
Fully Dynamic Constrained Delaunay
Triangulations

Marcelo Kallmann1, Hanspeter Bieri2, and Daniel Thalmann3

1 USC Robotics Research Lab, Computer Science Department, University of
Southern California† kallmann@usc.edu

2 Institute of Computer Science and Applied Mathematics, University of Bern
bieri@iam.unibe.ch

3 Virtual Reality Lab – VRlab, Swiss Federal Institute of Technology – EPFL
daniel.thalmann@epfl.ch

Summary. We present algorithms for the efficient insertion and removal of con-
straints in Delaunay Triangulations. Constraints are considered to be points or any
kind of polygonal lines. Degenerations such as edge overlapping, self-intersections
or duplicated points are allowed and are automatically detected and fixed on line.
As a result, a fully Dynamic Constrained Delaunay Triangulation is achieved, able
to efficiently maintain a consistent triangulated representation of dynamic polygo-
nal domains. Several applications in the fields of data visualization, reconstruction,
geographic information systems and collision-free path planning are discussed.

Key words: Constrained Delaunay Triangulation, Dynamic Constraints.

1 Introduction and Related Work

Delaunay Triangulations and Constrained Delaunay Triangulations are popu-
lar tools used for the representation of planar domains. Applications include,
for instance, data visualization [21], reconstruction [3], mesh generation [20],
and geographic information systems [23].

The Constrained Delaunay Triangulation (CDT) is an extension of the
Delaunay Triangulation (DT) to handle constraints. A CDT can be seen as
the triangulation closest to the DT that respects given constraints.

The computation of the DT of a set of points in R2 is a classical problem in
computational geometry [15]. Asymptotically optimal algorithms are known,
as the O(n log n) divide-and-conquer [12] and sweepline [9] algorithms. For
CDTs, an optimal O(n log n) divide-and-conquer algorithm is also known [5].

However the most popular implementations for both DT and CDT are
those which are incremental and do not require the use of complicated data
structures in addition to the triangulation itself. In general, such incremental
algorithms take worst-case time of O(n2) mainly due to point location, which

† Work done while at VRlab-EPFL

Owner
In Geometric Modelling for Scientific Visualization, G. Brunnett, B. Hamann, H. Mueller, L. Linsen (Eds.), ISBN 3-540-40116-4, Springer-Verlag, Heidelberg, Germany, 241-257, 2003.

2 Marcelo Kallmann, Hanspeter Bieri, and Daniel Thalmann

usually takes O(n) to locate each point to be inserted. However the jump-
and-walk method of point location [14] allows the incremental computation of
DTs within an expected time of only O(n4/3) for randomly distributed points.
Simple incremental algorithms can thus be competitive with optimal (but
more complex) O(n log n) approaches. Note that, if dedicated data structures
are maintained to optimize point location, the incremental algorithm reaches
the expected time of O(n log n) [6].

Along this paper we mainly discuss complexity analysis results from ex-
isting incremental DT algorithms, expecting that similar asymptotic times
are obtained for CDTs without “special cases”. Therefore, constraints should
have few intersections and not make the CDT become too different from the
DT of the vertices of the constraints. Note that constraints can be defined
to make a CDT match any given triangulation, thus invalidating time com-
plexity analysis relying on the Delaunay property, as it is the case with the
jump-and-walk method [14].

This work presents the implementation of incremental algorithms permit-
ting to efficiently update CDTs in case of online insertions and removals of
constraints. We consider constraints to be defined by any set of points and
line segments. They may describe open polygonal lines, and simple or non-
simple polygons. Edge overlapping, self-intersections and duplicated points
are allowed, and are automatically detected and handled online.

Constraints are identified by ids at insertion time so that they can be
removed later on. Note that, as edge overlapping and intersections are al-
lowed, a constrained edge in the CDT can represent several input constraint
segments. Therefore, we need to coherently keep track of ids during inser-
tion and removal of constraints in order to keep updated which triangulation
edges represent which input constraints.

Our implementation for constructing CDTs is strongly related to the ap-
proaches taken in previous works [17] [10] [1] [19]. Our main contributions in
this paper are extensions to allow keeping track of overlapping and intersect-
ing constraints during insertion and removal operations.

In order to achieve a fast and robust implementation, we follow a topology-
oriented implementation approach [18], making use of floating-point arith-
metic and epsilons to better treat degenerate input data. A similar approach
has also been successfully used for the implementation of the Voronoi diagram
of points and segments [13].

Starting from an initial (trivial) CDT, updates are done respecting all
topological properties the CDT has to fulfill. Thus, topological consistency
is guaranteed independently of errors in numerical computations. Our aim is
that the algorithm never fails, giving always a topologically-valid output.

