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Abstract

An integrated framework is proposed in which local perception and close manipulation skills are used in
conjunction with a high-level behavioral interface based on a “smart object” paradigm as support for virtual
agents to perform autonomous tasks. In our model, virtual “smart objects” encapsulate information about
possible interactions with agents, including sub-tasks defined by scripts that the agent can perform. We then
use information provided by low-level sensing mechanisms (based on a simulated retina) to construct a set
of local, perceptual features, with which to categorize at run-time possible target objects. Once an object is
identified, the associated smart object representation can be retrieved and a predefined interaction might
be selected if this is required by the current agent mission defined in a global plan script. A challenging
problem solved here is the construction (abstraction) of a mechanism to link individual perceptions to
actions, that can exhibit some human like behavior due to the used simulated retina as perception. As a
practical result virtual agents are capable of acting with more autonomy, enhancing their performance.
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1 Introduction autonomous way, based on possible interactions
with the objects in its environment. A rich descrip-
tion for interactive virtual objects is used includ-
ing information about possible interactions with
the human agent. Such information contains, for
example, a set of simple scripts that the agent can

perform according to the object type and interac-

We introduce techniques that can be used by a
virtual human agent to perform tasks in a more
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tion capabilities. We embed in this model low-level
mechanisms used for local perception and close
manipulation, approximating our agent to realistic
models such as robotic platforms or humans. The
perception mechanism identifies meaning features
in order to categorize perceived objects. The cate-
gorization associates an index identifying an object
class. This index is then used to retrieve the associ-
ated virtual model of the object, and consequently
its interactivity information, allowing the agent to
perform actions that contribute to the task goal
accomplishment. The agent is driven by a global
behavior, also defined in a script-like language that
tells the mission plan to the agent. In this approach,
the agent system does not need to keep informa-
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tion about the several tasks nor about the objects
or the environment itself. The concepts of mission
planning, plan decomposition in tasks, and task
achievement (see [4]) are substantially simplified.
The knowledge about interactions with the scene
objects are retrieved from the object representa-
tions once the agent approaches them in order to
perform a given task.

Our complete definition and representation of in-
teractive objects is based on the description of
interaction features: parts, movements, graspable
sites, functionality, etc. In particular, interaction
plans for each possible agent-object interaction are
defined, detailing all primitive actions that need
to be taken by both the object and the agent, in
a synchronized way. Objects defined with such in-
teraction information have been called smart ob-
jects [15]. We present some experiments using a hu-
man agent based simulation environment and also
asimulated robot, both with the built-in capability
to simulate agent-object interactions. The Agent
Common Environment (ACE) [14] has been used
to validate modeled interactions on a simulated vir-
tual environment. ACE incorporates many new so-
lutions regarding the control of interactive virtual
environments, and has been used as a system plat-
form for research in behavioral animation. In the
current work we have created and tested grasping
interactions with primitive objects in ACE, coor-
dinated by the local perception mechanism reused
from a simulated robot environment.

Concerning our robot simulations, we combine
pure reactive plans with a script like plan, choos-
ing actions mainly based on current perceptions
of the world at different positional and temporal
scales rather than by planning over previously
given geometric models of scenes as in traditional
simulation techniques. Also, as we use reduced
and abstracted information obtained from a sim-
plified world representation, our system performs
fewer computations and substantially improves
its performance at the cost of less adaptability
when facing non-predicted situations. The mech-
anisms developed here provide real-time feedback
to different stimuli type. For these reasons, this
system architecture is not only relevant to robotic
systems, but also for virtual, computer animated
agents.

As a main result, we present in this work an inte-
gration of a local perception module derived from a
simulated robotics system with a graphical simula-
tion environment where a virtual human is able to
identify (using the perception module) and grasp
simple objects. The low level interaction informa-
tion (as the used grasp posture) is defined and
encapsulated per object within their description.
We show examples of the object interactions in-
troduced in this work in different grasping appli-

cations, and the results obtained are shown and
discussed.

