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Abstract 

 
In most vehicle simulators, complete physical mock-

ups equipped with steering wheel, gearshift and pedals 
are required. These devices are essential in trying to 
simulate real conditions, but as a drawback the system 
becomes expensive, huge (non mobile), and limited to 
reflect changes on the vehicle type, dimensions, or 
interior design. 

We have implemented different configurations for an 
immersive vehicle simulator, ranging from the use of a 
real mock-up equipped with force-feedback steering 
wheel, gearshift and pedals, to fully virtual control 
metaphors, which are based only on trackers and 
datagloves. We propose such fully virtual control 
metaphors as an alternative to minimize the use of 
physical devices in simulators.  
keywords. virtual reality, direct interaction, real time 

graphics, vehicle simulators. 
 
1. Introduction and Related Work 
 

It is a common practice to develop vehicle simulators 
based on physical mock-ups. They might be equipped 
with hydraulic platforms [1], or based on a real car placed 
in front of large (some times cylindrical) projection 
screens [2,3,4]. The primary application of vehicle 
simulators is driving training and behavior analysis [5], 
but they have also been used for virtual prototyping 
issues. 

Today most car manufacturers use vehicle simulators 
as part of product conception. Car simulators allow 
engineers to test the car before it is built, evaluate 
ergonomic aspects, interior design and even road 

behavior. However, for virtual prototyping issues [6,7], 
simulators based on physical reproduction of cabins 
require substantial time and cost to be manufactured. 
Therefore, they cannot be reconstructed each time to 
reflect a new part model which is updated on the CAD 
design. This difficulty mostly appears when performing 
ergonomics and visibility evaluations according to 
changes in the car interior. 

Immersive virtual reality provides a natural alternative. 
Virtual prototypes can replace physical mockups for the 
analysis of design aspects like: layout and packaging 
efficiency; visibility of instruments, controls and mirrors; 
reachability and accessibility; clearances and collisions; 
human performance; aesthetics and appeal; etc. The goal 
is to immerse a person in the virtual car interior, able to 
study the design and interact with the virtual car. 

Following predictions stated since the beginning of 
research on Virtual Reality [8], the ultimate vehicle 
simulator would be fully virtual, with no physical parts, 
and the user would experience not only realistic graphics 
and sound generation, but also full realistic force-
feedback. Actual technology is still far to reach these 
requirements, and compromise solutions have to be taken. 

We present in this paper a simulator system built for 
both training and ergonomics-related tasks, and which 
can be used in mainly two different configurations: 

• based on a physical mock-up of the vehicle, 
equipped with force-feedback primary controls. 
• based on a fully virtual control metaphor, allowing to 
interact with the vehicle only through the use of 
motion trackers and datagloves. 
We analyze these configurations for the use on several 

different simulated scenarios, and identify possible tasks 
for which fully virtual controls are suited to be used. 
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2. Simulator Requirements 
 

Our simulator software needs to handle several 
scenarios, which were specified by the psychologists and 
ergonomics partners of the project. 

Visibility tasks. To analyze visibility changes 
(dashboard instruments, exterior environment, mirrors, 
etc), according to different vehicle designs. 

Reaching tasks. To analyze the good positioning of 
primary controls, while the virtual vehicle is stopped. 

Interaction Tasks. To analyze the ergonomics during 
interaction with the primary controls while the vehicle is 
static (or runs slowly). For instance, one of the interaction 
tasks consists of instructing the user to simply change 
gears one by one. 

Driving Tasks. Here the user is supposed to drive the 
vehicle and to perform several simple driving tasks. Each 
driving task has few traffic decisions to be taken. They 
have been designed to analyze the user driving behavior 
while using primary controls and the facility to control 
the vehicle. Examples are: stop and go according to 
traffic lights, entering a narrow garage, reversing, parking 
between two cars, etc. 

Training Tasks. For these tasks, the user drives the 
vehicle inside an animated environment with some traffic. 
Here the user performs some decision-making according 
to the traffic situation. Some example of training tasks 
are: to turn left with incoming traffic, to drive on a 
highway with other vehicles, to pass a roundabout, to turn 
right with bicyclists or pedestrians crossing, etc. 

The simulator is also required to handle mirrors and to 
control force-feedback primary controls, which are 
mounted on a mock-up. For instance, the motorized 
steering-wheel behavior changes according to the speed 
of the vehicle, and the pedals and the gearshift behavior 
are fully defined by software [9,10]. 