Our implementation has been successfully tested with several applications
requiring representations of dynamic planar domains. Our first application
which motivated this work was the navigation of characters in virtual envi-
ronments. For this case we use the CDT as a cellular decomposition of the

Fully Dynamic Constrained Delaunay Triangulations 3

free space, so that a simple search over the free triangles is sufficient to de-
termine a free passage joining two input points, if one exists. Our approach
becomes particularly interesting because we are able to efficiently update the
environment description when obstacles (or constraints) move.

The ability to deal with degenerated constraints and to dynamically insert
and remove them in CDTs, leads to a number of new possibilities in certain
applications. We present and discuss several examples in different fields: data
visualization, reconstruction, geographic information systems and collision-
free path planning.

2 Background and Problem Definition

Let V be a finite set of vertices in R2. Let E be a set of edges where each
edge has as its endpoints vertices in V . Edges are closed line segments. A
triangulation T = (V,E) is a planar graph such that: no edge contains a
vertex other than its endpoints, no two edges cross, and all faces are triangles
with their union being the convex hull of V .

Let T = (V, E) be a triangulation. An edge e ∈ E, with endpoints a, b ∈ V ,
is a Delaunay edge if there exists a circle through a and b so that no points of
V lie inside this circle. If T has only Delaunay edges, T is called a Delaunay
Triangulation (DT) of V . Note that a Delaunay triangulation is not unique
in case V has four or more co-circular points.

Let S = {C1, C2, ..., Cm} be a set of m constraints, such that for each i ∈
{1, 2, . . . ,m}, constraint Ci is defined as a finite sequence of points in R2. Ci

may contain a single point, otherwise it represents a polygonal line. Polygonal
lines are allowed to be of any form: open or closed, with self-intersections, with
overlapped portions or with duplicated points. For simplicity of notation, we
call the segments or points of all the constraints in S by simply the segments
or points in S.

Let S be a set of constraints as defined above. T (S) = (V, E) is a Con-
strained Delaunay Triangulation (CDT) of S if:

– For each segment s ∈ S, there is a number of edges in E such that their
union is equal to s. Such edges are called constrained.

– For each point p ∈ S, there is a vertex v ∈ V , such that v = p. Vertex v is
said to be constrained, and if it has no adjacent constrained edges, we say
that v is isolated. Isolated constrained vertices appear due to constraints
defined as a single point.

– For every non-constrained edge e ∈ E, e is a Delaunay edge with respect
only to the vertices connected with edges to the endpoints of e.

An edge e ∈ E is constrained if it is equal to, or is a sub-segment of, some
segment s ∈ S. All the other edges are non-constrained. Note that, as we
allow segments in S to intersect, finding CDT (S) implicitly means to deter-
mine all the intersection points, including them as additional vertices in V .

4 Marcelo Kallmann, Hanspeter Bieri, and Daniel Thalmann

Segments having intersections are split at the intersection points, generating
sub-segments which are inserted as edges of E (see Figure 1). Overlapped
segments share a same constrained edge in CDT (S).

The number and form of the constraints defined in S determines “how
far” CDT (S) is from DT (V). Delaunay triangulations have the nice property
of maximizing the minimum internal angle of triangles, and this property is
kept in CDT (S) as far as possible. Note that it is possible to define a set of
constraints that forces the CDT to become any desired triangulation.

Fig. 1. Left: a set of constraints S composed of two points, a square, a triangle, a
non-simple polygon, and an open polygonal line. Right: CDT (S).

Problem definition. Let S = {C1, C2, ..., Cm} be a set of constraints.
The problem we want to solve is to construct and maintain a Dynamic Con-
strained Delaunay Triangulation of S, more precisely:

– Construct an initial CDT (S) = (V,E), taking into account all possible
degenerated cases in S.

– Insert constraints incrementally, i.e., given a new constraint C and a tri-
angulation CDT (S), we want to efficiently compute CDT (S ∪ {C}).

– Remove constraints incrementally, i.e., given a constraint C ∈ S, and a
triangulation CDT (S), we want to efficiently compute CDT (S \ {C}).

3 Method Overview

Let S = {C1, C2, ..., Cm} be a set of constraints. Our algorithm to construct
CDT (S) is incremental, and a box B strictly containing all constraints in S
must be determined in advance. This is a common initialization requirement
that allows considering only the case of inserting constraints in the interior of
an existing CDT. B can be any large box that contains all possible constraints
to be inserted, as for instance the enlarged (by any factor) bounding box of
S. The triangulated B becomes the initial CDT. B constitutes the boundary
of CDT (S).