2 Background and related work

In the context of this work, an artificially animated
agent could be either a robotic platform or a com-
puter animated agent (as an avatar or other com-
puter simulated device). To implement an artifi-
cial agent system one can start from the develop-
ment of individual and basic skills including per-
ception and basic (low-level) manipulation of the
agent resources, like motion planning for moving
an arm toward a given target (e.g. for reaching
and/or grasping). Higher levels of the agent hier-
archy can use these basic tools as support in order
to achieve tasks, taking right decisions as answers
to environmental stimuli. If we treat these issues
separately, the set of low-level skills or perceptual
abilities will eventually not agree with the neces-
sities of the high-level operating processes. Or, on
the opposite, it may be necessary strong adapta-
tion for the implementation of the high-level mis-
sion/tasks control system. We propose here to use
“smart objects”, in which some perception and
high-level skills can be treated together as prede-
fined agent-object interactions, in order to mini-
mize the above implementation problems.

Different applications on the computer animation
and simulation field face the problem of animat-
ing agent-object interactions. Such applications
encompass several domains, as for example: vir-
tual autonomous agents in virtual environments,
human factor analysis, training, education, pro-
totyping, and simulation-based design. A good
overview of such areas is presented by Badler [1].
As an application example, an interesting system
is proposed by Johnson [12], where a virtual hu-
man agent teaches users how to correctly operate
industrial machines.

Commonly, simulation systems approach agent-
object interactions by programming them specif-
ically for each case. Such approach is simple and
direct, but does not solve the problem for a wide
range of cases. Another approach is to use AT mod-
els as recognition, planning, reasoning and learn-
ing techniques in order to decide and determine
the many manipulation variables during an agent-
object interaction. The agent’s knowledge is then
used to solve all possible interactions with an ob-
ject. Moreover, such approach should also address
the problem of interaction with more complex
machines, in which case information regarding the
object functionality must also be provided.

Agent-object interaction techniques were first



specifically addressed in a simulator based on nat-
ural language instructions using an object specific
reasoning module [16]. Our smart object descrip-
tion is more complex, encapsulating interaction
plans, allowing to synchronize movements of ob-
ject parts with the agent’s hand, and to model the
functionality of objects as state machines.

Not enough attention has been addressed to solve
general agent-object interaction issues, including
robotic agents. Most of the concerns are related to
sub-problems, as for the specific problem of grasp-
ing. For instance, a classification of hand configu-
rations for grasping is proposed by Cutkosky in [5].
Such classifications can then be used by knowledge-
based grasping methods [21] [10] for the automatic
selection of hand shapes and for the animation of
grasping actions.

Concerning the model used for perception in real
robots, we are inspired by several new approaches
that have been suggested using multi-feature ex-
traction as basis for cognitive processes [11,24,18].
In previous contribution [8] we provided a working
model for low-level perception and close manipu-
lation control using a real stereo head robot. Our
model uses a practical set of features extracted
from real-time sequences of stereo images, includ-
ing static (spatial) and temporal properties, and
also stereo disparity features for depth represen-
tation. We have developed a pure reactive sys-
tem, treating low-level manipulation and control of
robot resources based on local perceptions of the
environment.

The idea of using vision-based sensors for virtual
human agents simulations is not new [19] [23] [3].
The first work addressing this problem for virtual
human agents [19] uses a rendered image buffer of
the virtual scene, with colors coding objects ids,
thus simplifying the recognition phase. In our low-
level perception module we use simulated stereo
vision, that is, the scene objects are projected into
simulated retinas, one for each eye, being thus
much more realistic and general. By using simu-
lated stereo retinas we are able to really recognize
objects, knowing how close they are to each known
object model by performing any pattern matching
algorithm. In this work we currently use a simple
approach based on the Back-Propagation Neu-
ral Net (BPNN) [20,22,25] for pattern matching.
Moreover, as we operate on the shape of the ob-
ject, we are able to detect parts of a large object
matching other known objects. However, we do
not address in this work more complex problems
that may occur, as for instance, due to object
occlusion and ambiguities.

We make in this work the simplification of us-
ing an unidimensional retina. This is enough for
the simulated examples presented here for detect-

ing geometric primitives to grasp. Once the per-
ception identifies the correct object to be manip-
ulated (in order to follow a given global mission),
the used low-level manipulation information is re-
trieved from the smart object representation and
the human agent can perform the action proposed
by the virtual object. We note that for more com-
plex recognition tasks a bidimensional retina can
be used, however demanding more complex and
time consuming algorithms to deal with the retina
images. We are currently working in the develop-
ment of such a 2D model, using the OpenGL li-
brary.

