

Object Interaction in Real-Time Virtual
Environments

THÈSE N° 2347 (2001)

Présentée au Département d’Informatique

École Polytechnique Fédérale de Lausanne

Pour l’Obtention du grade de Docteur ès Sciences

par

Marcelo Kallmann

Acceptée sur proposition du jury:

Prof. R. Hersch, president

Prof. D. Thalmann, directeur de thèse
Prof. C. Petitpierre, rapporteur

 Prof. H. Bieri, rapporteur
Prof. Y. Gardan, , rapporteur

EPFL, 29 Janvier 2001

 - ii -

 - iii -

Abstract

This thesis is about the problem of how to achieve real time virtual environments
with autonomous virtual human actors, which can interact with virtual objects in order to
achieve a given task. The focus is on interaction with day life objects having some proper
functionality and purpose, as for example: automatic doors, general furniture, or a lift.

The proposed approach is based on a complete definition and representation for
interactive objects. A graphical modeler application was specifically developed in order
to define such representation of interactive objects, which are called smart objects. This
representation is based on the description of all interaction features: parts, movements,
graspable sites, functionalities, etc. In particular, smart objects keep interaction plans for
each possible actor-object interaction, detailing all primitive actions that need to be taken
by both the object and the actor, in a synchronized way. Regarding the shape
representation of objects, a new boundary representation data structure is introduced,
providing low storage space requirements together with constant time access to adjacency
relations; what is needed by many geometric algorithms.

An agent-based simulation environment is also presented with the built-in
capability to simulate actor-object interactions, providing an automatic actor animation
control for interactions with smart objects. The agent common environment (ACE)
system is extendible and controllable with interactive Python scripts, and has been used
as a system platform for research on behavioral animation. ACE incorporates many new
solutions regarding the control of interactive virtual environments, including the
interaction with smart objects using virtual reality devices.

The approach proposed in this thesis was tested in many different applications,
and the results obtained are shown and discussed.

 - iv -

 - v -

Résumé

Cette thèse aborde le problème des environnements virtuels avec des acteurs
virtuels autonomes qui peuvent interagir avec des objets virtuels pour accomplir une
tâche donnée. On se concentre sur les interactions avec des objets courants qui ont une
fonctionnalité et un but propres, par exemple: des portes automatiques, du mobilier, ou
encore un ascenseur.

L’approche proposée est basée sur une définition et une représentation complètes
des objets interactifs. Une application de type modeleur graphique a été développée pour
permettre de représenter complètement les objets interactifs appelés objets intelligents
(smart objects). Cette représentation est basée sur la description de toutes les
caractéristiques d’interaction (interaction features): les parties, les mouvements
possibles, les endroits pour saisir, les fonctionnalités, etc. Les objets intelligents
contiennent en particulier des schémas d’interaction avec l’acteur. Ces schémas décrivent
en détail toutes les actions élémentaires qui doivent être exécutées de façon synchronisée
par l’acteur et par l’objet. En ce qui concerne la représentation géométrique des objets,
nous introduisons une nouvelle structure de données utilisant peu d’espace mémoire tout
en donnant des relations d’adjacence en temps constant. Ces caractéristiques sont très
utiles pour des nombreux algorithmes géométriques.

Un environnement de simulation basé sur la conception agent a été aussi
développé, avec la capacité de contrôler automatiquement l’animation des acteurs pour
les faire interagir avec les objets intelligents. L’environnement commun des agents (ACE)
est extensible et contrôlable depuis des scripts Python et est actuellement utilisé comme
plate-forme de recherche et développement dans le domaine de l’animation
comportementale. ACE propose plusieurs nouvelles solutions par rapport au contrôle des
environnements interactifs, comme par exemple des interactions avec les objets
intelligents en utilisant des dispositifs de réalité virtuelle.

L’approche proposée dans cette thèse a été testée avec de nombreuses applications
et les résultats obtenus sont présentés et discutés.

 - vi -

 - vii -

Acknowledgments

It is an impossible task to not forget the many people who have contributed,
directly or indirectly, to this work. As I could not simply omit such a page, I would like
then to express all my thanks:

To Prof. Daniel Thalmann and all assistants of LIG for their invaluable support, in
particular: Etienne de Sevin, Jean-Sebastien Monzani, Angela Caicedo, and Anthony
Guye-Vuilleme, for all the help and motivation with Somod, ACE and Python; Paolo
Baerlocher, Christophe Bordeux, Luc Emering, and Ronan Boulic for the many
implementations and tunning of all the libraries; Selim Balcisoy, Soraia Musse, Nathalie
Farenc, and Elsa Schweiss, for the many work done in collaboration; Tom Molet, Fabien
Garat and Serge Rezzonico, for all the help concerning virtual reality devices; Olivier
Renault, Mireille Clavien, Thierry Michellod, Olivier Paillet, Frederic Sidler, Rachel
Cetre, Manuel Kurth, and Olivier Aune, for always helping with videos, models, etc;
Amaury Aubel, Michal Ponder, Ralf Plaenkers, Christian Babski, Walter Maurel,
Joaquim Esmerado, Luciana Nedel, Branislav Ulicny, Srikanth Bandi, Ik Soo Lim,
Fabrice Vergnenegre, Nathalie Capdevielle, Richard Lengagne, and Nathalie Meystre for
several different fruitful discussions; and also to Josiane Bottareli and Zerrin Celebi, for
the help on many administrative issues.

To the EPFL students that I had the pleasure to work with in many different
situations: Eric Devantay, Pedro Carnino, Pierre-Yves Burgy, Wendy Wanhonacker,
Valery Tschopp, Marco Bonetti, Julien Beck, Luc Costabella, and Jurgen Anthamatten.

To the distant but very participative friends from COPPE/UFRJ: Ricardo Farias,
Luiz Marcos Gonçalvez, Fernando Wagner, and Antonio Apolinário.

To the Brazilian National Council for Scientific and Technologic Development
(CNPq), for the financial support.

To the many friends from the Club Alpin Suisse in Lausanne, and from the
Carioca Mountaineering Club of Rio de Janeiro (CEC), for the many unforgettable
climbings, and mainly, for not letting me forget that real life is much more important than
virtual life.

To Suzane, Felipe and all my family, for the endless support during my life.

 - viii -

 - 1 -

1 Introduction..5

1.1 Motivation and Objectives .. 6
1.2 Approach... 6
1.3 Applications .. 8
1.4 Contribution .. 9
1.5 Organization of this Thesis ... 9

2 Background, Terminology and Literature Review...............11

2.1 Modeling ... 11
2.1.1 Feature Modeling ... 12
2.1.2 Scene Graphs and Skeletons .. 13
2.1.3 Actors and Objects ... 14

2.2 Animation.. 14
2.2.1 Motion Generators.. 15
2.2.2 Primitive Motions and Primitive Actions ... 16
2.2.3 Behavioral Animation.. 17

2.3 Agents.. 18
2.3.1 The Virtual Environment ... 18
2.3.2 Autonomous Agents ... 19
2.3.3 Programming Agents.. 20

2.4 Virtual Reality... 23
2.4.1 Motion Trackers ... 23
2.4.2 Force Feedback .. 25
2.4.3 Stereographic Displays ... 26
2.4.4 VRML .. 27
2.4.5 VR Systems .. 27

2.5 Used Software Libraries .. 28
2.6 A More Precise Overview of This Thesis ... 30
2.7 Chapter Conclusion... 31

3 Star-Vertex Data Structure...33

3.1 Introduction... 33
3.2 Related Work... 33
3.3 Star-Vertex Data Structure.. 35
3.4 Traverse Element ... 39
3.5 Analysis and Comparison.. 43
3.6 Two Examples of Applications ... 44
3.7 Chapter Conclusion... 45

4 Modeling Smart Objects ...47

4.1 Introduction... 47

 - 2 -

4.2 Related Work... 49
4.3 Feature Modeling of Interactive Objects... 50

4.3.1 Interaction Features.. 51
4.3.2 Interpreting Interaction Features .. 53
4.3.3 Implementation Issues .. 55

4.4 Somod Description.. 55
4.4.1 Software Platform .. 55
4.4.2 Defining Object Properties ... 56
4.4.3 Defining Interaction Information... 57
4.4.4 Defining Behaviors .. 60
4.4.5 Templates ... 65

4.5 Somod Extensions ... 66
4.6 Chapter Conclusion... 68

5 Interpreting Interaction Plans ..69

5.1 Introduction... 69
5.2 Related Work... 70
5.3 Interpretation of Plans ... 72

5.3.1 Instructions Reasoning ... 73
5.4 Manipulation Actions .. 74

5.4.1 The Inverse Kinematics Module .. 75
5.4.2 Constraints Distribution ... 76
5.4.3 Animation Control.. 77

5.5 Other Actions .. 79
5.6 Chapter Conclusion... 80

6 Agent Common Environment ...81

6.1 Introduction... 81
6.2 Related Work... 82
6.3 ACE System.. 82

6.3.1 Software Platform .. 82
6.3.2 ACE Functionality.. 83
6.3.3 A Script Example ... 85

6.4 Multi Actor Simulations.. 87
6.5 User Control of the Animation.. 89
6.6 Extension Through Python Scripts.. 91
6.7 Chapter Conclusion... 93

7 Direct Interaction with Smart Objects..................................95

7.1 Introduction... 95
7.2 Related Work... 96

 - 3 -

7.2.1 Interaction with Body Postures .. 96
7.2.2 Manipulation and Navigation... 96
7.2.3 Physical Models ... 97
7.2.4 Manipulation Metaphors .. 97
7.2.5 High Level Metaphors.. 98

7.3 Smart Object Interaction Metaphor ... 99
7.3.1 Interaction Manager ... 99
7.3.2 The Smart Object Controller.. 101

7.4 An Interaction Example .. 102
7.5 Analysis ... 103
7.6 Chapter Conclusion... 104

8 Achievements and Results...105

8.1 Modeled Smart Objects ... 105
8.2 Urban Environment Simulations ... 107
8.3 Behavioral Animation... 108
8.4 Virtual Life Simulations .. 110
8.5 Direct Interaction... 112
8.6 Augmented Reality Applications .. 112

9 Conclusions...115

9.1 Main Conclusions .. 115
9.2 Limitations .. 116
9.3 Future work ... 117

10 Appendix..119

10.1 Primitive Plans Instructions .. 119
10.2 Example of Smart Object Description Files.. 121

10.2.1 autodoor.so ... 121
10.2.2 desk.so .. 123
10.2.3 lift.so... 127

10.3 ACE Python Interface Description.. 131
10.4 ACE Example Python Scripts ... 134
10.5 Actor Skeleton Joints .. 135

10.5.1 Skeleton Hierarchy... 135
10.5.2 Joints Used by Action Push.. 137

References..139

Curriculum Vitae ..153

Publications ... 153

 - 4 -

 - 5 -

1 Introduction

Computer graphics systems are no longer synonym of a static scene showing 3D
objects. In most nowadays applications, objects are animated, they have deformable
shapes and realistic physically based movements. Such objects “exist” in virtual
environments and are being used to simulate a number of different situations. For
instance, costs are saved whenever it is possible to simulate and predict the result of a
product before manufacture.