Fully Dynamic Constrained Delaunay Triangulations 5

Once the CDT has been initialized we can insert, in any order, any con-
straint Ci, i ∈ {1, 2, . . . ,m}. In order to cope with overlapping segments and
to identify constraints for later possible removals, we associate with each edge
of the CDT a list containing the indices of the constraints it represents (an
empty list means that the edge is not constrained):

struct edge information { list<int> crep; };
For example, consider that segment s1 ∈ Cj has endpoints {(2, 0), (3, 0)},

and segment s2 ∈ Ck has endpoints {(1, 0), (4, 0)}. During the process
of inserting segments s1 and s2 in the CDT, the overlapping is detected
and a single edge e with vertices coordinates {(2, 0), (3, 0)} is created.
Edge e will therefore keep indices {j, k} in its list crep. Note that seg-
ment s2 will be represented in the CDT as the union of the three edges
{(1, 0), (2, 0)}, {(2, 0), (3, 0)} and {(3, 0), (4, 0)}. If s1 is later on removed, s2

becomes represented by the edge {(1, 0), (4, 0)}.
Vertices in the CDT must also keep track of the constraints it represents,

however it is sufficient to count them. Therefore, each vertex in the CDT
keeps track of a reference counter, and can be removed from the CDT only
if this reference counter is 1. As this is a trivial procedure, we will not make
further considerations concerning the management of such reference counters
in the remainder of this paper.

Epsilon determination. Another initialization requirement is to deter-
mine the value of the epsilon to be considered in numerical computations.
As we rely on standard floating-point precision arithmetic, epsilons are used
to detect data inconsistencies. The epsilon mainly determines the threshold
defining how far distinct points shall be considered the same, and its value
reflects the precision of the measurement method. We assume that the user
is aware of the nature of the input data and is able to determine the best
epsilon to be used.

Held [13] proposes a more sophisticated approach to implement epsilon-
based computations. A value is also required as input from the user, but it is
considered as an upper bound. The lower bound is automatically determined
by the floating-point precision of the used machine. In this way, geometric
algorithms start by using the lower bound epsilon, and in case of problems, its
value is incrementally grown until these problems are solved. In case the upper
bound is reached before, data cleaning is performed and the computation
restarts.

Data structure. The algorithms we will present require the triangula-
tion to be represented by an efficient data structure, i.e. capable to give all
adjacency relations in constant time. We implemented a data structure fol-
lowing the adjacency strategy of the quad-edge structure [12] and integrating
element lists and operators as in the half-edge structure [27].

Our basic element is a structure representing an oriented edge. Each ori-
ented edge is associated with only one vertex, one edge and one face. We
call this basic element a SymEdge. This name is due to the fact that for each

6 Marcelo Kallmann, Hanspeter Bieri, and Daniel Thalmann

SymEdge, there is another symmetrical one, which is associated with the other
vertex and face sharing the same edge.

Each SymEdge structure keeps a pointer to the next SymEdge in the same
face (nxt pointer), and a pointer to the next SymEdge rotating around the
same vertex (rot pointer). A counter-clockwise orientation is used. The sym-
metrical element of a SymEdge is obtained by composing the nxt and rot
pointers. In addition, three pointers are also stored in each SymEdge in order
to retrieve the associated vertex, edge and face elements. The vertex, edge
and face elements are organized in lists, and are used to store any application-
specific data (as crep lists).

Construction and traverse operators are defined as a safe interface to
manipulate the structure. We have implemented the same traverse operators
as described in a previous paper [26]. In that work, a benchmark is presented
where the mentioned “simplified quad-edge structure” is equivalent to the
SymEdge structure described here. The benchmark indicates that the SymEdge
structure is one of the fastest to describe general meshes. Note however that
specific structures for describing triangulations may have better performance,
as discussed in the work of Shewchuk [17].

4 Constraint Insertion

Given a constraint to be inserted in a CDT, we incrementally insert all its
points and then all its segments, as shown in the following routine:

insert constraint (Ci, i)

for all points p in Ci

LocateResult lr = locate point (p);

if (lr is an existing vertex)

v = lr.located vertex;

else if (lr is on an existing edge)

v = insert point in edge (lr.located edge, p);

else

v = insert point in face (lr.located face, p);

add v to vertex list;

for all vertices v in vertex list

if (v is not the last vertex in vertex list)

vs = successor of v in vertex list;

insert segment (v, vs, i);

Point location. The routine insert constraint requires to locate
points. For each point p to be inserted in the CDT, the locate point rou-
tine searches where in the triangulation p is. Point location is an important
issue for any incremental algorithm, and several approaches have been pro-
posed. Most efficient methods rely on dedicated data structures, reaching
the expected time of O(log n) to locate one point [6] [4] [11]. Alternatively,

Fully Dynamic Constrained Delaunay Triangulations 7

bucketing has also been used [16] with good performances for well-distributed
points. We follow the simpler jump-and-walk approach [14], which takes ex-
pected O(n1/3) time (in DTs). It has the advantage that no additional data
structures are needed, which is an important issue in our case: as constraints
can be dynamically updated, the use of any additional data structure would
also imply additional updates after each operation.