3 Smart objects

Consider the simple example of opening a door:
the rotation movement of the door must be pro-
vided a priory. Following a top-down AI approach,
all other actions should be planned by the agent’s
knowledge: walking to reach the door, searching for
the knob, deciding which hand to use, moving body
limbs to reach the knob, deciding which hand pos-
ture to use, grasping, turning the knob, and finally
opening the door. This simple example illustrates
how complex it can be to perform a simple agent-
object interaction task. To overcome such difficul-
ties, we use a bottom-up approach, that is, we in-
clude within the object description more useful in-
formation than only intrinsic object properties. By
using feature modeling concepts, we identify all
types of interaction features in a given object and
include them as part of the object description. Our
graphical interface program (Figure 1) allows the
user to interactively specify all different features
in the object, defining its functionality, its avail-
able interactions, etc. This smart object modeler
is called “SOMOD?”.

gesL_sphere
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Fig. 1. Interactive graphical interface for modeling objects
and their interactions.

The adjective smart has been already used in
different contexts. For instance, for interactive



spaces instrumented with cameras and micro-
phones to perform audio-visual interpretation of
human users [17]. This ability of interpretation
made them smart spaces. In the scope of this
work, an object is called smart when it has the
ability to describe in details its functionality and
its possible interactions, by describing all needed
low-level manipulation actions. A smart object
may have reactive behaviors, but more than that,
it is also able to provide the expected behaviors
for its “users”. In the case of our robot agent, the
agent reaction to the environment stimuli (percep-
tion) is programmed in order to correctly select
which object to interact with. Then, to perform
the required low level interaction, local interaction
information stored within the smart object is used.

Different applications can retrieve useful informa-
tion from a smart object to accomplish desired in-
teraction tasks. The main idea is to provide smart
objects with a maximum of information to attend
different possible applications for the object. A
parallel with the object oriented programming
paradigm can be made, in the sense that each
object encapsulates data and provides methods
for data access. Applications using smart objects
will have their own specific smart object reasoning
module, in order to retrieve only the applicable
object features for their specific needs.

4 Our control schema

Figure 2 shows the main aspects of the control
schema that manages the low-level simulation step
in our human agent model, derived from [9]. Briefly,
the human agent uses perceived (simulated) sen-
sory information (calculated by using the geomet-
ric models of some of the objects present in its
world model) plus its pose and functional state to
define a set of perceptual features. This feature set
forms the input to a classifier producing an effec-
tive categorization (an index) for the object in fo-
cus. As stated earlier, we are using here a BPNN
approach for the categorization step, which has
produced good results. We have also implemented
other two types of classifiers in previous works op-
erating in two (simulated and real) robotic plat-
forms [9,6,7]: a) the multi-layer perceptron trained
with a backpropagation algorithm; and b) a Self
Organizing Map (SOM) [6].

We emphasize that any classifier model could be
used here, so that in practice the output of the
classifier must be an index for the smart object
model. This index allows our agent to retrieve the
set of associated interaction information in the cor-
responding smart object. Then, the possible inter-
active actions can be retrieved and the agent effec-

tively moved to perform the physical action. Also,
note that if the current script goal is reached, other
tasks can be chosen. A motion effectively brings
the agent to a new pose and eventually puts a set of
new information about other smart objects in the
dexterous work-space (manipulation space) of our
human agent. Once again, new sensory informa-
tion is acquired (simulated) and the process can be
re-started (feature extraction), that means, other
object may be activated depending on the agent
movement and so on.

Virtual
. > World
Classifier (Object models)
Object
Index ‘

Task Manager
(Scripts)

Fig. 2. Control schema.

We remark that this low-level operating loop fol-
lows a control theory approach, what guarantees
stability and global convergence of the agent re-
sources (if we think in these as being controllers)
in the achievement of an action. At each time step,
a small movement is performed followed by an up-
date in the perceptual information of the agent. For
example, if another smart object, with interaction
attributes that are more important to the task goal
accomplishment than the one being manipulated,
reaches the dexterous work-space of the agent, the
first object can be posted somewhere (its scripts
are disregarded) and other interaction scripts with
the second object can start, considering the cur-
rent situation (positioning) of the agent. This pro-
duces smooth and differentiable motion and also al-
lows the agent to eventually reparametrize its task
goal on-line during the execution of an action, tak-
ing into account the changes in perception. This
approach is somewhat reactive, choosing actions
based on perceptions of the world rather than by
using a geometric model as in traditional planning
techniques. Also, as time is a critical parameter
for real-time agent applications, by using this ap-
proach we guarantee that all computations neces-
sary to perform a given step of motion are com-
puted during the time interval given by the clock
rate. The main advantage of using such approach
is its immediate application to robotics platforms,
without strong adaptations.