Concerning the visualization, we use both Head 
Mounted Displays (HMD), and shutter glasses. In this last 
case, stereo images are projected in a large screen placed 
in front of the mock-up. A 6 degrees of freedom (DOF) 
tracker is placed in the user’s head, in order to capture the 
viewing position and direction. When using the HMD, we 
have a fully virtual scenario, and an avatar (a virtual 
representation of the user’s body) is displayed in the 
scene. Arms and hand fingers are animated using two 
additional 6 DOF trackers and datagloves. These trackers 
are placed on the user’s hands and an inverse kinematics 
algorithm animates the elbow and shoulder joints 
according to the hands position. 

Currently we use Intersense trackers, which are precise 
enough, although they cannot handle emitter-sensor 
occlusion. Magnetic trackers cannot be used because 
several motors and metallic parts are used in the mock-up. 

 

3. Software Architecture 
 

We have developed a system able to simulate all 
specified tasks. The system is configurable according to 
scripts written in Python [11]. For each task, two scripts 
must be given:  

(a) An initialization script that configures the system 
parameters, loading all scenario components. 

(b) A run time script, which controls the behavior of 
all animated objects in the scene during the simulation. 

The system is distributed in two high-end PC 
computers (figure 1). The control computer reads the 
selected task script and interprets them, sending messages 
to update the scene graphics, which is maintained by the 
visualization computer.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Simplified diagram of the system 
architecture: main nodes and connections. 

 
The System Control Module in the control computer is 

responsible to: 
• Start the application with a graphical interface 

permitting to select the desired script scenario to run. 
Scripts are loaded from a local database containing all 
modeled scenarios and are interpreted in run time. 

• Read the position of the primary controls (steering 
wheel, pedals, and gearshift) and update the vehicle 
behavior accordingly. 

• Read the values of the hand trackers. These values 
are used to animate the avatar (in case a HMD is being 
used). Also, when the primary controls are not available, 
the fully virtual control metaphor based on the hands 
position (to be presented later in the paper) will input to 
the system the modification applied to the position of the 
steering wheel and gearshift. 

• Output the correct forces to the primary controls 
according to the vehicle state. For instance, the steering 
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wheel gets heavier according to the current speed of the 
vehicle. 

• At each frame, and according to the specified frame 
rate, all needed updates to perform in the scene graph are 
sent to the visualization computer. 

The Scene Graph Manager module in the visualization 
computer is responsible to: 

• Read the messages sent by the control computer. 
During initialization, objects are required to be loaded 
from a local database. During run time, messages are 
mostly related to update the position of each animated 
object in the scenario. 

• Generate stereo images for the selected display. Both 
HMDs and shutter glasses can be specified. 

• Read the values of the head tracker. The user’s head 
orientation is not only used to place the virtual camera, 
but also to select the activation of mirrors. 

In order to save computation time, we have done the 
simplification that only one mirror is activated at a time, 
i.e., only the mirror closer to where the user is looking is 
activated. Note that the generation of each mirror image 
requires a full rendering of the scene from the mirrors 
point of view using the OpenGL stencil buffer [12] to clip 
the scene to the mirrors boundary. Moreover, as we 
display stereo images, each mirror image needs to be 
generated twice. In the end, in stereo mode and with one 
mirror activated, the scene needs to be rendered four 
times per frame.  
 
4. Simulation Examples 
 

Figure 2 presents snapshots of some simulated tasks, in 
order to give a better picture of the different issues taken 
into account by the simulator. 

The top row of figure 2 exemplifies two training tasks. 
The city street with animated traffic and traffic lights is 
used to train engaging cross roads. In the highway 
scenario the user needs to overtake cars in order to keep 
an instructed constant speed. 

The middle row of figure 2 illustrates one scenario 
used for the parallel-parking task and the garage-entering 
task (the garage is on the right side of the house). 

The bottom row of figure 2 exemplifies one visibility 
test where a cylinder is placed at the same position as the 
left frontal pillar of the vehicle. By changing the size of 
the cylinder, it is possible to simulate how far the size of 
pillars affects the visibility of the driver. 
 
5. System Configurations 
 

In this section the possible configurations of the 
simulator system are presented, classified according to the 
type of interaction with the user. Note that for all 
configurations, different visualization modes can be used: 

using HMDs, shutter glasses with large projected screens 
or even a simple monitor. 

 

  
 

 
 

  
Figure 2. Snapshots of some simulated tasks. 
 
Mockup Configuration. The standard configuration 

for the simulator is the mockup configuration (figure 3). 
It is certainly the best for performing most specified tasks. 
However there are some drawbacks regarding the cost, 
and the difficulty to move it or to update it. For instance, 
during the development of the project, which has different 
partners located in different countries (Italy, Germany and 
Switzerland) we soon needed to develop alternatives to 
test and implement the simulator software without the 
mockup, as only one mockup was constructed (in Italy). 

When HMD visualization is used, the user is 
completely immersed in the virtual environment, seeing 
its animated avatar representation, but can still interact 
with the real mockup. Real objects provide force 
feedback while their virtual counterparts provide visual 
feedback.  