The jump-and-walk method of Mücke, Saias and Zhu [14] first defines a
random sample of O(n1/3) vertices from the triangulation (n being the current
number of vertices), and then determines which one of these is closest to p.
Finally, an oriented walk is performed, starting with one triangle t adjacent
to the chosen vertex.

The oriented walk [24] [12] method selects one edge e of t, which separates
the centroid of t and p in two distinct semi planes. Then, e is used to switch
t to the other triangle adjacent to e. This simple process continues until
t contains p. However it is only guaranteed to work for DTs [22] [8], and
we have included an additional test to ensure its convergence in our CDT
search. First, each visited triangle is marked. Then, whenever two edges exist
separating the centroid of the current triangle and p in distinct semi planes,
the one leading to a non-marked triangle is chosen. Marking triangles does
not imply any overhead: we simply keep an integer for each triangle, and for
each new search an incremented integer flag is used as a mark.

The geometric test required to determine if two points lie in the same
side of a segment is implemented with a standard CCW (counter-clockwise)
orientation test. However, as this test is not always robust, we switch to an
epsilon-based walk mode when a loop is detected, i.e., when there are no
unmarked triangles to switch to during the walk. The epsilon-based walk
includes geometrical tests to explicitly check for each triangle t during the
walk, if p is equal to some vertex of t, or if p lies on some edge of t (within
the epsilon distance).

Point insertion. The point location routine determines (within the ep-
silon distance), if point p is already in the CDT, if it lies on an edge, or if it
lies inside a face of the CDT. If p is already there, it is simply not inserted;
otherwise a new vertex v is created in the located edge or face. If p is located
in an edge it is first projected to that edge before insertion.

Fig. 2. Point insertion in an edge (top) and in a face (bottom). The edges outlined
in bold (right side) constitute the initial edge set F (p).

8 Marcelo Kallmann, Hanspeter Bieri, and Daniel Thalmann

When p is inserted, non-Delaunay edges introduced in the triangula-
tion need to be corrected. We follow the popular approach of flipping non-
Delaunay edges, until all edges become Delaunay [12].

After inserting p, the union of all triangles incident to p forms a star-
shaped polygon P . The edges on the border of P constitute the current edges
being considered for flipping, and are noted here by the set F (p) (Figure 2).
Note that just after p insertion, P is either a triangle or a quadrilateral, and
during the whole flipping process F (p) continues to be a star-shaped polygon.

The insertion of one point may require O(n) edge flips, however for DTs
with a random input it is known that the expected number of edge flips is
constant, no matter how they are distributed [11].

Note that if p is inserted in a constrained edge e, the crep list of indices
of e is copied into the crep lists of the two new sub-edges created after the
division of e at point p. The final pseudo codes of the insertion routines are
as follows:

vertex* insert point in edge (p, e)

if p is not exactly in e, project p to edge e;
orig crep = e->crep;
v = new vertex created by inserting p in e according to Figure 2;

set the crep list of the two created sub edges of e to be orig crep;

push the four edges of F (p) on stack;
flip edges (p, stack);

return v;

vertex* insert point in face (p, f)

v = new vertex created by inserting p in f according to Figure 2;

push the three edges of F (p) on stack;
flip edges (p, stack);

return v;

flip edges (p, stack)

while stack not empty

edge* e = stack.pop();
if (e is not constrained AND e is not Delaunay)

f = face incident to e, which does not contain p;
push on stack the two edges of f that are different from e;
flip (e);

The flip edges routine tries to flip each edge in the stack, while the stack
is not empty. The decision of actually flipping an edge e relies on two tests.
The first one simply checks if e is constrained. This test is not subjected to
numerical errors. The second test checks whether e is Delaunay or not. This
is equivalent to determine if the circle passing through p and the endpoints
of e does not contain the opposite point of p in relation to e.

Point-in-circle tests computed with a 4x4 determinant are subject to nu-
merical errors. Different approaches have been used to achieve a robust behav-
ior, such as arbitrary-precision arithmetic [19], or exact computation based

Fully Dynamic Constrained Delaunay Triangulations 9

on floating-point numbers [17]. Our choice follows our main approach of using
epsilons and floating-point arithmetic: we consider p inside the circle c only
if: distance(center(c), p) < radius(c) − epsilon. It is worth to mention that
we have faced never-ending loops during the flipping process when using only
a simple determinant evaluation.

Segment insertion. The final task of the insert constraint routine
is to insert segment s defined by a pair of already inserted vertices. Our
approach takes three steps: all edges of the CDT which are crossed by s
are deleted, s is inserted in the CDT creating a new edge e, and finally the
two introduced non-triangular faces on each side of e are retriangulated (see
Figure 3).

