
Immersive Vehicle Simulators for Prototyping, Training and Ergonomics

Marcelo Kallmann1, Patrick Lemoine1, Daniel Thalmann1, Frederic Cordier2,
Nadia Magnenat-Thalmann2, Cecilia Ruspa3, and Silvia Quattrocolo3

1Swiss Federal Institute of Technology (EPFL), Virtual Reality Lab (VRlab)

Lausanne Switzerland CH-1015
{marcelo.kallmann, patrick.lemoine, daniel.thalmann}@epfl.ch

2University of Geneva, MIRALab

General Dufour 24, Geneve, Switzerland CH-1211
{cordier, thalmann}@miralab.unige.ch

3Centro Ricerche Fiat (CRF), Human Factors - Physical Ergonomics

Strada Torino, 50 - 10043 Orbassano TO - Italy
{cecilia.ruspa, silvia.quattrocolo}@crf.it

Abstract

In most vehicle simulators, complete physical mock-

ups equipped with steering wheel, gearshift and pedals
are required. These devices are essential in trying to
simulate real conditions, but as a drawback the system
becomes expensive, huge (non mobile), and limited to
reflect changes on the vehicle type, dimensions, or
interior design.

We have implemented different configurations for an
immersive vehicle simulator, ranging from the use of a
real mock-up equipped with force-feedback steering
wheel, gearshift and pedals, to fully virtual control
metaphors, which are based only on trackers and
datagloves. We propose such fully virtual control
metaphors as an alternative to minimize the use of
physical devices in simulators.
keywords. virtual reality, direct interaction, real time

graphics, vehicle simulators.

1. Introduction and Related Work

It is a common practice to develop vehicle simulators
based on physical mock-ups. They might be equipped
with hydraulic platforms [1], or based on a real car placed
in front of large (some times cylindrical) projection
screens [2,3,4]. The primary application of vehicle
simulators is driving training and behavior analysis [5],
but they have also been used for virtual prototyping
issues.

Today most car manufacturers use vehicle simulators
as part of product conception. Car simulators allow
engineers to test the car before it is built, evaluate
ergonomic aspects, interior design and even road

behavior. However, for virtual prototyping issues [6,7],
simulators based on physical reproduction of cabins
require substantial time and cost to be manufactured.
Therefore, they cannot be reconstructed each time to
reflect a new part model which is updated on the CAD
design. This difficulty mostly appears when performing
ergonomics and visibility evaluations according to
changes in the car interior.

Immersive virtual reality provides a natural alternative.
Virtual prototypes can replace physical mockups for the
analysis of design aspects like: layout and packaging
efficiency; visibility of instruments, controls and mirrors;
reachability and accessibility; clearances and collisions;
human performance; aesthetics and appeal; etc. The goal
is to immerse a person in the virtual car interior, able to
study the design and interact with the virtual car.

Following predictions stated since the beginning of
research on Virtual Reality [8], the ultimate vehicle
simulator would be fully virtual, with no physical parts,
and the user would experience not only realistic graphics
and sound generation, but also full realistic force-
feedback. Actual technology is still far to reach these
requirements, and compromise solutions have to be taken.

We present in this paper a simulator system built for
both training and ergonomics-related tasks, and which
can be used in mainly two different configurations:

• based on a physical mock-up of the vehicle,
equipped with force-feedback primary controls.
• based on a fully virtual control metaphor, allowing to
interact with the vehicle only through the use of
motion trackers and datagloves.
We analyze these configurations for the use on several

different simulated scenarios, and identify possible tasks
for which fully virtual controls are suited to be used.

Owner
In Computer Graphics International (CGI), Tokyo, Japan, July 2003, 90-95

2. Simulator Requirements

Our simulator software needs to handle several
scenarios, which were specified by the psychologists and
ergonomics partners of the project.

Visibility tasks. To analyze visibility changes
(dashboard instruments, exterior environment, mirrors,
etc), according to different vehicle designs.

Reaching tasks. To analyze the good positioning of
primary controls, while the virtual vehicle is stopped.

Interaction Tasks. To analyze the ergonomics during
interaction with the primary controls while the vehicle is
static (or runs slowly). For instance, one of the interaction
tasks consists of instructing the user to simply change
gears one by one.

Driving Tasks. Here the user is supposed to drive the
vehicle and to perform several simple driving tasks. Each
driving task has few traffic decisions to be taken. They
have been designed to analyze the user driving behavior
while using primary controls and the facility to control
the vehicle. Examples are: stop and go according to
traffic lights, entering a narrow garage, reversing, parking
between two cars, etc.