Technology has advanced, and now many standards exist in order to allow the
creation and exchange of different kinds of data used in such environments. The
increasing power of nowadays computers, associated with the lowering of costs, permits
people to have all this technology available in their standard personal computers.

Users of such systems are no longer passive, but they can interact with virtual
environments. Using special hardware devices, they can even realistically feel themselves
immersed in these environments, interacting with virtual entities, feeling and seeing as if
they were really inside this virtual reality.

Although many technical issues are not fully solved, a lot of attention has been
given to a next step: lifelike behaviors. The issue is to have virtual entities existing in
virtual environments, deciding their actions by their own, with realistic human
appearance, animated with realistic movements, “living” in virtual environments and
exhibiting proper and unpredictable behaviors. As a natural consequence, computer
animation techniques today are strongly related to artificial intelligence and robotics
techniques.

Researchers from areas like philosophy, psychology, cognitive sciences, etc,
discuss whether virtual creatures can behave or not as living creatures. Fundamental
concepts around human nature and artificial intelligence are still not fully understood. As
particle physics share properties with astronomy, high-end technological issues are facing
concepts of life.

The reader will not find any answers to such dilemmas in this thesis, neither the
development of any new artificial intelligence technique. Instead, what I propose in this

 - 6 -

work is a new alternate approach to exactly overcome the difficulty to model some
specific intelligent behaviors in virtual actors.

This thesis focuses on the topic of object interaction inside virtual environments.
Although many different related issues are also considered, I concentrate on the problem
of how to have virtual environments with human-like characters and objects that can
coherently interact between them, using the bottom-up approach for artificial intelligence,
i.e., behavioral animation.

1.1 Motivation and Objectives

It is still a challenge to build in computers a virtual actor that can decide its
motions, reacting and interacting with its virtual environment, in order to achieve a
simple task given by the animator. This virtual actor might have its own way to decide
how to achieve the given task, and so, many different sub-problems from many areas
arise.

One of these sub-problems is how to give enough information to the virtual actor
so that it is able to interact with each object of the scene. That means, how to give to an
actor the ability of interaction with general objects, in a real-time application. This
includes a lot of different kinds of interactions that can be considered. Some examples
are: the action of pressing a button, opening a book, pushing a desk drawer, turning a key
to then open a door and so on.

More than enabling actor-object interactions in virtual environments, another
objective here is to address different solutions to let the animator control simulations, by
giving tasks to actors or by interacting with objects. Note also that interactive virtual
environments need, by nature, to run in real time. In this way, all issues addressed in this
work take into account the need to run in real time systems.

A final challenging objective is to construct an interactive virtual environment to
be used as a development platform for many applications, able to coordinate virtual
actors and objects with proper behaviors, actor-object interactions, and user interaction
with the environment.

1.2 Approach

In order to have virtual actors interacting with objects in the environment, there
are many complex aspects to consider. Maybe the most difficult behavior to model is the
actor capacity to recognize object features and to decide what actions are possible to
perform with it. A human-like behavior would recognize a given object with vision and

 - 7 -

touch, and then, based on past experiences and knowledge, the correct sequence of
motions would be deduced and executed. Such approach is still too complex to be
handled in a general case, and not suited for interactive systems where a real time
execution is required.

To avoid complex and time-consuming algorithms that try to model the virtual
actor’s “intelligence”, my proposed approach is to use a well defined object description
where all properties, functionality features and a description of the steps to perform each
available interaction are added to the geometrical shape description of the object. In that
way, part of the most difficult thing to model, the knowledge of the virtual actor, is
avoided. Instead, the designer of the object will use his own knowledge assigning to the
object all information that the virtual actor need to access in order to interact with the
object.

In order to create objects with such complete semantic and interaction description,
a specific modeler was developed. This modeler can then define the behavioral interface
between actors and objects based on interaction plans of primitive actions. Such interface
is then used as an agent communication language to synchronize agent-object
interactions. This modeler was implemented using some visual programming techniques,
letting non-programmers to define object behaviors and actor-object interaction plans.
Objects modeled with such behavioral information are called in this work as smart
objects, and the smart object modeler application is called as somod.

 This kind of approach has a parallel with the area of feature modeling, where
specific object characteristics are included to allow design coherence, reusability,
evolution and also automatic manufacture of the designed model. Here, the focus is on all
the features that can help the virtual actor to interact with the object. For this purpose, I
introduce the term interaction feature. Some examples of such features are: parts that can
be moved, the definition of each movement, best hand positions and shapes to manipulate
parts, etc.

This approach was tested using a developed agent-oriented system called ACE
(Agent Common Environment), where virtual actors can read and interpret interaction
plans to interact with virtual objects. This system presents interesting new characteristics,
as the fact that the semantics of the environment stay distributed in the objects, so that
virtual actors need to explore the environment to reach the objects and decide what
interactions to perform to achieve a given task.

 - 8 -

1.3 Applications

As a result of the growing popularity, and many technological advances,
computers are each time more used for 3D animation and simulation in many different
applications.

Computer animation in general has been widely used in the advertisement field,
both in television and the internet. As technologies advance, many of these animations
become three-dimensional, making them much more attractive. Electronic commerce
already uses computer-generated promotion videos, and 3D models of products.

The film industry also uses many computer animation resources for the generation
of special effects. However, for films, interactive virtual environments are not required,
and normally the animation generation uses a lot of human intervention in order to
achieve perfection in the results.

Visualization in general is each time closer to interactive graphics. From the
visualization of 3D numerical datasets to the visualization of 3D architectural projects,
vehicles, engineering components, etc. Walk-through in 3D environments can be
enhanced with animated entities. For instance, a walk-through session for a 3D
architectural evaluation can be much more realistic if virtual actors and objects are
animated inside the virtual environment.

Interactive and animated 3D virtual environments are often used in modern video
games in the market. The video game industry uses high-end techniques from computer
graphics, and even starts to open new research directions in the field.

Virtual environments are already widely used for training and virtual prototyping.
As it happened with the geometric modeling area, the automotive industry is investing a
lot in virtual reality techniques for the design, test, and evaluation of human factors in
vehicles. The same trend can be noticed in many other sectors, as the army and aerospace
industries.

Virtual environments with virtual human actors simulations in specific, are
becoming each time more popular. Nowadays many systems are available and used to
animate virtual humans, targeting different domains, as: human factors analysis, training,
education, virtual prototyping, simulation-based design, and entertainment.

In summary, nearly all applications using 3D animation in virtual environments
are concerned with object interaction issues. Even if virtual human actors are less used
because of the animation complexity involved, the possibility to have actor-object
interactions in the virtual environment will always enhance the results obtained.

 - 9 -

1.4 Contribution

The main contribution of this thesis is the design, implementation and test of a
new approach to specify interactive objects, which are suitable for interactions between
virtual human actors and virtual objects in real time virtual environments. In this ambit,
new solutions to approach related topics are covered in this thesis, which are:

• A new data structure for the boundary representation of objects, which is able to
give adjacency relations in constant time, requiring low storage space.

• A feature modeling approach to represent interaction information of objects.
This approach is based on the definition of interaction plans, using visual programming
techniques. Such plans define the behavioral interface of objects and their functionality,
enabling simulators to load and animate them coherently.

• A simple and general methodology to control the animation of virtual human
actors for performing object interaction manipulations. The simplicity comes from the
fact that all hand manipulations are done with only two kinds of movements, which are:
to reach some object part, and to follow some moving object part. Such simple
movements can then be composed to create more complex and general interactions.

• A real time system which can be used for the development of interactive virtual
environments for different applications, offering built-in capabilities for actor-object
interactions, and for user simulation control, including a direct object interaction
metaphor using virtual reality devices.

1.5 Organization of this Thesis

In this introductory chapter, I have already freely used many terms without a
proper definition of their meanings, which are normally context dependent. The next
chapter will gradually introduce the needed background and define each used term,
creating a coherent terminology to be used along the remaining chapters. Some general
related works are also mentioned, but specific references to each subtopic are given in
their specific chapters.

Chapter 3 introduces a proposed new data structure for the boundary
representation of objects, and chapter 4 exposes how interactive objects can be modeled
and represented with their interaction features and interaction plans. Chapter 5 explains
how virtual actors interpret interaction plans, and the animation techniques involved for
the animation control of actors during object interaction.

Chapter 6 introduces a system that is able to control actor-object interactions,
according to the modeled interaction plans. This system is agent oriented and offers many

 - 10 -

tools for the simulation control, including an interaction metaphor to let users interact
with objects using virtual reality devices, which is the specific topic of chapter 7.

Chapter 8 presents the many results obtained with the proposed techniques, and
finally chapter 9 concludes this thesis. In addition, an appendix section is included,
containing information about implementation issues, scripts and used data files.

 - 11 -

2 Background, Terminology and Literature
Review

This chapter makes an overview of the terminology, concepts and background
notions that are used along this thesis. They are grouped among the many areas touched
by this work, and are introduced slowly, starting with computer graphics related areas,
and ending up with concepts from artificial intelligence domains. However, it is assumed
that this is not the first contact that the reader has with the covered topics, so that terms
and concepts are not exhaustively discussed.

Along the text, this chapter also presents a general literature review of related
areas. However, an in-depth discussion of the related works, regarding each sub-topic of
this thesis, is presented in each specific chapter.

At the end, already using a more precise terminology, a description of the
software modules and libraries used in this work is done, and a more precise description
of the work proposed in this thesis is presented.

2.1 Modeling

The term modeling is used by nearly all sciences, for many different purposes. In
general, a model is an artificially constructed object that makes the observation of another
object easier. The term solid modeling is extensively used in computer graphics, mainly
in the areas of computer aided design (CAD) and computer aided manufacture (CAM).
The solid modeling area gives computational representations for objects that have a
possible physical realization. Along this thesis, I will rather use the term object modeling,
to refer to computational representations of objects that can be coherently displayed by
the computer, even if a physical realization is not straightforward. For example, a
mathematical plane in the 3D space does not exist in our real world, as its thickness
would need to have a measurable dimension; but it can be coherently displayed by
computers.

 - 12 -

There are several proposed computational representations for objects, each one
having its advantages and drawbacks. Some popular examples are: volumetric
representations, constructive solid geometry (CSG) trees, and boundary representations.
For a detailed description of such representations, I refer the user to the classical book of
[Mäntylä 1988].