Fig. 3. a) Example of the insertion of a segment s = {v1, v2}. b) Crossing con-
strained edges (in bold) are subdivided and the intersection points are inserted. c)
Remaining crossing edges are removed. d) Finally, s sub-segments are inserted, and
the non-triangular faces are retriangulated.

Our implementation follows the approach taken by Shewchuk [17] and
Anglada [1]. However, instead of deleting edges and retriangulating faces,
the alternate approach presented by Bernal [2] would also be applicable: only
edge flips are performed in order to make the missing segments appear. This
seems to be an interesting approach and we intend, in a future work, to
compare implementations of both approaches.

10 Marcelo Kallmann, Hanspeter Bieri, and Daniel Thalmann

Let v1 and v2 be the two vertices which are the endpoints of the segment
s to insert. The pseudo code of routine insert segment can be summarized
as follows :

insert segment (v1, v2, i)

// step 1

edge list = all constrained edges crossed by segment {v1,v2};
for all edges e in edge list

p = intersection point between e and segment {v1,v2};
insert point in edge (p, e);

// step 2

edge list = all edges crossed by segment {v1,v2};
for all edges e in edge list

remove edge e from the CDT;

// step 3

vertex list = all vertices crossed by segment {v1,v2};
for all vertices v in vertex list

if (v is not the last element in vertex list)

vs = successor vertex of v in vertex list;

if (if v and vs are connected by an edge)

e = edge connecting v and vs;

add index i to e->crep;
else

e = add new edge in the CDT connecting v and vs;

add index i to e->crep;
retriangulate the two faces adjacent to e;

To decide if a vertex is crossed by s we take into account the epsilon
distance. The determination of lists of elements (edges or vertices) crossed
by s can be efficiently done due to the adjacency information stored in the
SymEdge data structure. In the actual implementation, a list containing all
crossed elements is determined once , and used during the entire routine
insert segment.

The process of retriangulating the two faces on each side of e is based on
incrementally inserting interior edges that are Delaunay. We refer the reader
to the work of Anglada [1], where a detailed description is given.

5 Constraint Removal

The removal process of a constraint i is based on two main steps. The first step
searches for all edges representing constraint i, and setting that they no longer
represent the constraint i. At this point edges may become unconstrained.
The second step consists in removing those vertices that are possibly no
longer used by any constraint, and removing intersection vertices that are no
longer representing intersections (see Figure 4).

Fully Dynamic Constrained Delaunay Triangulations 11

One vertex v of the constraint i is required in order to start the (local)
search for the edges representing constraint i. Vertex v is saved when the
constraint is inserted, and therefore a list is maintained associating one vertex
with each constraint index. Note that v needs to be a “corner vertex” of C and
not a vertex between two collinear edges representing C. This is to guarantee
that v is not removed from the CDT due to the removal of another constraint
sharing v. The pseudo-code of the removal process is given below:

remove constraint (i)

// step 1

v = one vertex of the constraint i;
put on stack all incident edges to v representing the constraint i;
mark all edges in stack;
while (stack is not empty)

edge* e = stack.pop();
add e to edge list;

push to stack all incident edges to e representing constraint i
and which are not marked; ensure all edges in stack are marked;

for all edges e in edge list

remove index i from e->crep;
// step 2

vertex list = all vertices which are endpoints of edges in edge list;

for all vertices v in vertex list

ref = number of different indices referenced by the

remaining constrained edges adjacent to v;
n = number of remaining constrained edges adjacent to v;
if (n==0)

remove vertex (v);

else if (n==2)

let e1 and e2 be the remaining constrained edges adjacent to v;
if (e1->crep == e2->crep AND e1 is collinear to e2)

let v1 and v2 be the two vertices incident to e1 and e2, and

which are different than v;
crep = e1->crep;

remove vertex (v);

edge* e = insert segment (v1, v2, -1);

e->crep = crep;

Routine remove vertex removes a vertex v from the CDT as well as all
edges (constrained or not) which are incident to v. After removal, a non-
triangular face f appears, which needs to be retriangulated. Currently we
follow the approach presented by Anglada [1]. However, the alternate ap-
proach based on an ear algorithm [7] could also be used with possibly best
performance.

When a vertex is removed to simplify two collinear edges, a call to
insert segment is done right after a call to remove vertex. Certainly more
optimized processes can be devised, however they may not be worth to imple-

12 Marcelo Kallmann, Hanspeter Bieri, and Daniel Thalmann

Fig. 4. The constraint C to be removed is drawn as a dashed polygonal line, and the
other two intersecting constraints are drawn in bold (left). As soon as all edges of
C are identified, they are set to no longer represent constraint C (middle). Finally,
points which are no longer required are removed (right).

ment as collinear edges are not likely to happen very often. Figure 5 illustrates
the importance of removing redundant vertices in collinear edges.