Training Tasks. For these tasks, the user drives the
vehicle inside an animated environment with some traffic.
Here the user performs some decision-making according
to the traffic situation. Some example of training tasks
are: to turn left with incoming traffic, to drive on a
highway with other vehicles, to pass a roundabout, to turn
right with bicyclists or pedestrians crossing, etc.

The simulator is also required to handle mirrors and to
control force-feedback primary controls, which are
mounted on a mock-up. For instance, the motorized
steering-wheel behavior changes according to the speed
of the vehicle, and the pedals and the gearshift behavior
are fully defined by software [9,10].

Concerning the visualization, we use both Head
Mounted Displays (HMD), and shutter glasses. In this last
case, stereo images are projected in a large screen placed
in front of the mock-up. A 6 degrees of freedom (DOF)
tracker is placed in the user’s head, in order to capture the
viewing position and direction. When using the HMD, we
have a fully virtual scenario, and an avatar (a virtual
representation of the user’s body) is displayed in the
scene. Arms and hand fingers are animated using two
additional 6 DOF trackers and datagloves. These trackers
are placed on the user’s hands and an inverse kinematics
algorithm animates the elbow and shoulder joints
according to the hands position.

Currently we use Intersense trackers, which are precise
enough, although they cannot handle emitter-sensor
occlusion. Magnetic trackers cannot be used because
several motors and metallic parts are used in the mock-up.

3. Software Architecture

We have developed a system able to simulate all
specified tasks. The system is configurable according to
scripts written in Python [11]. For each task, two scripts
must be given:

(a) An initialization script that configures the system
parameters, loading all scenario components.

(b) A run time script, which controls the behavior of
all animated objects in the scene during the simulation.

The system is distributed in two high-end PC
computers (figure 1). The control computer reads the
selected task script and interprets them, sending messages
to update the scene graphics, which is maintained by the
visualization computer.

Figure 1. Simplified diagram of the system
architecture: main nodes and connections.

The System Control Module in the control computer is

responsible to:
• Start the application with a graphical interface

permitting to select the desired script scenario to run.
Scripts are loaded from a local database containing all
modeled scenarios and are interpreted in run time.

• Read the position of the primary controls (steering
wheel, pedals, and gearshift) and update the vehicle
behavior accordingly.

• Read the values of the hand trackers. These values
are used to animate the avatar (in case a HMD is being
used). Also, when the primary controls are not available,
the fully virtual control metaphor based on the hands
position (to be presented later in the paper) will input to
the system the modification applied to the position of the
steering wheel and gearshift.

• Output the correct forces to the primary controls
according to the vehicle state. For instance, the steering

Visualization Computer

Control Computer

Virtual Objects DB

Tasks Scripts DB

Scene Graph Manager

Visualization
Displays

System Control Module

Force
Feedback
Controls

TCP/IP

Head
Tracker

Hand
Trackers

wheel gets heavier according to the current speed of the
vehicle.

• At each frame, and according to the specified frame
rate, all needed updates to perform in the scene graph are
sent to the visualization computer.

The Scene Graph Manager module in the visualization
computer is responsible to:

• Read the messages sent by the control computer.
During initialization, objects are required to be loaded
from a local database. During run time, messages are
mostly related to update the position of each animated
object in the scenario.

• Generate stereo images for the selected display. Both
HMDs and shutter glasses can be specified.

• Read the values of the head tracker. The user’s head
orientation is not only used to place the virtual camera,
but also to select the activation of mirrors.

In order to save computation time, we have done the
simplification that only one mirror is activated at a time,
i.e., only the mirror closer to where the user is looking is
activated. Note that the generation of each mirror image
requires a full rendering of the scene from the mirrors
point of view using the OpenGL stencil buffer [12] to clip
the scene to the mirrors boundary. Moreover, as we
display stereo images, each mirror image needs to be
generated twice. In the end, in stereo mode and with one
mirror activated, the scene needs to be rendered four
times per frame.

4. Simulation Examples

Figure 2 presents snapshots of some simulated tasks, in
order to give a better picture of the different issues taken
into account by the simulator.

The top row of figure 2 exemplifies two training tasks.
The city street with animated traffic and traffic lights is
used to train engaging cross roads. In the highway
scenario the user needs to overtake cars in order to keep
an instructed constant speed.

The middle row of figure 2 illustrates one scenario
used for the parallel-parking task and the garage-entering
task (the garage is on the right side of the house).

The bottom row of figure 2 exemplifies one visibility
test where a cylinder is placed at the same position as the
left frontal pillar of the vehicle. By changing the size of
the cylinder, it is possible to simulate how far the size of
pillars affects the visibility of the driver.