The Boundary representation (BRep) is one popular way to represent objects.
BRep schemes represent objects by describing their surface boundary, which can be
composed of planar faces and curved surfaces. Geometric modeling is the area where
mathematical representations of curves and surfaces to represent solids are studied. With
such mathematical representations, it is possible to accurately describe curved surfaces.
One example of a popular surface representation is the nonuniform rational B-spline
(NURBS). Among others, a classical reference to this topic is [Farin 1992].

Objects in BRep are easy to display in computers, i.e., to render. This is based to
the fact that surfaces can be always approximated, given any desired precision, by a set of
planar 3D polygons. Most nowadays computers provide specific hardware to render 3D
polygons efficiently. The speed factor achieved with the use of such hardware (or
graphics cards) has largely contributed with the popularity of BRep models. As speed is
crucial in interactive applications, only BRep of objects are used in this work, and a new
BRep data structure to represent objects is proposed in the next chapter.

2.1.1 Feature Modeling

Object modeling deals with the shape representation of an object. However, in
many applications, other properties different than shape need also to be represented.
Feature modeling is a technique used mostly by CAD/CAM applications [Shah 1995]
where the main concern is to represent not only the shape of the object, but also all other
important features, in the context of the application.

One concrete example in a CAD application is the design of a simple pen’s cap
that has a small hole in its original design. Suppose now that a new designer working on
this model would prefer to close that small hole just because of esthetic reasons. Then,
during the operation, he or she would see a note from the original designer saying that the
hole was done in order to prevent children to stop breathing if they accidentally choke
with the pen’s cap. Such information is very important in this situation and so it is
included in the object’s representation.

Following these concepts, I have coined the term interaction feature to refer to all
interesting features of an object regarding its interaction capabilities. Some examples of
interaction features are the modeling of the objects movements and its global

 - 13 -

functionality. Feature modeling and interaction features are a key issue in this thesis and
will be extensively discussed in the next chapters.

2.1.2 Scene Graphs and Skeletons

Sometimes objects can be composed of many parts, like disconnected
components (or topologically: shells [Mäntylä 1988]). Parts may also have animation
constraints, for example to specify that a part is only allowed to rotate around a specified
rotation axis. When such composed objects are loaded, the connectivity of their parts is
often represented with a scene graph.

Most commercial toolkits for the implementation of 3D computer graphics
systems are based on scene graphs; examples are: Open Inventor, Performer, Optimizer,
Fahrenheit, etc. More information about these toolkits can be obtained from the web
pages of [SGI], [TGS], and [Microsoft]. Scene graphs permit to organize, animate and
control a hierarchy of object parts. See for instance [Wernecke 1994], and the chapter 4
of [Thalmann 1991], for some examples of scene graphs implementations.

Figure 2.1 – A scene being displayed is commonly represented with a scene graph.
The scene graph contains all necessary information to display each object of the
scene. The internal hierarchy of each object’s parts is also represented as a graph that
is the object skeleton, and can be seen as a branch in the main scene graph.

The word skeleton is also commonly used to refer to the specific scene graph of
some given object in the scene. A skeleton defines all the connections of all parts of a
given object, and also eventual transformations that can be applied to any node of the
graph. These transformation nodes are also referred to as joints. Joints can be of different
types and they will dictate the number of degrees of freedom (DOFs) in the skeleton. See
the chapter 4 of [Thalmann 1991] for more explanation on these terms. Typically, a scene
being displayed by the computer is represented by a single global scene graph, where the
objects’ skeletons are specific branches of the scene graph (figure 2.1).

 Scene Graph

Skeleton of
an object

 - 14 -

2.1.3 Actors and Objects

Objects can be built having a human-like appearance. Human-like objects can
then be animated as characters in a scene, and are often referred to as virtual humans, or,
for the sake of simplicity, actors. Some times the adjectives real and virtual will be used
in order to distinguish a real (physical) object from its counterpart virtual object
representation. The same adjectives can also be used to distinguish a real person from a
virtual actor in some situations. Note that virtual actors share many properties with virtual
objects. Both need to be modeled, to have a skeleton, and then to be animated. However,
virtual humans are, in general, much more complex than objects.

From now on, when not contrary stated, the word object (or virtual object) will be
used to refer to the computer representation of day life objects, like computers, tables,
cupboards, doors, etc. The concept of what is an object is rather intuitive, and depends on
the context. For instance, in many situations, it may not be clear if a robot model should
be considered as an object or an actor.

In addition, composed objects are not trivial to be identified. For example, one
can consider a furniture with many drawers as a single object composed of many parts, so
that a skeleton scheme can be used with joints to define the possible movements of the
drawers. All this information should be included in the feature modeling of the furniture.
However, one can state that the furniture is an independent object, and the same for each
drawer. In this example, it seems to be clear the correct design decision to take, but in
many other cases, this decision is not straightforward: should a car, with all its doors,
engine, wheels, radio, etc, form a single object? An answer to this question is deeply
context-dependent. In fact, even in real life situations we change the way we classify
single and composed objects from time to time.

2.2 Animation

Once objects and actors models are created, they can be displayed in a computer
screen. Computer animation introduces the dimension of time and allows the
manipulation of these entities to create the illusion of animated movements.

Many different techniques are used in animation: key-framing animation,
procedural animation, dynamic simulations, etc. Deformation techniques are also used to
produce animation. For a good overview of the many techniques used in computer
animation, see [Vince 1992], [Watt 1989], [Watt 1992], [Thalmann 1990] and [Thalmann
1993].

 - 15 -

2.2.1 Motion Generators

Animation is direct related to the generation of motion. Movements that are
applied to objects can be realistic generated using dynamics or inverse kinematics [Watt
1992]. But for virtual humans, the implementation of realistic motion generators is
something more complex.

A motion generator will typically generate, for each time step of the simulation,
new values for the joints of an actor’s skeleton. Note that a virtual human skeleton can be
very complex, with more than a hundred of DOFs, resulting in a complex structure to
animate. Also, realistic rendering of the actor involves the modeling of an initial shape,
with consecutive deformation according to the movements of the underlying skeleton.
Even simpler solutions based on rigid parts require a reasonable effort to model each
independent body limb and to connect them coherently. For an exposition on some of the
issues involved in this area, see, for instance [Badler 1999a], [Kalra 1998] and [Thalmann
1991]. Figure 2.2 shows some possible representations for virtual actors.

Figure 2.2 – Possible representations for an actor. From left to right: skeleton
representation, body composed of rigid parts, and two models with deformable skin.

One popular animation technique for virtual humans is based on motion capture.
The idea is to capture the movement of real persons by using some special hardware,
based on high-end vision systems, magnetic sensors or infrared sensors. A brief
introduction to this and other virtual reality devices will be given later in this chapter.
With such kind of hardware, movements are captured by recording the position and
orientation in space of each body limb of the person using sensors, at each time step.
Once these movements are recorded, they can be mapped to the actor’s skeleton in order
to produce a realistic animation, very close to the original movement. This mapping is not
straightforward and different techniques exist, as for instance [Molet 1996].

 - 16 -

The same kind of recorded movement can be synthesized with advanced
animation software, and this general approach of using pre-defined movements (motion
captured or manually created with a software) is called as keyframe animation.

However, serious problems arise when one needs to adapt a pre-recorded
movement to skeletons of different sizes, or to dynamic situations. For example, it is very
difficult to use a pre-defined movement to realistically animate the actor’s arm to pick-up
an object that can be put at any position close to the actor. It is not reasonable to record
an arm movement for all positions to reach in a discrete 3D space surrounding the actor;
thus, other solutions are required.

Inverse kinematics is a technique that can calculate one optimal configuration of a
skeleton from a number of given constraints. For an introductory text, see [Watt 1992],
and as an example of some latest advances achieved with inverse kinematics techniques,
see [Baerlocher 1998]. A typical example is to calculate the joint values of all joints of
the actor’s arm, given a goal position and orientation to be reached by the hand. The
drawback is that most inverse kinematics methods are based on minimization techniques,
and thus undesirable local minima can occur. Additionally, the animation result is not
always considered natural. A promising approach is to use combined solutions in order to
obtain parameterized motion captured data; one step in this direction can be seen in
[Bindiganavale 1998]. Although such efforts are promising, inverse kinematics is still the
simplest solution adopted to overcome the adaptability difficulties of keyframe-based
techniques.

An actor’s important motion that receives a lot of attention is walking. The
movement of walking is difficult to realistically reproduce. It is difficult to achieve
dynamics algorithms taking into account all needed subtleties of natural movement. In
another sense, motion capture techniques are hard to be efficiently parameterized to work
on all kind of skeletons, and to work with different speeds and ways of walking. A hybrid
approach is somehow required. As an example of proposed walk motors, see, for
instance, [Tsutsuguchi 2000] and [Boulic 1990].

2.2.2 Primitive Motions and Primitive Actions

All these motion generators may be used together to generate a wide range of
animations. Motions obtained with these techniques are going to be called primitive
motions. Primitive motions can be used for different purposes. For example, inverse
kinematics can be used to make the arm of the actor reach the position of a button, before
pressing it. This action of reaching will be considered to be a primitive action, as it is
directly generated by a primitive motion. Similarly, primitive actions applied to objects
will move its parts, as to open and close drawers of some furniture.

 - 17 -

Suppose now that an animation system provides the possibility to apply many
different kinds of primitive actions to actors and objects. A first concern is the problem of
coherently mixing the output of motion generators when they are triggered in parallel.
Although this is not a common case in objects, for the animation of actors this is an
important issue also known as motion blending [Boulic 1997]. For example, a motion
blending is required in order to have an actor that walks while its arm, for some other
purpose, is controlled by an inverse kinematics motion generator with higher priority.

Once these capabilities of motion generation and blending over actors and objects
are possible, the problem that arises is how to define the good combination of motions in
order to simulate or animate a higher level task. More than that, when one wants to
animate a complex scenario, it would be desirable to be able to do it in an efficient way.
For instance, which parameters one would need to specify in order to animate a simple
storyboard, as an actor that enters into a laboratory and takes a diskette of a computer? A
first problem is the excessive amount of parameters to define. And once the work is done,
as the animation was “pre-calculated”, it would not be interactive.

2.2.3 Behavioral Animation

When a virtual actor can just receive key instructions, or high level tasks, to
perform some animation, a behavioral module is needed to deduce the correct primitive
actions to apply, in order to achieve the given tasks. Many techniques exist to define
behavioral modules, and such topic has a lot of attention in the behavioral animation and
agents area.

Prior to the science of behavioral animation, researchers initially developed
physics-based models to make movements more realistic. A main drawback was that the
animation was always predictable, and did not take into account individualities of the
characters. The first behavioral system was developed by [Reynolds 1987] and
introduced the concept of flocking behavior to animate flocks of birds. In this system, an
individual bird follows a set of rules that makes it to follow the surrounding birds, while
avoiding colliding with them. With such individual rules, the flock of birds presents
realistic results of group motion, which would be a time-consuming task to perform with
traditional animation techniques. In a recent work, [Reynolds 1999] addresses many other
types of locomotion behaviors.