Fig. 5. The left image shows three constraints intersecting at vertex v: two trian-
gles with one collinear edge and a rectangle R. If redundant intersection vertices
were not removed, several new intersection vertices would be accumulated during
a displacement of R. Such an undesirable situation (right image) is detected and
fixed in step 2 of the routine remove constraint.

6 Results

Using the insertion and removal routines it is possible to reinsert constraints
to new positions, allowing them to move while the CDT is dynamically up-
dated. Depending on the size of the CDT and on the size and number of
constraints being manipulated, constraints can be interactively displaced in
applications. This is the case with the examples showed in Figure 6.

Performance. So far, interactive graphical applications maintaining dy-
namic CDTs with over 10K triangles in a Pentium III 600Mhz computer have
been implemented. The speed of these applications greatly depends on the
size of constraints being manipulated and on the overhead to update dis-
play lists for rendering. Table 1 gives some performance data for the current
version of our code.

Fully Dynamic Constrained Delaunay Triangulations 13

Fig. 6. The top row shows one constraint being displaced in a CDT constructed
from a data set containing several intersection and overlapping cases. The bottom
row shows the dynamic update of small polygons representing autonomous agents
navigating in a planar environment.

Table 1. Performance values. C is a constraint selected to be displaced in each
data set. For instance, in the world map data set, C is the Sicilia island. The units
are: v=vertices, s=seconds, ms=milliseconds.

data set CDT size CDT construction C size C removal C insertion

head (fig.7b) 1433 v 2.1 s 8 v 3 ms 4 ms
hexagons (fig.7a) 8332 v 3.7 s 6 v 3 ms 4 ms
world map (fig.7d) 80652 v 38.1 s 60 v 50 ms 20 ms

7 Applications

We have tested the usefulness of our triangulator with applications in sev-
eral fields. Having at our disposal a CDT handling overlapping and dynamic
constraints, new possibilities are open to many applications.

Visualization. In planar data visualization, data acquisition often pro-
vides a set of values associated with unorganized points in the plane. The
triangulation of the set of points is often used as a way to create connections
between these points [29] [21]. Then, given any point p in the plane, its value
can be computed by interpolating the values associated with the vertices of
the triangle containing p. In this way, values for all points in the plane can be
determined, and a smooth colored visualization of the data can be obtained.
This is the case, for instance, when analyzing a temperature or elevation data
distribution in a planar domain.

14 Marcelo Kallmann, Hanspeter Bieri, and Daniel Thalmann

In many cases, to enforce correct interpolation between certain values, it
is important to insert constraints representing specific features on the ter-
rain being represented. We have identified three classes of problems in planar
visualization that can benefit from the capability to dynamically update con-
straints:

– Dynamic changes in the data set. Such cases appear whenever features
being represented are subject to dynamically change. Examples are the
accurate representation of borders of lakes and rivers, continent boundaries,
or for data coming from floating maritime devices equipped with GPS.

– Data analysis along paths. For the design and analysis of locations where
railway paths, oil tube paths, ski runs, etc, will be installed. Designed paths
can be placed as constraints over the triangulation of data points in the
target terrain, obtaining data interpolation exactly along the paths. The
possibility to update paths dynamically allows an animated visualization
of the associated data, opening new methodologies for planning such paths.

– Classification of statistical data according to several binary criteria and
visualization of the resulting classes [28]. Let each criterion be defined by a
piecewise linear separator which can be modified interactively. A concrete
example are habitants of a city represented as points in the plane with
“age” and “education level” as their coordinates. One separator could be
“qualification for a certain task”, another “interest in cultural activities”.
In order to visualize this data, we construct the corresponding CDT with
the two separators as constraints. The basic color of each point is e.g. a
monotonous function of the sum of its coordinates. Then the whole trian-
gulation is colored by interpolation. Now, we associate with each separator
two additional colors, indicating “criterion fulfilled/not fulfilled”, and mod-
ify the basic color of each point in the triangulation by the correct one.
The result is a visualization of the valid state of the dynamic classification.

Geometric modeling. Our dynamic CDT can be efficiently used to com-
pute Boolean operation on polygons. When inserted in a CDT, all polygons
(intersecting or not) are correctly triangulated. Therefore, their union is de-
termined by the union of the triangles which are inside any of the polygons.
And their intersection is determined by the union of the triangles which are
contained in all polygons. Note that the boundary of such unions can be ef-
ficiently determined by simply traversing adjacent constrained edges in the
triangulation.

The ability to dynamically update the position of inserted polygons allows
the interactive design of planar models using the Constructive Solid Geometry
(CSG) approach. The triangulation itself can be hidden from the designer,
who works mainly manipulating a tree of Boolean operations among polygons.

Reconstruction. In the field of shape reconstruction from contours (see
Figure 7b,c), a common approach is to consider adjacent contours as con-
straints in a CDT in order to specify the best strategy to link vertices [3].