5. System Configurations

In this section the possible configurations of the
simulator system are presented, classified according to the
type of interaction with the user. Note that for all
configurations, different visualization modes can be used:

using HMDs, shutter glasses with large projected screens
or even a simple monitor.

Figure 2. Snapshots of some simulated tasks.

Mockup Configuration. The standard configuration

for the simulator is the mockup configuration (figure 3).
It is certainly the best for performing most specified tasks.
However there are some drawbacks regarding the cost,
and the difficulty to move it or to update it. For instance,
during the development of the project, which has different
partners located in different countries (Italy, Germany and
Switzerland) we soon needed to develop alternatives to
test and implement the simulator software without the
mockup, as only one mockup was constructed (in Italy).

When HMD visualization is used, the user is
completely immersed in the virtual environment, seeing
its animated avatar representation, but can still interact
with the real mockup. Real objects provide force
feedback while their virtual counterparts provide visual
feedback.

Therefore, matching real objects to their virtual models
is an important task to be carried out. As an initialization
procedure, we define a transformation matrix that is used
to compute the position of the trackers in the virtual
environment. This consists of computing the relative
position of the real devices (seat, gearshift and steering
wheel) from the motion capture system. This matrix is
defined at once when all the devices (seat, steering wheel,
gearshift and the motion capture device) are installed. The
procedure requires defining three feature points in the real

and the virtual environment. They are located on objects
for which high precision is required: one in the gearshift,
one in the steering wheel and the last one on the seat.
These positions define a coordinate system for the real
world and for the virtual world.

Figure 3. The mock-up configuration using

shutter glasses (left) or HMD (right).

Desktop Configuration. The first alternative

developed was simply done by replacing the primary
controls by standard desktop components such as
joysticks or game like steering wheels. The desktop
configuration is sufficient to test the animated scenarios,
but it doesn’t permit to interact with the primary controls
corresponding to the virtual car model being simulated.

Virtual Configuration. A fully virtual configuration

was created, immersing the user in the virtual
environment. In this configuration we use two hand
trackers to get the position of the user’s hand. The first
use of these positions is to give a visual feedback of the
location of the users hands in the virtual environment.
The user can visualize his/her hands representation in
several ways: with an animated avatar, with only two
flying hands, or simply with two spheres representing the
tracker location. For the animation of hands, data gloves
are used. A fully animated avatar gives a more realistic
feedback, however for using the system many times
consecutively, a point representation is a more practical
solution because it avoids wearing and connecting two
devices (the data gloves). Figure 4 shows the devices
used by this configuration. Note that data gloves use are
optional, permitting to capture or not fingers movement
(in figure 4, only one dataglove is being used).

In case the avatar is displayed, two techniques are used
in order to fit its animation to the user. Firstly,
measurements of the user are taken and applied to the
avatar. These measurements concern mainly the upper
body: length of the forearms and upper arms, width of the
shoulders and length of the neck and the trunk. The lower
body is not animated and therefore does not need to be
matched to the user size. Secondly, a method has been
developed to ensure the matching of the position of avatar
hands with those of the user, by using inverse kinematics
to reconstruct joint angles. The usual approach would be
to apply these calculated joint angles on the avatar

skeleton from the root to the hands. In such approach, the
animation of end joints such as the hands lacks of
precision due to the accumulation of angle errors. Our
approach consists of accumulating the joint angles in the
reverse order, i.e. from the hands to the root. Therefore,
two skeletons are used, one for the left and one for the
right arms. After applying the joint angles on one of the
skeletons, the skeleton is moved in a way that the position
of the hand fits to the position of the corresponding
tracker. This ensures that the hands of the virtual human
and the user have exactly the same position.

Tracked hands positions are also used to interact with
the primary controls, permitting not only to approach
reaching tasks, but also interaction tasks. For this
purpose, a simple interaction metaphor was created. First,
interaction regions (see figure 6) are associated to the
interactive primary controls. In our case a torus
approximates the steering wheel, and a sphere
approximates the top of the gearshift. As these primitives
can be defined by implicit equations, it becomes easy to
compute containment and distance queries from a given
point in space. During runtime, while a hand position
moves inside an interaction region, the associated primary
control moves together with the hand. This simple
mechanism allows the user to manipulate the controls and
actually drive the car, following the principle that
interactive objects keep their own interaction information
[13]. However, this interaction metaphor is not easy
enough for performing driving tasks as it requires a lot of
attention during manipulation. This main drawback made
us to develop a smarter interface.