Behavioral animation [Millar 1999] [Ziemke 1998] is considered to be the
bottom-up approach to study artificial intelligence (AI). Traditionally, AI has been based
on the view that intelligent behavior is the result of abstract processes at the “knowledge
level” [Newel 1982]. But since the mid-1980s, traditional AI (which can be considered to
be the “correct approach”) has shown serious problems in dealing with complex

 - 18 -

environments. An alternate approach then appeared, based on behavioral-based robotics,
focusing on perception and action [Brooks 1986].

Different perception techniques have been proposed and they will direct reflect
the way that behavioral modules are designed. The first approach introduced to simulate
realistic virtual human perception was done by [Renault 1990] which simulated a vision-
based perception. [Tu 1994] has applied a spherical visual perception to simulate fishes
and [Reynolds 1987] has applied to birds. [Noser 1996] has also used vision perception,
together with memory, and the perception of sound events. To overcome the difficult task
of dealing with a vision-based perception, [Bordeux 1999] proposed pipelines of
perception, which are configurable with different properties in an efficient way.

2.3 Agents

Behavior-based AI has then used the term agent to refer to an entity based on
perception and action. Unfortunately, this concept is applied in many different fields so
that the term agent is used for all sorts of systems, ranging from the most complex
(humans, animals) to the very simple (programs, subroutines) [Woolridge 1995]
[Franklin 1996].

A common point is that an agent is always situated in an environment, and can
interact with its environment by means of perception and action. Figure 2.3 depicts these
main components of an autonomous agent.

Figure 2.3 – Agents are based on three main modules: perception, behavior, and
action. To act ant perceive, they need to “exist” in a virtual environment.

2.3.1 The Virtual Environment

Agents need to have an associated virtual environment (VE) where they can
perceive the state of the simulation in order to decide the motions to apply. The motions

Autonomous Agent

Virtual Environment

Behavioral
Module A

ct

Pe
rc

ei
ve

 - 19 -

are then visualized in the same VE, which keeps and manages the graphical
representation of each agent. The concept of perception is directly related with the
existence of a coherent VE, that needs to be able to efficiently answer perception queries.

Agents’ behavioral modules often run in an asynchronous way, using different
computer processes, or threads (“light processes”). This is required so that, ideally, the
process time consumed by one agent would not interfere with other agents. Thus agents
would be able to access in parallel the needed information in the VE, exchange messages,
etc.

The VE needs to display the graphical representation of each agent being
animated, and efficiently answer to perception queries. The display need to be updated
with a sufficient and constant refresh rate to show a smooth and time-coherent animation.
This also involves the use of parallel processes to keep a constant frame-rate. In general,
psychologists show that a frame rate of 25Hz is sufficient for the human eye to perceive
motion flowing smoothly. When a frame rate close to 25Hz is achieved it is common to
say that the system runs in real time. Note that an interactive system, by nature, requires
real time performance. However, many times it is not possible to keep a real time frame
rate, and even with lower frame rates, depending on the application, it is common to say
that a system still runs with interactive frame rates.

2.3.2 Autonomous Agents

Many terms can then be used to better specify the agent type. An agent is
considered to be autonomous, when it is able to achieve given goals by only its own
actions in a continuous interaction with the VE. It can be considered intelligent if it can
solve complex goals, otherwise it is just considered reactive. Normally, intelligent
behaviors are able to generate emergent behaviors, which are behaviors that were not
directly programmed, and appear as a result of other simpler behaviors. [Ziemke 1998].
Agents that “take the initiative” while attempting to achieve a goal are called as pro-
active. They can have sociability characteristics to be able to cooperate and interact with
other agents in the environment, using some agents language, i.e., some protocol to
exchange data. Mobility, veracity, benevolence, rationality and adaptation are also terms
used in the agents literature. For a good overview over the agents domain, see
[Wooldridge 1995].

In the scope of this thesis, both objects and actors are considered autonomous
agents: once their behavior are defined, they are able to act by themselves. Generally,
objects are simpler than actors, and some times their behaviors can be seen as reactive
rather than intelligent. For example, an automatic door is an object that can have sensors
to detect when an actor approaches to then open itself. Actors will use sensors to detect

 - 20 -

what the objects near them can offer in order to complete a given task. The adjectives
reactive and intelligent can be used or not, depending on the context and on the
complexity of the programmed behaviors.

The agent concept aids the organization of things, but the problem of developing
behavioral modules is still a major issue. As seen before, traditional AI techniques have
not successfully provided effective behavioral modules to drive actors simulations in
virtual environments. Actually, behavioral animation approaches the problem by direct
implementation of the needed behaviors, without expecting that they would naturally
emerge from a “well defined AI entity”.

2.3.3 Programming Agents

Many techniques have been proposed to define agent’s behavioral modules.
However, even for each used technique in particular, different approaches are presented.
The fact is that the implementation of behavioral modules is a highly context-dependent
task, so that when applying standard techniques to a specific domain, some specific
issues are differently solved. This situation leads to many specific systems being
described in the literature, but the techniques involved do not vary significantly.

The most popular techniques use rule-based behaviors. According to the system
state, rules are selected producing state changes and so evolving the simulation. The LISP
programming language is often used in such systems [Norvig 1992]. Other approaches
use L-Systems as a procedural generation of rules [Prusinkiewicz 1990] [Noser 1997].

For a good exposition of the many specific methods for the behavioural control of
actors, see [Funge 1999]. In his work, Funge considers that a higher level layer, the
cognitive modeling layer goes beyond behavioral models, in that they govern what a
character knows, how that knowledge is acquired, and how it can be used to plan actions.

In this thesis, I do not enter into this cognitive modeling layer. The work herein
presented proposes a behavioral technique to easily enable actor-object interactions.
However, I do show that coherent cognitive models can be implemented based on the
behavioral techniques proposed. Figure 2.4 illustrates the modern computer graphics
pyramid proposed by [Funge 1999].

Another point is how to specify the parameters of the behavioral module in
question. For example, how to enter the rules of a rule-based behavior? In order to
achieve complex systems, many coherent rules need to be entered, what can be a
strenuous task. Finite state machines are widely used to define different kinds of
behaviors, as for instance, an emotional model for virtual actors [Becheiraz 1998].

 - 21 -

State machines can be represented graphically, and thus, graphical programming
methods can be introduced to the behavioral programming task. Commonly, nodes
represent states, and links between nodes represent transitions between states. At a first
glance, these graphs seem to be a promising approach, but for most complex systems
with a lot of states and transitions, they easily turn to be a difficult representation to
construct, understand and maintain. For example, only coherently drawing graphs is a
complex issue and is the subject of a lot of research [Battista 1999].

Figure 2.4 – Cognitive modeling is considered to be the new apex of the computer
graphics modeling hierarchy [Funge 1999].

Many systems use some kind of finite state machine to define behaviors. Some
examples are [Schoeler 2000] and [Moreau 1998]. When state machines get complex,
hierarchical state machines can be used, as in [Motivate] and [Nemo]. Similar
constructions are also proposed, as the parallel transitions network (PaTNets) [Granieri
1995] [Bindiganavale 2000]. Another interesting example is the generation of realistic
human motion introduced by [Hodgins 1995], where human athletics motions are
simulated using dynamic models driven by simple state machines.

Alternatively, scripts can be used to program behaviors. A classical system based
on scripting is the New York University’s Improv (Improvisational Animation) [Perlin
1996]. Scripting is in fact similar to writing simple programs with a simplified syntax and
which can be interpreted in run time. Some interpreted programming languages can be
used as scripting tools, as for instance the Python language [Lutz 1996].

Scripts can also be used to define plans. A plan is a scheme or program that
determine a sequence of actions to take in order to accomplish a given goal. Actions are
then considered units of behavior, and thus a plan can define a behavior. The term

Geometric

Kinematics

Physical

Behavioral

Cognitive Modeling

 - 22 -

scheduling is some time used for the specific problem of determining the time when each
action should take place.

Plans can be pre-defined, using scripting tools or state machines. Otherwise, they
need to be generated during the simulation using some planning process. Planning
processes are thus concerned with determining the correct ordering of actions to achieve
a task. Planning may require reasoning modules, able to determine or conclude by logical
“thinking”. Planning processes often need to search for solutions in a search space, and
algorithms are very time consuming, not applicable to interactive applications. The best
example is given by the work of [Koga 1994], which presents a planning algorithm for
the definition of collision-free paths for several cooperating arms in order to manipulate a
movable object between two configurations. Although realistic results are presented in
[Koga 1994], the computational cost is prohibitive for interactive simulations, and also,
extending the approach to general cases with different object interactions is still a
challenge. However, in a near future, such planning algorithms may represent a
promising approach for many cases. Researchers from the robotics field are still
developing new algorithms, as the visibility-based probabilistic roadmap planner
[Simeon 2000], that could run in real time in very simple conditions. A classical
reference for the robotics motion planning domain is the book of [Latombe 1991].

In this thesis, I propose an approach where all needed information to perform
actor-object interactions are available in pre-defined plans, retrieved from the feature-
based model of objects. This leaves for the actor the task of interpreting interaction plans,
which don’t require any complex reasoning processes, what is suitable for interactive
applications. A similar approach is proposed by [Levinson 1994b], where an object
specific reasoner is used, based on a geometric and functional classification of objects for
the interpretation of natural language instructions. This approach address only simple
grasping tasks, but the main conceptual difference is where the semantics of objects is
stored: in the herein proposed feature modeling approach, objects contain all their
semantic and interaction information.

The definition and control of agents’ behaviors is a large and tangled issue, and a
common starting point of each proposed technique is to make simplifying assumptions,
leading to highly context-dependent techniques. Classifying systems can be already a
difficult task. A first classification is proposed by [Zeltzer 1991], where systems are
placed in three categories: guiding, animator-level or task level. A task level system
would need to use behavioral modules. In a more recent work, [Cavazza 1998] extended
this classification specifically for the animation of virtual actors: participatory, guided,
autonomous and interactive-perceptive.

 - 23 -

It is important to note that even the most complex autonomous agent’s behavior is
somehow programmed in the computer. Even with evolving methods, there is somewhere
a known algorithm that enabled the evolution of the behaviors, so that the results are still
predictable. The point here is to determine if a “real intelligent behavior” could be
achieved only with a high number of complex connections of many but simple pre-
programmed behaviors. Such question is not solved and the topic is widely discussed by
cognitive scientists.