5 Modeling interactive object features

Feature modeling is an expanding topic in the en-
gineering field [2]. The word feature may have sev-
eral meanings, and a general definition is simply
“a region of interest on the surface of a part”. The
main difficulty here is that, in trying to be gen-
eral enough to cover all reasonable possibilities for
a feature, such a definition fails to clarify things
sufficiently to give a good mental picture.

5.1 Interaction features

In the smart object description, a new class of
features for simulation purposes is used: interac-
tion features. In such context, a more precise idea
of an interaction feature can be given as follows:
all parts, movements and descriptions of an ob-
ject that have some important role when interact-
ing with an animated agent. For example, not only
buttons, drawers and doors are considered as inter-
action features in an object, but also their move-
ments, purposes, manipulation details, etc. Inter-
action features can be grouped in four different
classes:

Intrinsic object properties are properties that
are part of the object design: the movement de-
scription of its moving parts, physical properties
such as weight and center of mass, and also a text
description for identifying general objects purpose
and the design intent.

Interaction information is useful to aid an agent
to perform each possible interaction with the ob-
ject: the identification of interaction parts (like
a knob or a button), specific manipulation infor-
mation (hand shape, approach direction), suitable
agent positioning, description of object movements
that affect the agent’s position (as for a lift), etc.

Object behaviors are used to describe the reac-
tion of the object for each performed interaction.
An object can have various different behaviors,
which may or may not be available, depending on
its state. For example, a printer object will have
the “print” behavior available only if its internal
state variable “power on” is true. Describing ob-
ject’s behaviors is the same as defining the overall
object functionality.

Expected agent behavior is associated with
each object behavior. It is useful to have a descrip-
tion of some expected agent behaviors in order to
accomplish the interaction. For example, before
opening a drawer, the agent is expected to be in a
suitable position so that the drawer will not col-

lide with the agent when opening. Such suitable
position is then proposed to the agent during the
interaction.

This classification covers the needed interaction
features to provide common agent-object inter-
actions. Still, many design choices appear when
trying to specify in details each needed interac-
tion feature. The most difficult features to specify
are those relative to behaviors. Behavioral fea-
tures are herein specified using pre-defined plans
composed with primitive behavioral instructions
(scripts). This model has shown to be the most
straightforward approach because then, to per-
form an interaction, the agent will only need to
“know” how to interpret such interaction plans in
a straightforward way.

In the smart object description, a total of 8 interac-
tion features were identified, with the intention to
make the most simple classification possible. These
interaction features are described in Table 1.

Feature Data
Class Contained
Descriptions Object property
Parts Object Property
Actions Object Property
Commands | Interaction Information
Positions Interaction Information
Gestures Interaction Information
Variables Object behavior
Behaviors Object/agent (scripts)

Table 1
Types of interaction features.

5.2 Interpreting interaction features

Once a smart object is modeled, the agent system
will be able to load it and to animate it with phys-
ical actions. To do that, the agent system will need
to implement a smart object reasoning module,
that will correctly interpret the behavioral plans
(scripts) provided by SOMOD for performing in-
teractions. In the scope of this work, in order to
demonstrate the integration of the local perception
module, we have used mainly the interaction fea-
tures related to define grasping actions with some
primitive models. However, the same architecture
can be used for more complex interactions being
suitable for the manipulation of complex machines.



6 Mapping object characteristics into local
perception

For the purposes of understanding the integrated
framework, we describe how a robot simulator [9]
operates, that is, we show how local perception and
close manipulation can be combined in our human
agent system. The simulated platform shown in
Figure 3 has several integrated controllers (small
programs or scripts that control each agent part)
including control of “pan” and “vergence” move-
ments (for its eyes) and control of joints for each
of its two arms.
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Fig. 3. The simulated robot and its world. The whole win-
dow represents a top view of the environment with the
robot positioned in its center. The triangles, circles, and
squares are (prismatic) objects positioned in the environ-
ment. In the example, the robot has its attention window,
represented by the two conic regions leaving the eyes, in
the triangle and it is manipulating this triangle (grasp-
ing/touching it) with one of its arms (left). The other arm
(right) is retired in the initial positioning. The retinas, en-
larged in Figure 4, can be seen at the bottom in small size.
Besides the central triangle, the viewing angle also includes
the huge circle, to the left of the triangle, and the small
circle and part of the square, to the right. Note the images
are inverted.