Therefore, matching real objects to their virtual models 
is an important task to be carried out. As an initialization 
procedure, we define a transformation matrix that is used 
to compute the position of the trackers in the virtual 
environment. This consists of computing the relative 
position of the real devices (seat, gearshift and steering 
wheel) from the motion capture system. This matrix is 
defined at once when all the devices (seat, steering wheel, 
gearshift and the motion capture device) are installed. The 
procedure requires defining three feature points in the real 



and the virtual environment. They are located on objects 
for which high precision is required: one in the gearshift, 
one in the steering wheel and the last one on the seat. 
These positions define a coordinate system for the real 
world and for the virtual world. 

 

  
Figure 3. The mock-up configuration using 

shutter glasses (left) or HMD (right). 
 
Desktop Configuration. The first alternative 

developed was simply done by replacing the primary 
controls by standard desktop components such as 
joysticks or game like steering wheels. The desktop 
configuration is sufficient to test the animated scenarios, 
but it doesn’t permit to interact with the primary controls 
corresponding to the virtual car model being simulated. 

 
Virtual Configuration. A fully virtual configuration 

was created, immersing the user in the virtual 
environment. In this configuration we use two hand 
trackers to get the position of the user’s hand. The first 
use of these positions is to give a visual feedback of the 
location of the users hands in the virtual environment. 
The user can visualize his/her hands representation in 
several ways: with an animated avatar, with only two 
flying hands, or simply with two spheres representing the 
tracker location. For the animation of hands, data gloves 
are used. A fully animated avatar gives a more realistic 
feedback, however for using the system many times 
consecutively, a point representation is a more practical 
solution because it avoids wearing and connecting two 
devices (the data gloves). Figure 4 shows the devices 
used by this configuration. Note that data gloves use are 
optional, permitting to capture or not fingers movement 
(in figure 4, only one dataglove is being used). 

In case the avatar is displayed, two techniques are used 
in order to fit its animation to the user. Firstly, 
measurements of the user are taken and applied to the 
avatar. These measurements concern mainly the upper 
body: length of the forearms and upper arms, width of the 
shoulders and length of the neck and the trunk. The lower 
body is not animated and therefore does not need to be 
matched to the user size. Secondly, a method has been 
developed to ensure the matching of the position of avatar 
hands with those of the user, by using inverse kinematics 
to reconstruct joint angles. The usual approach would be 
to apply these calculated joint angles on the avatar 

skeleton from the root to the hands. In such approach, the 
animation of end joints such as the hands lacks of 
precision due to the accumulation of angle errors. Our 
approach consists of accumulating the joint angles in the 
reverse order, i.e. from the hands to the root. Therefore, 
two skeletons are used, one for the left and one for the 
right arms. After applying the joint angles on one of the 
skeletons, the skeleton is moved in a way that the position 
of the hand fits to the position of the corresponding 
tracker. This ensures that the hands of the virtual human 
and the user have exactly the same position. 

Tracked hands positions are also used to interact with 
the primary controls, permitting not only to approach 
reaching tasks, but also interaction tasks. For this 
purpose, a simple interaction metaphor was created. First, 
interaction regions (see figure 6) are associated to the 
interactive primary controls. In our case a torus 
approximates the steering wheel, and a sphere 
approximates the top of the gearshift. As these primitives 
can be defined by implicit equations, it becomes easy to 
compute containment and distance queries from a given 
point in space. During runtime, while a hand position 
moves inside an interaction region, the associated primary 
control moves together with the hand. This simple 
mechanism allows the user to manipulate the controls and 
actually drive the car, following the principle that 
interactive objects keep their own interaction information 
[13]. However, this interaction metaphor is not easy 
enough for performing driving tasks as it requires a lot of 
attention during manipulation. This main drawback made 
us to develop a smarter interface. 

 
Smart Virtual Configuration. In this configuration, 

we simplified the required motor skills to interact with the 
steering wheel and gearshift. First, two regions are 
specified close to the gearshift to indicate places to 
activate a gear change to a lower gear or to a higher gear. 
For instance, we have specified that if the users hand gets 
closer to the gearshift, but between the gearshift and the 
panel, a higher gear is activated. If the hand gets into a 
region between the gearshift and the driver, a lower gear 
is activated. 

Once these regions are determined, we specify that the 
users hands stay attached to the steering wheel most of 
the time. The steering rotation angle is simply deduced 
from the relative position of the hands, taking into 
account only the vertical coordinates. But when the right 
hand position gets closer to the gearshift and enters into 
one interaction region, a gear is changed, and if the avatar 
is displayed, its arm is automatically animated to change 
the position of the gearshift. We can say that, in this case, 
the avatar gets some autonomy, as it understands the user 
interaction intention and performs the interaction in the 
virtual world. For the moment, our systems run only with 
the described proximity criteria, but more sophisticated 



methods to also take into account recognition of hands 
gestures could be integrated [14]. 