2.4 Virtual Reality

Virtual Reality (VR) is related with the idea of user immersion in a synthetic
computer-generated environment. The concept of immersion in a virtual environment
(VE) is rather relative, depending on many factors. The VE can be seen as the virtual
space inside the computer where virtual objects are loaded and animated, and the user
should somehow feel immersed inside, seeing a graphical representation of him/herself,
and even feeling and interacting with the objects in the VE. The success or failure of a
particular VR system is not necessarily a function of how “realistic” it is. Rather, it is a
function of the extent to which the behavioral goals of the system have been met.

Many virtual reality devices exist in order to feed humans sensors with computer-
generated signals controlled by the VE. Such devices increase the feeling of immersion,
however without any guarantee that the user will in fact feel immersed in the VE. Some
people cannot even support wearing virtual reality devices, and cybersickness [Hettinger
1997] has been detected in some users.

Virtual reality devices open a series of different approaches of immersion and
interaction with the virtual environment. Often, approaches are rather dependent to the
context and to the used devices. The first problem addressed for interaction with VR
environments using VR devices is concerned to the action of selection and displacement
of objects. Many issues are involved, and a good overview is done by [Hand 1997].

It is possible to classify virtual reality devices in three main groups: Motion
trackers, force-feedback devices, and stereographic displays. Some of these devices are
shown in the following sub sections.

2.4.1 Motion Trackers

Motion trackers are devices that can capture the motion that the user is performing
in order to allow the computer generate an exact copy of the movement, normally to
animate the user graphical representation in the VE. This “controlled representation” is
also called avatar. An actor is considered an avatar when it is designed not to be

 - 24 -

autonomous, but to exactly follow the movements that the user of the system is
performing and that are captured with some motion trackers.

Many different kinds of motion trackers exist. Two types of them are widely used:
sensors with 6 degrees of freedom, and data gloves. Sensors with 6 degrees of freedoms
can give the position and orientation of each sensor, in relation to some reference
position. Examples are emitter-sensor systems based on magnetic fields, infrared
trackers, or ultrasound trackers. Figure 2.5 shows the popular [Motion Star] system,
based on a black box that emits a magnetic field, and sensors that, based on the intensity
of the field, can calculate the position and orientation of their location in space.

Figure 2.5 – Motion Star system of Ascension Technologies Corporation. The black
box on the right is the emitter of the magnetic field. Sensors can be placed anywhere
in the surrounding space and they will capture the position and orientation in space,
relative to the emitter. The main drawbacks of such magnetic systems are the
interference caused by metallic objects, and the limited work volume size.

Such a magnetic tracking system has been used by [Molet 1998] who developed
an anatomical converter essentially based on orientation measurements, that converts the
data captured by many sensors disposed in the user’s limbs in joint angles in real time.
This method allows the fast and realistic generation of pre-defined motion sequences for
later use to animate actors.

Specifically designed to capture the movements of hand’s fingers, many types of
data gloves exist. One example is the cyber glove model of Virtual Technologies
[VirTech] shown in figure 2.6.

 - 25 -

Figure 2.6 – The Cyber Touch glove of Virtual Technologies. This data glove uses
fiber optics to measure fingers flexion. Tactile sensors are mounted in each finger and
in the palm, in order to provide vibration sensations.

2.4.2 Force Feedback

Force feedback devices permit the user to feel and to have movements
constrained, according to collisions in the VE. Such devices are getting very popular
nowadays, and many new solutions are being proposed by companies and research labs.
However, in general, they are still expensive devices, heavy, and not very practical for
general purpose usage. Such devices were not used in this thesis.

Many models exist for different purposes. A recent overview of such devices is
presented by [Burdea 2000]. For example, figure 2.7 shows the newest product from
Virtual Technologies [VirTech], which incorporates force-feedback for the fingers
movements, and force-feedback for the hand movement.

Figure 2.7 – The Cyber Force system from Virtual Technologies. Note that the
external mechanical white arm, which provides the force feedback for the hand, can
be also used to track the position and orientation of the hand. Force feedback at the
finger level is provided by the small black exoskeleton mounted on top of the glove.

 - 26 -

2.4.3 Stereographic Displays

A stereographic display is one of the most important components in an immersive
VR system. The idea is to have a display capable of sending a different image to each
user’s eye, such that each image is generated from a different point of view, simulating
the position of each user’s eye.

Two main technologies exist. The one proposed by [Stereographics] use a normal
screen ideally running with a frame rate of around 50Hz, where each consecutive pair of
frames contain the images to send to each eye. Then, special glasses are used that,
synchronized by infrared with the screen, can block the light going for one eye at a time.
The result is that each eye will see the correct image in a refresh rate of 25Hz. These
glasses are called as shutter glasses and are shown in figure 2.8.

Figure 2.8 – The Shutter Glasses of Stereographics. The image shows the glasses and
the infrared synchronizer that, when connected to the computer, synchronizes which
lens of the glasses need to block the light, in order to let each eye see the correct
image. The graphical software is required to generate different images for each eye in
a sequential form.

Stereo visualization is used not only with computer monitors, but also with
projected images in walls, in many configurations. For instance, a CAVE is a box-like
space where all walls show projected stereo images, so that the user has the impression to
really be inside the 3D synthetic world. CAVEs can provide realistic environments and
have been widely used for full-scale vehicle design.

Another solution is based on polarized light. For this, two screens in parallel
generate images, one generating images for the right eye, and the other for the left eye.
These two images are projected using standard projectors but equipped with polarized
lenses. The lenses are adjusted to polarize the light in different, orthogonal directions, and
both images are projected overlapped. Then, by using very simple glasses that, in each
eye, only light with a specific polarized orientation passes, the user will have the notion
of a stereo vision.

 - 27 -

Displays can be also head mounted. Head mounted displays (HMD) ideally
provide the best solution for immersive visualization, as it blocks all contact that the user
would have with the real world, and it moves together with the user. However, available
systems are still very expensive and have many constraints, as the limited field of view,
which in most cases is close to only 30 degrees. Because of this serious constraint, HMDs
have not yet achieved the expected popularity as “external displays” have.

For the future, there is research being carried on in order to achieve a new type of
stereo display that would not require the use of any special glasses.

2.4.4 VRML

An important aspect in virtual reality systems (and also in all type of systems) is
the need of standards. A first standard being widely used today is VRML (Virtual Reality
Modeling Language).

VRML [Carey 1997] [VRML], is a language that can specify complex animated
scenes, defining scene graphs, together with BRep models, and many other features, as
animation nodes, sensors, connection with script languages, etc. VRML files can be as
complex as the source code of a computer program, but an advantage is that they can be
interpreted and displayed by most available web browsers.

VRML has also been used as the standard language to specify a standard virtual
human’s skeleton format [HANIM].

2.4.5 VR Systems

Many VR applications have been implemented in the last years. Such systems
encompass several domains as surgery training, flight simulators, networked shared
environments for teleconferencing, human factors analysis, training, education, virtual
prototyping, simulation-based design and entertainment. A good overview of the many
techniques used to implement VR and VE software, as well as an extensive list of their
applications, is stressed by [Kalawsky 1993] and [Burdea 1993].

Virtual reality systems are widely used in medical-related areas, specifically in
surgical training applications. An interesting VR training application permitting the
palpation of tumors is presented by [Dinsmore 1995]. In this application, the user
interacts with the virtual organs by using a pair of data gloves.

One example of an interactive exercising training application is presented by
[Davis 1998]. In this application, the computer is able to detect whether the user is not
correctly repeating the showed exercises, and in these cases, the computer tries to give
incentive to the user. Other training domains have also been explored, as is the case of a

 - 28 -

system proposed to train equipment usage in a populated virtual environment [Johnson
1997], where a virtual human is used to show the correct usage of the equipment before
the user takes the first contact with it. Another training application is proposed by [Tate
1995], to train fire fighters to find a given room inside a virtual ship. After, when
operating in the real ship, they are able to find the rooms much faster than those that did
not had the VR training session.

In this thesis a simple classical combination of VR devices to test interactions
between objects and the user of the system is used. This combination is based on the
following devices: shutter glasses for stereo visualization, a data glove to capture finger
movements, and one magnetic sensor to capture the location of the hand in space. This
interaction metaphor will be detailed in chapter 7.

2.5 Used Software Libraries

The computer graphics lab of EPFL, directed by Prof. Daniel Thalmann, is
specialized on the research on all aspects in the domain of virtual human animation and
modeling. As the result of several years of research, the lab has now various
programming libraries for the animation and modeling of virtual humans that are used for
various European and PhD projects.

All the software that I developed to test, evaluate and demonstrate the proposed
techniques in this thesis were based on various library modules of the lab. I will now
introduce the purpose and names of the main used modules, so that in the following
chapters, the discussed implementation issues will be clearer for the reader.

The three main libraries used are called as SceneLib, BodyLib, and AgentLib.
SceneLib is a library to manage scene-graphs, and is used all the time in order to
represent and animate objects in the scene. SceneLib uses also the concept of joints, to
define the type of movement that a node in the scene graph can undertake; see the chapter
4 of [Thalmann 1991] for a description of some SceneLib concepts.

BodyLib is based on SceneLib, and manages skeletons of actors. As explained
before, skeletons are kept as branches of the scene graph. BodyLib coherently models the
correct movement and constraints of each human articulation with joints, and provides
methods and functions to access and modify the values of the joints. Different body
templates files can be read to allow the animation of skeletons with different limb
lengths, in order to simulate different people.

AgentLib provides a set of implemented primitive actions that can be applied to
the skeleton of an actor, together with a motion blending module that coherently manages
the execution of parallel actions. For a description of the AgentLib capabilities, see

 - 29 -

[Boulic 1997]. AgentLib was recently extended to manage a virtual environment able to
answer to perception queries, resulting in a new version called as AgentLib++. In this
thesis, all software that I developed is based on AgentLib++, but from now on, I will
refer only to AgentLib, as the capabilities of both versions are currently being integrated.
For a description of the capabilities available for the perception modules, see [Bordeux
1999].

AgentLib provides also access to many primitive actions for the animation of an
actor’s skeleton: The used actions from AgentLib are called in this thesis as :

• Walk, which animates the actors skeleton with a walking motor [Boulic 1990].
The walking motor can be controlled in three different levels: the lowest level is
controlled by specifying angular and linear velocities and accelerations. A midlevel lets
the user to give feed point locations where the actor should walk to. The higher level
control requires only a goal position and orientation to walk to, and a smooth path is
automatically generated, allowing the actor to smoothly walk from its current position
and orientation to the desired goal position and orientation. The core of the walking
motor is kept in another library called WalkLib. In this thesis, the higher level of walking
control is always used.

• Reach: permits to animate the actors skeleton in order to have the actors hand
reaching some desired position and orientation. The reach action uses an inverse
kinematics library that will be called here as InvKinLib. This library has achieved many
enhancements and is the subject of the PhD thesis of P. Baerloch [Baerlocher 1998].
However, the reach action has some limitations due to the fact that not all the actor’s
skeleton is animated, leading to a small reach ability space. I have developed the action
push, that offers a lot more possibilities and that will be explained later (chapter 5).