Smart Virtual Configuration. In this configuration,

we simplified the required motor skills to interact with the
steering wheel and gearshift. First, two regions are
specified close to the gearshift to indicate places to
activate a gear change to a lower gear or to a higher gear.
For instance, we have specified that if the users hand gets
closer to the gearshift, but between the gearshift and the
panel, a higher gear is activated. If the hand gets into a
region between the gearshift and the driver, a lower gear
is activated.

Once these regions are determined, we specify that the
users hands stay attached to the steering wheel most of
the time. The steering rotation angle is simply deduced
from the relative position of the hands, taking into
account only the vertical coordinates. But when the right
hand position gets closer to the gearshift and enters into
one interaction region, a gear is changed, and if the avatar
is displayed, its arm is automatically animated to change
the position of the gearshift. We can say that, in this case,
the avatar gets some autonomy, as it understands the user
interaction intention and performs the interaction in the
virtual world. For the moment, our systems run only with
the described proximity criteria, but more sophisticated

methods to also take into account recognition of hands
gestures could be integrated [14].

This smarter interaction metaphor allows the user to
concentrate on the animated scenario, without the need to
pay attention to the virtual controls. An analysis of the
configurations is done in the next section.

Figure 4 illustrates the avatar being controlled by the
user wearing VR devices. Figure 5 illustrates the case
when simple spheres are used to represent hand positions.
These visual spheres provide sufficient information to let
the user interact with the steering wheel and gearshift in
the Virtual Configuration modes. Figure 6 illustrates the
notion of interaction regions.

Figure 4. The virtual configuration.

Figure 5. Spheres may also represent hand

positions. Whenever a control gets attached to
the user hand, the corresponding sphere

changes its color.

Figure 6. Main interaction regions used: a torus

approximates the steering wheel shape (left),
and a sphere approximates the topmost part of

the gearshift (right).

6. Analysis

The main drawbacks of the mockup configuration are
related to the mockup itself: (a) its high cost, (b) its
difficulty to be updated in order to reflect changes in
virtual prototypes, and (c) its cumbersome size and
weight which makes mobility to be a problem. These
main drawbacks motivated us to develop the virtual
control metaphors shown in the previous section. Table 1
presents how each configuration fits in relation to these
issues.

Table 1. Configurations Characteristics

 Characteristics
Configs. Cost Mobility Prototyping

use
Mockup high difficult difficult
Desktop low very easy not possible
Virtual medium easy possible
Smart
Virtual

medium easy possible

In summary, to overcome the limitations of the

mockup configuration, the desktop configuration gives
the lowest cost solution but cannot be used for virtual
prototyping tasks. The two virtual configurations give a
compromise solution in relation to the cost, and might
also be used for virtual prototyping issues, as it becomes
very easy to replace virtual objects and interact with them
in a fully virtual environment.

However the virtual configurations, as well the
desktop one, are not applicable to simulate all types of
tasks.

The mockup configuration might be applicable for all
the tasks. Even if some visibility tasks might not be well
performed when physical parts of the mockup occlude a
region of interest during the visibility test.

Such a drawback does not occur if HMD visualization
is used. Note that all configurations can be equipped with
a HMD visualization resource, so that visibility tasks can
be performed equally in all configurations. We have also
performed some tests in a CAVE environment, with the
cooperation of the Fraunhofer Institute.

It is not possible to perform Reaching, Interaction and
Driving tasks with the desktop configuration, as these
tasks require the driver to be able to interact with the
primary controls corresponding to the virtual vehicle
being simulated.

The virtual configuration can be used for reaching
tasks. But as there is no force-feedback in the virtual
configurations, it is not possible to analyze ergonomics
issues related to the grasping of controls. Only
ergonomics aspects related to reaching distances might be
performed. The smart virtual configuration is not suited to

reaching tasks simply because (in its standard form)
interactions are triggered each time the user approaches
the virtual primary control.

To train the decision-making and vehicle control when
facing traffic situations, it is possible to use the desktop
configuration and the smart virtual configuration. The
virtual configuration is not applicable for training,
because the interaction metaphor requires too much
attention from the driver, and this is not acceptable as the
driver must pay full attention on the traffic and on the
external environment. Moreover, arms fatigue quickly
occurs as the user does not have a real steering wheel to
support his/her arms.

In order to make use of the advantages of both the
virtual configuration and the smart virtual configuration,
the simulator system can be easily defined to change
between these two modes in run time, according to
desired interaction mode.

The analysis presented here is based on the experience
of the authors during development and test of the system
and as well demonstration to several visitors.