This smarter interaction metaphor allows the user to 
concentrate on the animated scenario, without the need to 
pay attention to the virtual controls. An analysis of the 
configurations is done in the next section. 

Figure 4 illustrates the avatar being controlled by the 
user wearing VR devices. Figure 5 illustrates the case 
when simple spheres are used to represent hand positions. 
These visual spheres provide sufficient information to let 
the user interact with the steering wheel and gearshift in 
the Virtual Configuration modes. Figure 6 illustrates the 
notion of interaction regions. 

 
Figure 4. The virtual configuration. 

 

  
Figure 5. Spheres may also represent hand 

positions. Whenever a control gets attached to 
the user hand, the corresponding sphere 

changes its color. 
 

     
Figure 6. Main interaction regions used: a torus 

approximates the steering wheel shape (left), 
and a sphere approximates the topmost part of 

the gearshift (right). 
 

 

 

6. Analysis 
 

The main drawbacks of the mockup configuration are 
related to the mockup itself: (a) its high cost, (b) its 
difficulty to be updated in order to reflect changes in 
virtual prototypes, and (c) its cumbersome size and 
weight which makes mobility to be a problem. These 
main drawbacks motivated us to develop the virtual 
control metaphors shown in the previous section. Table 1 
presents how each configuration fits in relation to these 
issues. 

 
Table 1. Configurations Characteristics 

 Characteristics 
Configs. Cost Mobility Prototyping 

use 
Mockup high difficult difficult 
Desktop low very easy not possible 
Virtual medium easy possible 
Smart 
Virtual 

medium easy possible 

 
In summary, to overcome the limitations of the 

mockup configuration, the desktop configuration gives 
the lowest cost solution but cannot be used for virtual 
prototyping tasks. The two virtual configurations give a 
compromise solution in relation to the cost, and might 
also be used for virtual prototyping issues, as it becomes 
very easy to replace virtual objects and interact with them 
in a fully virtual environment. 

However the virtual configurations, as well the 
desktop one, are not applicable to simulate all types of 
tasks. 

The mockup configuration might be applicable for all 
the tasks. Even if some visibility tasks might not be well 
performed when physical parts of the mockup occlude a 
region of interest during the visibility test. 

Such a drawback does not occur if HMD visualization 
is used. Note that all configurations can be equipped with 
a HMD visualization resource, so that visibility tasks can 
be performed equally in all configurations. We have also 
performed some tests in a CAVE environment, with the 
cooperation of the Fraunhofer Institute. 

It is not possible to perform Reaching, Interaction and 
Driving tasks with the desktop configuration, as these 
tasks require the driver to be able to interact with the 
primary controls corresponding to the virtual vehicle 
being simulated. 

The virtual configuration can be used for reaching 
tasks. But as there is no force-feedback in the virtual 
configurations, it is not possible to analyze ergonomics 
issues related to the grasping of controls. Only 
ergonomics aspects related to reaching distances might be 
performed. The smart virtual configuration is not suited to 



reaching tasks simply because (in its standard form) 
interactions are triggered each time the user approaches 
the virtual primary control. 

To train the decision-making and vehicle control when 
facing traffic situations, it is possible to use the desktop 
configuration and the smart virtual configuration. The 
virtual configuration is not applicable for training, 
because the interaction metaphor requires too much 
attention from the driver, and this is not acceptable as the 
driver must pay full attention on the traffic and on the 
external environment. Moreover, arms fatigue quickly 
occurs as the user does not have a real steering wheel to 
support his/her arms. 

In order to make use of the advantages of both the 
virtual configuration and the smart virtual configuration, 
the simulator system can be easily defined to change 
between these two modes in run time, according to 
desired interaction mode.  

The analysis presented here is based on the experience 
of the authors during development and test of the system 
and as well demonstration to several visitors.  

 
7. Conclusions and Future Work 
 

In this paper, two fully virtual interaction metaphors 
for a vehicle simulator have been presented. One requires 
the user to interact with virtual primary controls as if they 
were real, and the other simplifies the interaction and 
proposes easier ways to interact with the primary 
controls.  

The applicability of these virtual interaction 
configurations is complementary, and together they can 
be applied to several simulation scenarios. We believe 
that these two virtual configurations might constitute an 
interesting solution, in particular for Virtual Prototyping 
uses. 

As future work, we intend to test each presented 
configuration with several test users, in order to 
determine if our analysis  (concerning the suitability of 
each system) is confirmed. 
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