• Look: This action simply permits to define a direction for which the head of the
actor should look at. This action is often used, as a coherent position of the head is very
significant in order to achieve natural and convincing movements.

• Keyframe playing: This action simply applies a pre-defined motion to the actors
skeleton. Such motions are mainly obtained from Motion Capture sessions. Although a
wide repertory of keyframes is available in the lab with realistic movements, these
movements are not parameterized, and thus cannot be adapted, for example, to be
synchronized with object movements. Keyframes often generate the most natural looking
animation, but precise control and modification of the movements is not always possible.

For an overview of these actions and many other actions from AgentLib, see
[Emering 1999]. AgentLib also uses a specific library to display a skin representation of
the actor’s skeleton, with real time skin deformation. This library is called DodyLib, and

 - 30 -

the techniques involved are described in [Thalmann 1996]. Faces are not deformed from
skeleton postures, and a special module FaceLib [Kalra 1992] is available specifically to
perform facial animation. Figure 2.9 presents a simplified diagram with the main
dependencies among the described libraries.

Figure 2.9 – The modules/libraries used to develop the applications proposed in this
thesis. The arrows represent the main dependences between the modules.

2.6 A More Precise Overview of This Thesis

As already exposed, simulation in virtual environments is a very powerful
approach that can save money, time, and lead to enhancements in the simulated subjects.
Although many issues are still to be solved, existing technologies are already successfully
used for many applications.

In this thesis, I address the specific issue of actor-object interaction in virtual
environments, and propose :

• An optimized data structure called star-vertex, for the representation of BRep
models, specifically designed to offer adjacency relations in constant time with a low
storage space requirement. This is the topic of the next chapter. At a first glance, it may
appear that this proposed structure is out of the theme of this thesis. However, besides the
interesting characteristics of the structure, it should be remembered that geometric
description of objects is the sustaining layer of computer graphics systems (see figure
2.4).

• A feature modeling approach to include pre-defined interaction plans within the
object representation. Objects modeled with this approach are called smart objects, and
the modeler somod (from: smart object modeler) was developed in order to model smart

FaceLib

DodyLib

SceneLib

BodyLib InvKinLib

WalkLib

Facial
Expressions

Motion Blending

Perception
Module

Look, Walk, Reach, etc

AgentLib

 - 31 -

objects using graphical programming techniques. The concepts involved and the
implementation issues of somod are exposed in chapter 4.

• Specific solutions to animate an actor in order to interpret interaction plans.
These solutions involve the control of the primitive actions of AgentLib, and also the
development of the specific primitive action push based on inverse kinematics. Such
issues, among others, are discussed in chapter 5.

• The agent-based simulation environment ACE (from: Agents Common
Environment), with the built-in capability of easy control of actor-object interactions. In
ACE, actors and objects are considered as agents, and interaction plans are their
communication language. ACE is described in chapter 6, and the built-in approach for
direct user interaction with smart objects using virtual reality devices is the topic of
chapter 7.

All the proposed issues are introduced from the computer graphics point of view,
and they are proposed as behavioral animation techniques for interactive virtual reality
systems.

This thesis does not propose any new AI algorithms for reasoning or planning,
any new motion algorithm for the animation of virtual humans, neither any new
algorithm for low level manipulation of objects using VR devices. Instead, I mainly
propose new high level techniques and approaches to integrate existing algorithms, in
order to enable interactive simulation environments to have more capabilities for object
animation and interaction.

2.7 Chapter Conclusion

This chapter introduced the needed background and terminology used along this
thesis, and a general overview of the related work among the various touched areas. At
the end of the chapter, a description of the used programming modules was given, and a
precise description of the work proposed by this thesis was done.

This chapter clearly exposes the proposed work in this thesis, and the organization
of the material presented in the following chapters.

 - 32 -

 - 33 -

3 Star-Vertex Data Structure

This chapter introduces a data structure for describing the geometry of objects,
more specifically, planar meshes. This structure is optimized to offer adjacency relations
of mesh elements in constant time, what is needed by many geometric algorithms.

This structure regards the geometry representation of objects, and can be
associated or not with the smart object behavioral description.

3.1 Introduction

Polyhedral objects, surfaces, or planar meshes, are largely used to describe the
boundary of solids for visualization purposes, virtual reality applications, smart object
interactions, and for many types of calculations, also using finite elements methods.

This chapter introduces a new scalable data structure for describing planar meshes
which, in some specific situations, uses less storage space than others, while still giving
adjacency information in constant time. This data structure is vertex-based and so a
generic traverse element is also described which mimics the common used behavior of an
oriented edge in order to easily access the stored adjacency information.

3.2 Related Work

 There are many data structures proposed in the literature for describing planar
meshes. Among them, those providing adjacency relations in constant time are mainly
edge-based structures.

 The winged-edge structure [Baumgart 1975] pioneered with the concept of storing
adjacency information. Later, traverse operators were introduced, as well as construction
operators, in order to keep the structure always coherent during manipulation. The half-
edge structure [Mäntylä 1988] is an example of a structure that provides such operators.
It is based on lists of all topological elements with many redundant data in order to

 - 34 -

provide direct access to all adjacent elements. A consequence is that the storage space
required and the complexity of the implementation is largely increased.

 Other structures are more compact and rely on properties on the ordering of the
elements of the subdivision [Brisson 1989]. The introduction of the quad-edge data
structure for the two dimensional case [Guibas 1985] opened a series of edge-based
structures featuring a minimal set of construction and traverse operators.

 However, a general-purpose implementation of such structures will still use a lot
of storage space and complex memory managements. If one needs to design and
implement a data structure optimized for some specific usage, many aspects must be
considered. Some elements of the structure may need to reference application-specific
data, as colors in faces of a model or spring parameters in edges of a spring mesh. Often,
for many algorithms, a fast retrieval of the adjacency information is required, as for
instance for mesh simplification and surface subdivision [Zorin 2000]. Note that fast
doesn’t necessarily mean designing a highly redundant structure that provides direct
pointers to all adjacent elements: such structures use a lot of storage space, what can lead
the computer to swap the memory to disk, and thus decreasing drastically algorithms
performance, specially in large virtual environments. Another point to analyze is the
tradeoff between block memory arrays versus dynamically linked lists that are especially
important when the topology of the structure may change dynamically.

 Carefully taking into account these many design choices, specific data structures
can be designed that will increase performance for their target applications. However,
there is somehow a lack of attention in the literature about such specific data structures,
specially regarding efficient ways (in storage and speed terms) to describe and maintain
adjacency relations.

 However, a recent work has exactly focused on some of these aspects proposing
the directed-edge [Campagna 1999] structure. It was designed to describe triangle meshes
(planar subdivisions where all faces are triangles). This assumption permits to encode all
adjacency information efficiently, and to retrieve them in constant time.

 In this chapter, the star-vertex data structure is proposed, that mainly differs from
the others from the fact that it is vertex-based, and not edge-based. This implies some
interesting properties that are mainly related to the number of edges incident to vertices,
and not to the number of edges around a face. In the star-vertex data structure, there is no
difference in storing triangle meshes or general meshes. The simplification of describing
triangles (or three edges around a face) has a dual in the star-vertex data structure that is
to describe meshes where each vertex has exactly three incident edges.

 - 35 -

 Considering the type of the mesh being described, and some possible
simplifications to apply, the star-vertex representation may require a surprisingly low
storage space, while still giving adjacency relations in constant time.

 Another aspect covered in this chapter is the introduction of a traverse element,
which works as an interface layer to access the data stored in the structure. The traverse
element mimics the behavior of an oriented edge, which is the most usual way to retrieve
adjacency relations.

3.3 Star-Vertex Data Structure

Among the data structures already cited in the introduction, the one requiring less
storage space and also storing adjacency information is currently the directed-edge. This
structure is proposed in three different levels: full, medium, or small. These levels give
different tradeoffs between explicit storage of adjacency information versus storage space
requirements. The small directed-edge is the one that requires less storage space and,
although adjacency information is not explicitly stored, it is retrieved in constant time
with few elementary operations. This small version takes 32 bytes per triangle
[Campagna 1999] to store a triangle mesh. Along this paper, when we refer to the
directed-edge data structure, we are referring to the small one, which gives the more
compact space representation.

 Actually, if one needs to use a data structure with very low storage space
requirements, the only option is to not include adjacency information. The most popular
mesh representation scheme that doesn’t include adjacency information is based on
arrays of vertices coordinates and vertices indices forming sequentially the faces of the
mesh. Such kind of structure has been called the shared-vertex representation [Campagna
1999] and a simple implementation can be done as follows:

 struct Vertex
 { float x, z, y; // vertex coordinates
 };

 struct SharedVertexMesh
 { array<Vertex> vertices; // all vertices of the mesh
 array<int> faces; // vertices indices of all faces
 };

 Usually, when applied to meshes with arbitrary faces, each time a face is
completed in the face array, a -1 value is placed as a mark. For the specific case of
triangle meshes, this mark is not needed and a direct access to any triangle is possible, as
each face will have exactly three indices referencing its three vertices.

 - 36 -

The Euler’s formula [Foley 1992] says that V-E+F=2 for a manifold general
mesh, and also that F≈2V (F=2V-4) if faces are all triangles. In this case, if a triangle
mesh is composed of n vertices and m triangles, the shared-vertex representation of a
triangle mesh requires 3⋅4⋅n=12n bytes for the vertices coordinates, and 3⋅4⋅m=12m for
the triangles indices, assuming four-bytes integer and float types. This results in
12n+12m≈18m, as m≈2n. This mark of 18 bytes per triangle has been considered a lower
limit to store triangle meshes.

 When the shared vertex representation is used for general meshes (not triangle
ones) the m≈2n property is lost, and so a direct comparison only in terms of bytes per
face is no more possible. However, if the general shared vertex structure is used to
describe a triangle mesh, then the faces indices array will use 4⋅4⋅m bytes, in order to
include the –1 mark after each triangle. This results in 12n+16m≈22m, that is 22 bytes per
triangle.

 The proposed star-vertex structure is depicted in figure 3.1. It is a vertex-based
structure that keeps, for each vertex v of the mesh: its 3 float coordinates, pointers to all
neighbor vertices of v, and an index that says, for each neighbor v’ of v, which is the
neighbor pointer of v’ that points to the vertex v’’ so that v, v’, and v’’ are in the same
face. This index is then used to retrieve in constant time all the vertices around a face.

Figure 3.1 - Connectivity Diagram of the Star-vertex Structure.

 Figure 3.1 depicts the used pointers and indices. The dashed arrows v0n, v1n, and
v2n represent the pointers that are identified by the indices. The letter n stands for the next
vertex around the face. The usage of such indices will be clearer in the example explained
later with figure 3.2 and table 3.1.