Fully Dynamic Constrained Delaunay Triangulations 15

The dynamic update of constraints allows, for instance, to reconstruct
deformable models at the same time the data set is being captured by some
measurement equipment. This is an important kind of application in the
medical domain, in the implementation of training and computer-assisted
surgery systems.

GIS. Constrained triangulations are important tools in the domain of
geographic information systems [23]. They are used for the representation of
different kind of data, which can be spatially retrieved using different kind of
queries.

The possibility to dynamically update constraints is certainly an impor-
tant characteristic of systems targeting the design and update of geographical
databases. Figure 7d shows the CDT of a world map. In this example, our
algorithm greatly simplifies the construction of the CDT as no requirements
concerning the constraints are needed. For instance, we could easily handle
overlapping borders between countries, intersections of rivers or lakes travers-
ing country borders, etc.

CDTs like the one shown in Figure 7d can also serve as a base mesh for
other applications, such as the analysis of ocean circulation models [20].

Path planning. The primary application that motivated this work is the
determination of collision-free paths among obstacles in the plane. Practical
implementations for the determination of shortest paths usually rely on visi-
bility graphs and take quadratic time and space on the number n of obstacle
vertices [25]. Using CDTs, approximate shortest paths can be derived in O(n
log n) time (after the CDT construction). This time results from a graph
search over O(n) triangles.

Let p1 and p2 be two given points in the triangulated domain. First, point
location is performed in order to determine the triangles t1 and t2 containing
points p1 and p2, respectively. Then, a graph search is performed over the
triangulation adjacency graph, in order to determine the shortest sequence of
adjacent triangles (a channel) connecting t1 and t2, and not traversing any
constrained edge. Channels are determined by an A* search rooted at t1, and
switching through adjacent triangles without crossing constrained edges. This
process continues until t2 is reached. If no triangles are available to search
before reaching t2, a collision-free path joining p1 and p2 does not exist.

Let P be the boundary of a channel successfully determined with the
procedure described above. The problem is now reduced to find the shortest
path between p1 and p2 inside the simple polygon P . This can be done with
the known funnel algorithm [25], which runs in linear time.

Our approach becomes particularly interesting because we are able to effi-
ciently update the environment description when constraints move. Moreover,
allowing intersecting obstacles greatly simplifies the definition of grown ob-
stacles being used to take into account paths generated for discs and not only
for points. Figures 7e and 7f illustrate some applications of our collision-free
path determination approach.

16 Marcelo Kallmann, Hanspeter Bieri, and Daniel Thalmann

8 Final Remarks

We have given extensions to known CDT algorithms in order to cope with dy-
namic and overlapping constraints. Constraints are identified by ids for later
removal, and the required management of ids is presented for the insertion
and removal procedures.

We exemplified the use of our CDT algorithms by means of several appli-
cations, and the performed tests indicate that the algorithm is very robust1.

As future work, we intend to study the inclusion of an optimized routine to
move a constraint, without the overhead of two consecutive remove and insert
calls. Extensions to 3D are feasible, but hard to be robustly implemented.

Acknowledgments. The authors thank the anonymous reviewers for
their helpful comments.

References

1. Anglada, M.V. (1997): An Improved Incremental Algorithm for Constructing
Restricted Delaunay Triangulations. Computer & Graphics, 21(2), 215–223

2. Bernal, J. (1995): Inserting Line Segments into Triangulations and Tetrahedral-
izations. Actas de los VI Encuentros de Geometria Computacional, Universitat
Politecnica de Catalunya, Barcelona, Spain

3. Boissonnat, J.-D. (1988): Shape Reconstruction from Planar Cross Sections.
Computer Vision, Graphics, and Image Processing, 44, 1–29

4. Boissonat, J.-D., Teillaud, M. (1993): On the Randomized Construction of the
Delaunay Tree. Theoretical Computer Science, 112, 339–354

5. Chew, L.P. (1987): Constrained Delaunay Triangulations. Proceedings of the
Annual Symposium on Computational Geometry ACM, 215–222

6. Devillers, O. (1998): Improved incremental randomized Delaunay triangulation.
Proc. of the 14th ACM Symposium on Computational Geometry, 106–115

7. Devillers, O. (1999): On Deletion in Delaunay Triangulations. Proceedings of
the 15th Annual ACM Symposium on Computational Geometry, June

8. Devillers, O., Pion, S., Teillaud, M. (2001): Walking in a Triangulation. ACM
Symposium on Computational Geometry

9. Fortune, S. (1987): A Sweepline Algorithm for Voronoi Diagrams. Algorithmica,
2, 153–174

10. De Floriani, L., Puppo, A. (1992): An On-Line Algorithm for Constrained
Delaunay Triangulation. Computer Vision, Graphics and Image Processing, 54,
290–300

