamarche and S. Donikian, “The Orchestration of Behaviours using Resources and Priority
Levels”, EG Computer Animation and Simulation Workshop, 2001.

[16] Virtual Reality Modeling Language - 39L (www.39l.org).
[17] J. J. Shah, and M. Mäntylä, “Parametric and Feature-Based CAD/CAM”, John Wiley & Sons inc.

ISBN 0-471-00214-3, 1995.
[18] J. Berta, “Integrating VR and CAD”, IEEE Computer Graphics and Applications, 14-19, Septem-

ber / October, 1999.
[19] Catia V5 Product from IBM (www-3.ibm.com/solutions/engineering/escatia.nsf/ Public/ know).
[20] R. Boulic, Z. Huang, and D. Thalmann, “A Comparison of Design Strategies for 3D Human mo-

tions”, in Human Comfort and Security of Information Systems, ISBN 3-540-62067-2, 1997,
305pp.

[21] M. Cutkosky, “On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing
Tasks”, IEEE Transactions on Robotics and Automation, 5(3), 269-279, 1989.

[22] H. Rijpkema and Michael Girard, “Computer Animation of Knowledge-Based Human Grasping”,
Proceedings of ACM SIGGRAPH '91, 25(4), July 1991, pp. 339-348.

[23] Z. Huang, R. Boulic, N. Magnenat-Thalmann, and D. Thalmann, “A Multi-Sensor Approach for
Grasping and 3D Interaction”, Proceedings of Computer Graphics International, Leeds, UK, June,
1995.

 24

[24] Y. Koga, K. Kondo, J. Kuffner, and J. Latombe, “Planning motions with Intentions”, Proceedings
of SIGGRAPH’94, 395-408, 1994.

[25] J.-C. Latombe, “Robot motion Planning”, ISBN 0-7923-9206-X, Kluwer Academic Publishers,
Boston, 1991.

[26] “Robot motion Planning and Control”, Jean-Paul Laumond, Ed., Lectures Notes in Control and
Information Sciences 229, Springer, ISBN 3-540-76219-1, 1998, 343p.

[27] Kineo company (http://www.kineocam.com/).
[28] Meyer, J.A., Doncieux, S., Filliat, D. and Guillot, A. Evolutionary Approaches to Neural Control

of Rolling, Walking, Swimming and Flying Animats or Robots. In Duro, R.J., Santos, J. and Graña,
M. (Eds.) Biologically Inspired Robot Behavior Engineering. Springer Verlag.

[29] S. Nolfi and D. Floriano, “Evolutionary Robotics: The Biology, Intelligence, and Technology of
Self-Organizing Machines”, ISBN 0-262-14070-5, 384p, November 2000.

[30] K. Sims, “Artificial Evolution for Computer Graphics”, Proceedings of ACM SIGGRAPH '91,
25(4), July 1991, pp. 319-328.

[31] M. de Panne, and E. Fiume “Sensor-actuator networks”, Proceedings of ACM SIGGRAPH '93,
August 1993, pp. 335-342.

[32] A. Watt and M. Watt, “Advanced Animation and Rendering Techniques”, Wokingham: Addison-
Wesley, 1992.

[33] P. Baerlocher, “Inverse kinematics Techniques for the Interactive Posture Control of Articulated
Figures”, DSc Thesis 2393, Swiss Federal Institute of Technology - EPFL, 2001.

[34] D. Tolani, and N. Badler, “Real-Time Inverse kinematics of the Human Arm”, Presence 5(4), 393-
401, 1996.

[35] X. Wang, and J. Verriest, “A Geometric Algorithm to Predict the Arm Reach Posture for Com-
puter-aided Ergonomic Evaluation”, The Journal of Visualization and Computer Animation, 9, 33-
47, 1998.

[36] D. Wiley, and J. Hahn, “Interpolation Synthesis for Articulated Figure motion”, Virtual Reality
Annual International Symposium, Albuquerque, New Mexico, March, 1997.

[37] R. Bindiganavale, and N. Badler, “motion Abstraction and Mapping with Spatial Constraints”,
Proceedings of CAPTECH’98, Lecture Notes in Artificial Intelligence 1537, Springer, ISBN 3-540-
65353-8, 70-82, 1998.

[38] Y. Aydin, and M. Nakajima, “Database Guided Computer Animation of Human Grasping Using
Forward and Inverse kinematics”, Computers & Graphics, 23, 145-154, 1999.

[39] J.-C. Nebel, “Keyframe interpolation with self-collision avoidance”, Eurographics Workshop on
Computer Animation and Simulation, 77-86, Milan, Italy, September 1999.

[40] M. Kallmann and D. Thalmann, “Modeling Behaviors of Interactive Objects for Real Time Virtual
Environments”, Journal of Visual Languages and Computing, Volume 13 Number 2, April 2002.

[41] J. Wernecke, “The Inventor Mentor: Programming Object-Oriented 3D Graphics with Open In-
ventor Rel. 2”, Addison-Wesley, ISBN 0-201-62495-8, 1994.

[42] Fast Light Toolkit (www.12.org).
[43] M. Lutz, “Programming Python”, Sebastapol: O’Reilly, 1996. (see also: www.python.org)
[44] G. Andrews, “Concurrent Programming: Principles and Practice”, The Benjamin/Cummings Pub-

lishing Company, Inc., California, ISBN 0-8053-0086-4, 1991.
[45] M. Kallmann, J. Monzani, A. Caicedo, and D. Thalmann, “ACE: A Platform for the Real Time

Simulation of Virtual Human Agents”, EGCAS’2000 - 11th Eurographics Workshop on Animation
and Simulation, Interlaken, Switzerland, 2000.

[46] E. de Sevin, M. Kallmann and D. Thalmann, “Towards Real Time Virtual Human Life Simula-
tions”, Submitted to Computer Graphics International Symposium 2001.