There is a design choice when implementing this structure among the use of
pointers for direct memory access, or the use of integers as indices to positions in a user-

v1

v0

v2

v0n

v1n
v2n

F

 - 37 -

maintained array. A hybrid approach was implemented and tested where the design goal
was the simplicity of implementation and easy comparison with other structures. This
implementation was done in the following way:

 struct Neighbor
 { Vertex *vtx; // pointer to the neighbor vertex
 int nxt; // to find the next vertex in the face
 };

 struct Vertex
 { float x, y, z; // vertex coordinates
 int num_nb; // number of neighbors
 Neighbor *nb; // pointer to the list of neighbors
 };

 struct StarVertexMesh
 { array<Vertex> vertices; // all vertices of the mesh
 };

 As an example, consider the planar mesh showed in figure 3.2. This mesh is
represented in the star-vertex structure in table 3.1. Note that in the table, vertices
pointers were converted to indices. The third column encodes the neighborhood
information. For example, vertex v0 has the neighborhood list { (1,3), (2,2), (5,1), (4,2) }.
The first element of each pair of the list points to a neighbor vertex, in a
counterclockwise ordering. In this way we have explicitly stored the ordered list of
neighbors of v0, that is: { v1, v2, v5, v4 }.

 To traverse the vertices around a face, one of its vertices is chosen for starting, as
for instance, v0. Because of the implicit counterclockwise ordering, to traverse the face
{v0, v1, v2} the edge to consider is {v0, v1} which has v0 as its first vertex. Since the first
pair (1,3) of the neighborhood list of v0 is the one that points to v1, the index 3 is taken
that tells which pair in the neighborhood of v1 is the one to continue the traverse. The pair
with index 3 of v1 is (2,0) (note that indices start from 0). Continuing with this process,
the next obtained pair is (0,0) of v2, which will then come back to the initial pair (1,3). In
this way all vertices and edges around the face {v0, v1, v2} were identified, in an ordered
way, by traversing sequentially the pairs: (1,3), (2,0), (0,0). Note also that the boundary
{v0, v2, v3, v1, v4, v5} is considered to be a face but will be traversed clockwise, as it is a
back face.

This example shows how are encoded ordered lists of: vertices connected to a
given vertex, and vertices around a face. With these lists, all local adjacency relations are
retrievable in constant time, by only performing some basic operations with indices and
pointers. In the next section, an easier way to retrieve such adjacency relations is
presented by introducing a traverse element.

 - 38 -

Figure 3.2 - A planar mesh example.

(x,y,z) num_nb nb - list of neighbors

v0 4 (1,3), (2,2), (5,1), (4,2)
v1 4 (0,3), (4,1), (3,1), (2,0)
v2 3 (0,0), (1,2), (3,0)
v3 2 (1,1), (2,1)
v4 3 (0,2), (5,0), (1,0)
v5 2 (0,1), (4,0)

Table 3.1 – Mesh of figure 3.2 in the star-vertex representation.

 For the star-vertex structure, there is no difference between dealing with triangle
meshes or general meshes. As it is vertex based, the number of edges around a face does
not directly change the storage space of the structure. However, as a duality effect, the
number of edges around a vertex must be considered. Let v be a vertex of the mesh, then,
we’ll consider that the degree of v is equal to the number of edges that are incident to v.
Let’s now define k as the mean of all vertices degrees in the mesh: k = (∑degree(v)) / n.

 It is possible to say that a mesh represented by the star-vertex structure will
occupy 4⋅5⋅n bytes for the vertex structure, plus 4⋅2⋅k⋅n bytes for the list of neighbors. For
comparison purposes, it is assumed that the structure is being applied to a triangle mesh,
so that the m≈2n property can be used. The whole structure will then take (4⋅5 + 4⋅2⋅k)n ≈
10+4k bytes per triangle.

 The determination of the k parameter is needed in order to compare with other
structures. This parameter is directly related to how the mesh was created. For example,
for meshes generated from parametric surfaces, as NURBS [Foley 1992], discretization
algorithms commonly generate meshes composed of quadrilateral faces, giving k=4. And
when these meshes are converted to triangulations, diagonals are created in the faces and
the final mesh has k=6.

 The case which gives the minimal storage space is when k=3. Such kind of
meshes are not very popular mainly because most used structures are edge-based or face-

v0 v2

v1

v3

v4

v5

 - 39 -

based, and thus no attention is given to the generated vertex degree. However, meshes
with k=3 have good properties, and methods exist to generate them [Delingette 94].

 A cube, a cylinder and a tetrahedron are examples of objects that are often
represented with a k=3 mesh. However, for some objects it is not possible to have an
accurate representation with k=3. One example is the polyhedral approximation of a cone
with a polygonal base of b vertices. All vertices in the cone base have degree 3, but the
peak will have degree b, resulting k = (3b+b)/(b+1), which tends to k=4 for large values
of b.

 In most common cases, models have their meshes with a k varying from 4 to 6.
Figure 4 gives an idea of the aspect of meshes with k=3, k=4, and k=6.

Figure 3.3 – Some Meshes with Different Vertex Degrees.

 The star-vertex structure will occupy approximately 22, 26, 30, or 34 bytes per
triangle when describing a triangle mesh with k equal to 3, 4, 5, or 6, respectively. This
shows that the required storage space can be surprisingly low for a structure that still
maintain adjacency information, and that is not constrained to triangular faces.

 In the next section, a method to easily retrieve the adjacency information encoded
in the structure with a traverse element is explained. Section 3.5 shows ways to encode
even better the adjacency information for some specific cases and then gives a complete
comparison table between the star-vertex structure, the directed-edge and the shared-
vertex.

3.4 Traverse Element

 Nearly all commercial graphical libraries use data structures similar to the shared-
vertex representation. A good example is the so called IndexedFaceSet node that exists in
many scene graph implementations, as for instance OpenInventor and Cosmo3D, two
popular libraries developed by Silicon Graphics [SGI]. Mainly because of the simplicity
of usage, but also because the main concerns are just to display rigid objects. But then,

k = 3 k = 4 k = 6

 - 40 -

whenever some mesh algorithm needs adjacency relations to run efficiently, a
representation conversion is required.

 Unfortunately, such conversions are indeed needed. The shared-vertex
representation is a very low storage space solution for rigid objects, which is important
when working with large real time environments that quickly slow down performance
when memory starts to swap to disk.

 However, the need of objects with a changing shape is growing, to allow, for
example, smooth resolution changing in run time, local collision detection queries, and
deformable spring meshes. Such algorithms often require a consistent data structure able
to give and update adjacency relations in constant time. The star-vertex structure is a
good candidate to overcome such difficulties. But still some interface layer to safely
access and modify the structure is needed.

 The proposed solution is to define a traverse element, or travel, that gives a
common interface to access adjacency relations that can be implemented, using object-
oriented techniques, to behave in the same way for any kind of data structure.

 A travel is a structure-independent generalization of concepts from edge-based
structures, as the edge-use [Weiler 1985], the dart [Lienhardt 1989], the half-edge
[Mäntylä 1988], and the iterators defined in a recent C++ implementation [Kettner 1998].
 Consider the mesh described in figure 3.4. This mesh is the same as in figure 3.2,
and so its representation is also given by the table 3.1. In figure 3.4, a travel is graphically
represented as an oriented edge, as the travel t. Note that each travel will be always
adjacent to one, and only one, vertex, edge and face of the mesh. For example, travel t is
adjacent to vertex v0, to edge { v0, v1 }, and to face { v0, v1, v2 }.

Figure 3.4 – Some traverse elements graphically represented.

 Two operators are defined that can be applied to t: the nxt and the rot operators.
The nxt operator, when applied to t, will return the travel that is adjacent to the next edge
and vertex around the face that is adjacent to t. This operator permits to traverse the edges
around a face. For example, in figure 3.4, t.nxt ≡ t1, t1.nxt ≡ t2, and t.nxt.nxt.nxt ≡ t.

v0

v1

v2

v3

v4

v5

t2

t1

s

t’

t

 - 41 -

 Similarly, the rot operator, when applied to t, will return the other travel that is
adjacent to the next edge and face around the vertex that is adjacent to t. This operator
gives the possibility to “rotate” around a given vertex. For example, in figure 3, we have
that t.rot ≡ t’, and t’.rot.rot.rot ≡ t.

 With these two operators defined the operator sym can be defined, which gives the
symmetrical travel: t.sym ≡ t.nxt.rot ≡ s. And also their inverses: t.sym-1 ≡ t.sym, t.nxt-1 ≡
t.rot.sym, and t.rot-1 ≡ t.sym.nxt.

As the traverse element behaves exactly as an oriented edge, the reader can refer
to the half-edge structure [Mäntylä 1988] for a detailed explanation of a very similar
scheme of traverse operators.

Once the traverse element is equipped with operators to retrieve their current
adjacent elements, it is possible to traverse freely through the structure, querying all
adjacent relations. The following code indicates how to implement such a traverse
element for the star-vertex structure, using a C++ notation:

 class Travel
 { Vertex *v; // points the adjacent vertex of the travel
 int r; // indicates the adjacent edge of the travel

 // some operators and methods :
 Travel (Vertex *vtx, int rot) { v=vtx; r=rot; }
 Travel rot () { return Travel(v,(++r)%v->num_nb); }
 Travel nxt () { return Travel(v->nb[r].vtx,v->nb[r].nxt); }
 Travel sym () { return nxt().rot(); }
 float *pnt () { return &(v->x); }
 bool operator == (Travel t) { return v==t.v&&r==t.r; }
 };

 The travel structure keeps a pointer to the current adjacent vertex v, and the index
r. This index defines the pair in the neighborhood array of v which has vn, the vertex
defining the current adjacent edge { v, vn } of the travel. Because of the implicitly stored
counterclockwise order, the adjacent face is also defined. As an example, it is easy to
verify that: Travel(v0,0).nxt() ≡ Travel(v1,3), and that Travel(v0,0).rot ≡ Travel(v0,1).