11. Guibas, L.J., Knuth, D.E., Sharir, M. (1992): Randomized Incremental Con-
struction of Delaunay and Voronoi Diagrams. Algorithmica, 7, 381–413

12. Guibas, L., Stolfi, J. (1985): Primitives for the Manipulation of General Sub-
divisions and the Computation of Voronoi Diagrams. ACM Transactions on
Graphics, 4(2), 75–123

1 For information concerning the source code please contact the first author

Fully Dynamic Constrained Delaunay Triangulations 17

13. Held, M. (2001): VRONI: An Engineering Approach to the Reliable and Effi-
cient Computation of Voronoi Diagrams of Points and Line Segments. Compu-
tational Geometry Theory and Applications, 18, 95–123

14. Mücke, E.P., Saias, I., Zhu, B. (1996): Fast Randomized Point Location With-
out Preprocessing in Two and Three-dimensional Delaunay Triangulations.
Proc. of the Twelfth ACM Symposium on Computational Geometry, May.

15. Preparata, F.P., Shamos, M.I. (1985): Computational Geometry. Springer-
Verlag, New York

16. Su, P., Drysdale, R.L.S. (1995): A Comparison of Sequential Delaunay Trian-
gulation Algorithms. Proceedings of the ACM Eleventh Annual Symposium on
Computational Geometry, June, 61–70

17. Shewchuk, J.R. (1996): Triangle: Engineering a 2D Quality Mesh Generator
and Delaunay Triangulator. First ACM Workshop on Applied Computational
Geometry, Philadelphia, Pennsylvania, May, 124–133

18. Sugihara, K., Iri, M., Inagaki, H., Imai, T. (2000): Topology-Oriented Im-
plementation - An Approach to Robust Geometric Algorithms. Algorithmica
27(1), 5–20

19. Schirra, S., Veltkamp, R., Yvinec, M. (1999): The CGAL Reference Manual.
Release 2.0 (www.cgal.org)

20. Legrand, S., Legat, V., Dellersnijder, E. (2000): Delaunay Mesh Generation for
an Unstructured-Grid Ocean General Circulation Model. Ocean Modelling 2,
17–28

21. Treinish, L. A. (1995): Visualization of Scattered Meteorological Data. IEEE
Computer Graphics and Applications, 15(4), July, 20–26

22. Weller, F. (1998): On the Total Correctness of Lawson’s Oriented Walk Algo-
rithm. The 10th International Canadian Conference on Computational Geom-
etry, Montral, Qubec, Canada, August, 10–12

23. De Floriani, L., Puppo, E., Magillo, P. (1999): Applications of Computational
Geometry to Geographic Information Systems, Chapter 7 in Handbook of Com-
putational Geometry, J.R. Sack, J. Urrutia (Eds), Elsevier Science, 333–388

24. Lawson, C. L. (1977): Software for C1 Surface Interpolation. In J. R. Rice (ed),
Mathematical Software III, Academic Press, New York, 161–194

25. Mitchell, J.S.B. (1997): Shortest Paths and Networks. Handbook of Discrete
and Computational Geometry, Discrete Mathematics & its Applications, Jacob
E. Goodman and Joseph O’Rourke, ed., CRC Press, 445–466

26. Kallmann, M., Thalmann, D. (2001): Star Vertices: A Compact Representation
for Planar Meshes with Adjacency Information. Journal of Graphics Tools, 6(1),
7–18

27. Mäntylä, M. (1988): An Introduction to Solid Modeling, Computer Science
Press, Maryland

28. Bennett, K.P., Mangasarian, O.L. (1994): Multicategory discrimination via lin-
ear programming. Optimization Methods and Software, 3, 29–39

29. Nielson, G.M. (1997): Tools for Triangulations and Tetrahedrizations and Con-
structing Functions Defined over Them. In G.M. Nielson, H. Hagen, H. Mueller
(Eds.): Scientific Visualization. IEEE Computer Society Press, 429–525

18 Marcelo Kallmann, Hanspeter Bieri, and Daniel Thalmann

(a) (b) (c)

(d)

(e) (f)

Fig. 7. a) 960 hexagonal constraints inserted randomly in a square. b) Contours

scanned from a 5-month old boy’s skull with premature ossification. c) One slice

of the boy’s skull. d) A world map with 2800 inserted constraints delimiting coun-

tries, islands and lakes. e) A path joining two points in the reconstructed town of

Grangemouth, Scotland. f) Screenshot of an interactive application where a virtual

human is able to walk to any selected location without colliding with boxes inside

the room. Boxes are also subject to change position. Data sources: Gill Barequet

web page at Tel Aviv University (b,c), DEWA/GRID center for data and informa-

tion management of the United Nations Environment Programme - UNEP (d), and

CROSSES IST European Project (e).