By developing an agent like the one shown in Fig-
ure 3, our main goal is to provide a virtual device
with which to develop computational models for
robots, also to study the relationship between vi-
sion and touch sensory systems in humans. Also,
the construction of such being would allow the
definition of new approaches to robotics based on
simulation, thus decreasing operational costs and
also assuring a safe management of the resources.
The geometrical information (shape) and texture
(color) of a given virtual object model can be used
to calculate simulated visual information for our
agent. In the old simulator version, we used X-lib
tools (Motif) and a hand-coded module to per-
form all calculations necessary for this simulation.
This produces two unidimensional retinas as seen

in Figure 4 that are enough for the purpose of the
current work.

Fig. 4. Examples of 1D simulated retinas. Top figure rep-
resents left eye retina and bottom is for right eye. The
eyes are verged in the triangle, as seen in the environment
represented in Figure 3. The projection of the objects to
construct each retina is done by using a simple Phong il-
lumination model.

In another related work, we are currently improv-
ing this visual data simulation so we can have 2D
retinas. Each retina is represented by an image
captured (calculated) from the environment repre-
sentation by using a Z-buffer (OpenGL). This new
simulator interface is shown in Figure 5 and 2D ex-
amples of its retinas are seen in Figure 6, just before
and after a saccadic motion. In this new version, we
consider using hardware acceleration to speed up
the construction of the images forming the sensory
input. As already mentioned, in the current work
we use 1D retinas mainly for the sake of speed and
easy of computation. The extensions to 2d are still
being evaluated. The visual and haptics servoing is
done in the same way as the close manipulation of
the resources, that is, as a closed loop. So, at each
time step, the virtual agent calculates the above
simulation and puts the result in the agent reti-
nal images (visual buffer). As a result, the virtual
agent can use the perceptual information provided
in its retinas (it might also be in a haptics stor-
age area) in real time, for example, to help disam-
biguate objects. Note that here we start to build
a more realistic virtual human agent, with built-in
perception capabilities. Moreover, this sensory in-
formation can be easily mapped into the working
configuration space of this simulator because it re-
gards a topological relation with the object posi-
tions.

As a result, we get an agent that can work in a
continuous and more complex world, even if the
virtual environment from which the sensory infor-
mation was simulated is discrete and simple. We
conjecture that a virtual agent can have more re-
alistic behaviors by being constructed in this way.
Another motivation that can be used is that its
application to real robot systems is a straightfor-
ward task. Finally, obstacle avoidance algorithms
can make use of the perception module, since the
agent can infer from stereo vision information the
position of objects in its path.



Fig. 5. Visual and haptics perception simulator for a 3D
environment being constructed. The balls represent the
eyes (or the cameras in a robot). The arms are represented
by the two polylines leaving the central point in between
the eyes. They will be further positioned far of each other,
of course.
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Fig. 6. Examples of 2D simulated retinas. Top figure shows
the 2D simulator with both (left and right) retinas verged
on the same object (the box at image centers). Bottom
images show the retinas after a saccadic motion performed
from one box to another.

6.1 Constructing perception

Figure 3 shows a situation of local perception and
possible close manipulation of objects in a room.
Coincidentally, the virtual model of the environ-
ment used to produce that scene is represented ex-
actly in the same way as in the SOMOD modeler,
that is, as a list of objects, ordered by its distance to
the virtual agent position (center of its eyes). This
sorting is very fast because it works in a reasonable
(small) set of objects. That is, at each time instant,
only a small set of objects is close enough to the

virtual agent position in order to result in interac-
tivity (of course for simply represented worlds). So
the amount of computations necessary for updat-
ing this list is small. We encapsulate the module for
local perception described in the previous section
in the SOMOD architecture in a straightforward
way. This encapsulation basically includes script
lines (Python) to run some “C” modules (the per-
ception modules). Basically, this integration is as
depicted below.