7. Conclusions and Future Work

In this paper, two fully virtual interaction metaphors
for a vehicle simulator have been presented. One requires
the user to interact with virtual primary controls as if they
were real, and the other simplifies the interaction and
proposes easier ways to interact with the primary
controls.

The applicability of these virtual interaction
configurations is complementary, and together they can
be applied to several simulation scenarios. We believe
that these two virtual configurations might constitute an
interesting solution, in particular for Virtual Prototyping
uses.

As future work, we intend to test each presented
configuration with several test users, in order to
determine if our analysis (concerning the suitability of
each system) is confirmed.

8. Acknowledgements

This research has been carried out within the
European Commission GROWTH program, Research
Project Virtual (Virtual Reality Systems for perceived
quality testing of driving task and design), contract nr.
1999-RD.11030.

Scuola Superiore di Studi Universitari e di
Perfezionamento S.Anna – PERCRO Lab is particularly
acknowledged for its technical support and collaboration.

University of Regensburg, Fraunhofer – Institute für
Arbeitswirtschaft und Organisation Stuttgart,
Loughborought University – Department of Human

Science, Institute for Arbeitwissenschaft – Technische
Universität Darmstadt are greatly acknowledged for their
support.

9. References

[1] J. S. Freeman, G. Watson, Y. E. Papelis, T. C. Lin, A.
Tayyab, R. A. Romano, and J. G. Kuhl, “The Iowa Driving
Simulator: An Implementation and Application Overview”,
SAE World Congress, 1995.

[2] Bailey, A.C, Jamson, A.H., Parkes A.M. and Wright, S.
(1999). Recent and Future Development of the Leeds Driving
Simulator. Presented at DSC99, Paris. July 1999. See also
http://mistral.leeds.ac. uk/.

[3] University of Central Florida Driving Simulator. Center for
Advanced Transportation Systems Simulation, University of
Central Florida (http://catss.engr.ucf.edu/html/Simulator.htm).

[4] Wrap-around Driving Simulator. Human Factors Research
Laboratory, University of Minnesota (http://education.umn.edu/
kls/research/hfrl/facilities.htm).

[5] S. Espié, F. Saad, B. Schnetzler et al, “Microscopic Traffic
Simulation and Driver Behaviour Modelling : the ARCHISIM
Project”, VTI Konferenz, In Proceedings of the Strategic
Highway Research Program (SHRP) and Traffic Safety on Two
continents, Lille, France, September 26-28, 1994.

[6] K.-P. Beier, “Virtual Reality in Automotive Design and
Manufacturing”, Proceedings of Convergence’94, International
Congress on Transportation Electronics, SAE - Society of
Automotive Engineers, Dearborn, Michigan, October 1994.

[7] M. R. Niesen, and G. R. Luecke, “Virtual Dynamic
Prototyping for Operator Interface Design”, 8th IEEE
International Workshop on Robot and Human Communication,
Pisa, Italy 1999.

[8] I.E. Sutherland, “The ultimate display”, In Proceedings of
the IFIP Congress, volume 2, 506-508, NY, May, 1965.

[9] A. Frisoli, C. A. Avizzano, and M. Bergamasco, “Simulation
of a manual gearshift with a 2 DOF force-feedback joystick”,
ICRA - International Conference on Robotics and Automation
Seoul, Korea, 2001

[10] Frisoli A, Avizzano CA, Bergamasco M, Data S, Santi C,
"Dynamic modeling of primary commands for a car simulator",
IEEE 2001 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM '01) 8-12 July 2001 Como, Italy.

[11] M. Lutz, “Programming in Python”, Sebastapol, O’Reilly,
1996.

[12] M. Woo, J. Neider, T. Davis, and D. Shreiner, “OpenGL(R)
Programming Guide”, Addison Wesley, 0-201-60458-2, 1999.

[13] M. Kallmann, and D. Thalmann, “Direct 3D Interaction
with Smart Objects”, Proc. of ACM VRST, 1999, London.

[14] H. Nishino, K. Utsumiya, D. Kuraoka, K. Korida,
“Interactive Two-Handed Gesture Interface in 3D Virtual
Environments”, ACM Symposium on Virtual Reality Software
and Technology - VRST, 1-8, 1997.

http://www.engr.utk.edu/%7Efreeman/pdfs/SAE95.pdf
http://www.engr.utk.edu/%7Efreeman/pdfs/SAE95.pdf
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Mason Woo/002-3248747-1972827
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Jackie Neider/002-3248747-1972827
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Tom Davis/002-3248747-1972827
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Dave Shreiner/002-3248747-1972827