(1) the “Simulate-Sensors” module runs to calcu-
late the simulated sensory information (using
the list of objects and agent pose/positioning)
and return (filling in the memory data struc-
tures) the simulated retina/haptics informa-
tion;

(2) the classifier module (BPNN memory) runs,
receiving as parameter the visual, haptics, and
odometry (human agent pose/positioning)
data, stored in a shared memory; the return
of this module is an index for an object iden-
tified by this module;

(3) the agent animation control module can start
at any time an object script which will effec-
tively move the agent resources, after query-
ing the perception module about an object in-
dex;

(4) a module runs for updating the perceived
world (updating and/or resorting object list)
based on the current agent positioning and
movements performed in the previous step.

So, as a first step, the system uses the list of ob-
jects provided by SOMOD as input to produce sim-
ulated (1D) retinas. That is, the visual sensing is
directly simulated from the simplified environment
definition provided by SOMOD. An intensity value
is calculated for each one of the pixels in the hu-
man agent’s retinas, in function of the radiance of
the environment (object) patch corresponding to
it, by using a simple Phong illumination model.
A Gaussian noise process simulates acquiring er-
rors, asserting a more natural retinal image. Hap-
tics (including proprioceptive and tactile) simula-
tion is done based on the arbitrary value attributed
to each object mass. Also, based on local move-
ments, the current positioning of the human agent
(odometry) can be updated and, consequently, the
objects list updated /re-sorted.

This visual, haptics, and positioning simulation ba-
sically provides local sensed information to be used
by the simulated human agent to construct its per-
ception. We yet use simple image processing opera-
tions to reduce the amount of input data and to ab-
stract features. The result of data reduction (first
phase) is a multi-resolution (MR) data represen-
tation. A set of multi- features is calculated over
the MR data to provide feature abstraction. This
set is used as input for categorization (the classi-



Fig. 7. Defining a grasping interaction for different objects.

fier). The result is an object index, with which all
other information relative to an identified object
(mainly, interaction features) can be retrieved.

We remember that each object has also the history
of interaction with the human agent. For example,
a sphere would have a script that gives a different
configuration for the agent to perform a grasping
than the cube. As the output of the perception
module is just the object index, that will be used
to start the grasping action which is stored in the
virtual model of each object. And, as stated above,
we assume that, in a given instant, only a small sub-
set of objects present in the virtual environment
are close enough to the human agent to result in
interactions. In this case, the simulation process
does not need to traverse the whole list of objects
(remember they are sorted by distance).

Fig. 8. Modeling objects interaction features (grasping).

6.2 Practical implementation issues

In practice, the perception module was integrated
to the agent animation control module by defining
an interface based on shared memory and tcp/ip
messages. In this way the animation control can
run in a dedicated computer querying another com-
puter dedicated to the perception processing, if
necessary. Note that both modules can run appar-
ently in parallel. Currently the computation time
required by the pattern matching of the percep-
tion processing is not so costly to justify a separa-
tion into more than one computer mainly because
the perception is currently 1D based, what greatly
simplifies the computation. The choice for this dis-
tributed processing interface was taken due to two
main reasons: first to simplify the connection of the
modules, which were originally developed target-
ing different platforms (SGIs vs. SUNs/PCs), and

second to ensure the scalability of the architecture,
for a future efficient 2D perception processing.

The process communication is based on two main
steps: in a first initialization step, all declared
smart objects which were defined as possible to be
identified by the perception are passed to the per-
ception module. In this phase, the geometry of the
primitives are processed and their 1D retinal pat-
tern are generated and classified (for some different
points of view), and an id number is returned to
the simulation computer. These are considered to
be the perceptible primitives of the environment,
so the BP memory (classifier) is previously trained
with a current set of known objects. This initial
phase can be done off-line since the set of smart
objects and their geometry is previously known.
For this reason, this phase is not shown in the
control loop depicted in Figure 2. Note that other
geometries composing the environment might be
declared also to the perception module so that we
might be able to detect all shapes in the environ-
ment which are similar to the declared primitives.
This is the main advantage of our method: to
detect the shape of declared primitives anywhere
inside the environment, even if the primitive is
just a part of a shape, e.g., a cylinder primitive
could be detected as part of a door handle model.

Later in run time, the animation module sends the
current position of the agent, its viewing direction
and field of view to receive back from the percep-
tion module the ids of the primitive objects being
perceived and other two information: at which po-
sition in the environment, and if it is a full object
or part of an object. In our current case study, the
returned object id corresponds to an smart object
that will control the animation of the agent grasp-
ing an object with a given shape.

7 Experiments and demonstrations

In a practical experiment, we defined scripts for the
best grasping to be executed by our human agent
interactively, according to the object types seen in
Figure 7: a cone, a cylinder and a sphere. In the
interaction feature modeling phase, proper hand
posture is chosen by an operator as seen in Figure
9. This set of objects (with its interaction features)
is stored in our virtual environment. The system
classifier (BPNN memory) is trained off-line with
the set of object. Then, at running time, by using
the simulated perception, the human agent is able
to detect the object index and to retrieve this in-
formation to be used by the subsequent grasping,
shown in the sequence of Figure 10.

We remark that the information generated by



Fig. 9. Object grasping.

this sensory (perception) simulation is a realistic,
retina-like image very close to a natural image of
the object. Also, the tools used for classification
(BPNN) were tested by a real robot platform [8]
which was applied to attentional tasks involving
pattern categorization. So, we conjecture that the
model proposed here (including the smart objects)
can also be used in a real platform. In this case one
would take out the controller of simulation pro-
vided by the SOMOD architecture, and provide
visual (and other sensory) information from the
robot hardware. Also, the virtual object models
with the history of interactions (primitives) have
to be previously constructed (or learned) from real
object models and stored in the agent memory in
some way. An off-line training phase is necessary
here for that. Then, at execution time, a real ob-
ject can be identified and its virtual model with
the action to be executed by the robot can be
retrieved and the action performed. In this way,
a robot does not have to know what is the exact
positioning of an object in the environment. The
main idea is that a virtual version of an identified
object has the above-mentioned interaction infor-
mation and can pass it to the robot in order to
execute scripts, saving memory and time.

To illustrate how perception and the low-level
resource manipulation skills operate in real-time
in the simulated robot environment, we include
a sequence (Figure 1187 in which our simulator
reach/grasp an object (a chair) close to a lit. This
task sequence can be performed by means of using
a low-level script triggered by the object (a chair),
which was out of place (interaction feature). So,
after the positive identification provided by the
system classifier, the interaction information en-
coded in the virtual version of the smart object
chair can be used to effectively reach and grasp it.

Fig. 10. Virtual Human Agent performing a grasping task.



Fig. 11. Simulated robot performing a manipulation task
(reaching).

8 Conclusion and future work

We have proposed a task achievement approach us-
ing a high-level behavioral architecture based on
smart objects and local perceptions to define which
object to choose, consequently driving the agent
actions. This approach allows agents to produce,
on-line, its low-level actions or tasks needed to ac-
complish a given mission. This avoids the draw-
back of encoding a complex plan (tasks) or other
information about the environment/objects that
are typical in the “mission planning” schemes. This
capability is interesting and we conjecture that it
can be adapted in a multi-agent context, taking
into account global scripts of other agents, exter-
nal changes in the environment detected by per-
ception, and internal predicted changes produced
by a close resource manipulation.

One of the main reasons of using such approach is
its possible application in a real robot system, with-
out strong adaptations. The extraction of mean-
ing perceptual features and the definition of world
states from them is a challenging problem, par-
tially solved in this paper. We have abstracted this
by using a previously acquired combination of fea-
ture models (smart objects) that represent virtual
objects, with interactive features empirically de-
fined. In a more autonomous paradigm, an agent
(or robot) would define these interactive features
and discriminatory capabilities by using a learn-
ing approach, interacting directly with its environ-
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ment, as in the artificial life approach.

We plan to improve this implementation by in-
creasing the set of low-level actions that the
agent/simulated robot is able to perform (inter-
actions with objects). Another direction is to test
learning approaches to decide the possible in-
teractions with the objects. In such context, the
agent would start with no knowledge about the
environment, and the system memory would have
no perceptual pattern representations. The goal
then is to incrementally construct a shared map of
the environment, learning the existing perceptual
patterns. After such a world representation is con-
structed, agents can perform other more specific
tasks.

Finally, we also intend to extend our current unidi-
mensional retina to a fully bidimensional one in or-
der to test the recognition of more complex shapes.
We intend as a final goal to have our software tools
successfully running in both real robots and vir-
tual characters, so that they can be able to perform
complex tasks autonomously.
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