One consequence of using such a vertex-based structure is that faces are not
explicitly stored. In this way, some algorithm to retrieve the faces is needed, for example,
to render the represented mesh using a polygon based renderer as the OpenGL library.
Such algorithms often need some mechanism to mark the traverse elements already
visited. The following code shows how it is possible to use the nxt index of the Neighbor
structure to mark elements, by adding two methods to the Travel structure:

 void Travel::mark () { v->nb[r].nxt *= -1; }
 bool Travel::marked () { return v->nb[r].nxt<0; }

 - 42 -

 The mark is stored by setting the index to a negative value. Note however, that
this implies to no more use the 0 index, and to pay attention to always consider the
absolute value of the index. The following code gives an example of an algorithm that
sends the faces of a mesh to an OpenGL renderer. It starts with any initial face, and then,
by exploiting faces adjacency, the other faces are rendered:

 render (const StarVertexMesh& m)
 {
 // initializes a stack with some travel:
 array<Travel> stack;
 stack.push(Travel(m.vertices[0],0));

 while (!stack.empty())
 { Travel ti = stack.pop();
 if (ti.marked()) continue;
 Travel t=ti;
 glBegin (GL_POLYGON);
 do { glVertex3fv (t.pnt());
 if (!t.marked()) t.mark();
 stack.push (t.sym());
 t = t.nxt();
 } while (t!=ti);
 glEnd ();
 }

Note that all faces of the mesh are sent to the renderer. In the case of a planar
mesh like the one showed in Figure 3.2, the border of the polygon is also sent, but it will
not be drawn as it will be considered a back-face because of the consistent orientations.
Note also that faces need to be convex in order to be correctly handled by OpenGL.

Some strategies can be taken in order to avoid unmarking all previously marked
traverse elements after each time such an algorithm is called. For example, each time an
algorithm starts, it can determine if elements are considered marked when the used
indices have a negative or a positive value. In this way, algorithms like the given render
procedure can be repeatedly called, by alternating the indices markers to have positive or
negative values. However, with this technique, it is not allowed to have an algorithm
leaving the mesh “half-marked”.

The fact that faces are not explicitly stored would not slow down rendering,
because nearly all systems work with optimized display lists of the polygons to render.
Therefore, such traversal of faces would be done to update display lists only when the
model topology changed. Moreover, the generation of display lists can make use of the
encoded adjacent relations, to generate optimized “connected” lists, as for example, the
triangle or quad strip schemes of OpenGL.

 - 43 -

3.5 Analysis and Comparison

From section 3.2, the star-vertex structure takes approximately 10+4k bytes per
triangle, considering that the mesh represented is composed of triangular faces. It is still
possible to lower this storage space in some specific cases, and two simplifications for
the given “general” star-vertex structure will be shown.

A first simplification can be done when the mesh to represent has a constant
vertex degree for all vertices of the mesh. This implies that the pointer to an array of
variable length is no more needed, and the same for the number of neighbors per each
vertex. Doing so, 1 integer and 1 pointer per vertex can be economized, making an
economy of 8 bytes per vertex, or 4 bytes per triangular face. The result is 6+4k bytes per
triangle for this “uniform” star-vertex, that can only represent meshes with constant
vertex degree.

Another type of simplification that reduces even more the required storage space
can be done, but now loosing the constant time execution of the nxt operator. This
simplification is done simply by taking out the nxt index of the Neighbor structure. This
index is used to explicitly store the result of the nxt operator. If this index is no more
used, then the nxt operator will take time O(dmax), where dmax is the maximum vertex
degree encountered in the mesh being represented. This happens because a search among
all edges incident to the neighbor vertex will be done, to find the one that correctly
produces the result of the nxt operator. The implementation of the nxt operator would
then look as the following :

Travel Travel::nxt ()
 { Travel t (v->nb[r].vtx,0);
 while (t.rot().v!=v) t=t.rot();
 return t;
 }

In this compact version, the structure will occupy 4⋅5⋅n bytes for the vertex
structure, plus 4⋅k⋅n bytes for the list of neighbors, ending up with (4⋅5 + 4⋅k)n ≈ 10+2k
bytes per triangle. It is also possible to have the structure with both the compact and the
uniform simplifications, leading us to (4⋅3 + 4⋅k)n bytes = 6+2k bytes per triangle.

Note that in cases where memory usage is an issue, the compact versions of the
structure will achieve very low storage space requirements. And the fact that O(dmax) time
is required by the nxt operator can be acceptable if the mesh has low degree vertices.

Finally, table 2 shows a comparison of the data structures. The time required for
the determination of the rot and nxt operators are listed. When these two operators are
provided in constant time, all adjacent relations can be also retrieved in constant time.

 - 44 -

Note also that the shared-vertex representation can give in constant time the nxt
operator only if the structure guarantees coherent orderings, providing that the vertices
indices of each face are sequentially stored. However, the rot operator requires some
global search in the structure.

In order to be able to compare these structures, it was considered that they are
representing triangle meshes. In this way, the m≈2n property was used to achieve the
bytes per triangles number. However not all structures are limited to represent triangle
meshes, as shown in the mesh type column.

As expected, the proposed structure can achieve very low memory requirements
when k is small, even without counting the possible uniform or compact versions. For
meshes with k greater than 5.5, the star-vertex structure will require more memory than
the directed-edge, however, without being restricted to triangular faces.

bytes /∆
data structure

rot
operator

time

nxt
operator

time

mesh type

Any k k=3 k=4 k=5 k=6
general shared-vertex - O(1) - 22 22 22 22 22
triangle shared-vertex - O(1) ∆ 18 18 18 18 18

small directed-edge O(1) O(1) ∆ 32 32 32 32 32
star-vertex O(1) O(1) - 10+4k 22 26 30 34

uniform star-vertex O(1) O(1) deg cte 6+4k 18 22 26 30
compact star-vertex O(1) O(dmax) - 10+2k 16 18 20 22
minimal star-vertex O(1) O(dmax) deg cte 6+2k 12 14 16 18

Table 3.2 – Comparison of the several data structures. In the rot operator column, “-”
indicates that its computation is not possible with only a local search in the data
structure. In the mesh type column, “-” indicates that there are no restrictions on the
mesh to be represented. Variables k and dmax represent, respectively, the mean and the
maximum vertex degree of the mesh.

3.6 Two Examples of Applications

The star-vertex structure is presented in this thesis like an isolated result due to
the very interesting characteristics achieved. Currently, it is being integrated for many
different purposes in our graphical simulation softwares, as for instance, for research on
multi resolution of deformable bodies and on path planning. Figures 3.5 and 3.6
exemplify some first results obtained by using a similar structure to the star-vertex, which
I have previously developed, and which I am now porting to the star-vertex optimized
format.

 - 45 -

Figure 3.5 – An example of a deformable surface using multi-resolution techniques to
adapt itself only around the region having the contact with the falling ball. In order to
efficiently refine the surface, constant time access of adjacent elements plays a key
role. The dynamical system used is based on a standard spring-mass system.

Figure 3.6 - The image illustrates the computation of a collision-free path among
obstacles. An exact cell decomposition method is used, based on a constrained
Delaunay triangulation. Once we have access to all adjacency information, a free path
is easily generated just by walking through adjacent free faces.

3.7 Chapter Conclusion

A new scalable data structure was presented for storing planar meshes, which has
interesting properties that can be exploited in order to obtain very low storage space
usage, still obtaining adjacency relations in constant time.

The structure is not constrained to triangular faces and stores adjacency
information in a vertex-based organization. This implies that the storage space required is
direct proportional to the mesh vertices’ degrees (number of edges incident to vertices).
When these degrees are small, lower memory requirements are achieved, comparing to
other structures. Models with low vertices degree are commonly used, and algorithms can
be designed to optimize general meshes.

 - 46 -

A traverse element was also shown serving as a high level interface to retrieve the
encoded adjacency information. Such element hides specific optimizations or
simplifications on the structure implementation, and can be also used as a parameter to
eventual topological operators. Such architecture can even permit some self-adaptability
of the data structure during run time, according to the way the structure is being used.

Such properties make the star-vertex structure a good candidate to be
implemented as a standard node in a scene-graph library for real time virtual environment
simulations. It allows safe access to adjacency relations without the need of
representation conversions, while maintaining low storage space requirements.

.

 - 47 -

4 Modeling Smart Objects

This chapter presents the feature modeling approach of interactive objects
proposed in this dissertation and the smart object description.

The first sections start by describing the concept of interaction features, together
with their classification and definition. Then, the developed smart object modeler
(somod) is presented, which is a system incorporating the proposed approach to model
the functionality and interactivity of objects. Some examples of modeled objects are
shown and explained.

4.1 Introduction

The necessity to model actor-object interactions appear in most applications of
computer animation and simulation. Such applications encompass several domains, as for
example: virtual autonomous agents in virtual environments, human factors analysis,
training, education, virtual prototyping, and simulation-based design. A good overview of
such areas is presented by [Badler 1997].

Commonly, simulation systems approach actor-object interactions by
programming them specifically for each case. Such approach is simple and direct, but
does not solve the problem for a wide range of cases.

Another approach, not yet solved, is to use recognition, planning, reasoning and
learning techniques in order to decide and determine the many manipulation variables
during an actor-object interaction. The actor’s knowledge is then used to solve all
possible interactions with an object. Moreover, this top-down AI approach should also
address the problem of interaction with more complex machines with some internal
functionality, in which case information regarding the object functionality must be
provided.

Consider the simple example of opening a door: the rotation movement of the
door must be provided a priori. Following the top-down AI approach, all other actions
should be planned by the agent’s knowledge: walking to reach the door, searching for the

 - 48 -

knob, deciding which hand to use, moving body limbs to reach the knob, deciding which
hand posture to use, grasping, turning the knob, and finally opening the door. This simple
example illustrates how complex it can be to perform a simple agent-object interaction
task.

To overcome such difficulties, I propose a bottom-up approach that is to include
within the object description, more useful information than only intrinsic object
properties. Using feature modeling concepts, it is possible to identify all types of
interaction features in a given object, and include this information as part of the object
description.

A graphical interface program was developed to permit the user to interactively
specify all different features in the object, defining its functionality, its available
interactions, etc. Objects modeled with their interaction features description, are called as
smart objects. The developed smart object modeler application is called somod.

The adjective smart has been widely used in different contexts. For instance,
[Russel 1995] and [Pentland 1995] discuss interactive spaces instrumented with cameras
and microphones to perform audio-visual interpretation of human users. This capacity of
interpretation made them smart spaces.

In the scope of this thesis, an object is called smart when it has the ability to
describe in details its functionality and its possible interactions, being also able to give all
the expected low-level manipulation actions. This can be seen as a mid term classification
between reactive and intelligent behaviors. A smart object does have reactive behaviors,
but more than that, it is also able to provide the expected behaviors from its “users”, so
that this extra capability makes it to achieve the quality of smart.

Note that the term “user of an object” is used to refer to an autonomous actor, an
avatar, or a real person immersed in the VE with VR devices. In this last case, the user is
performing a direct interaction with the object. Although this thesis is mainly concerned
with actor-object interactions, some experiments about the direct interaction with smart
objects is done (chapter 7), so that the term “user” is used to refer to any kind of users.

Different simulation applications can then retrieve useful information from a
smart object to accomplish desired interaction tasks. The main idea is to provide smart
objects with a maximum of information to attend different possible applications for the
object. A parallel with the object oriented programming paradigm can be made, in the
sense that each object encapsulates data and provides methods for data access. There is a
huge literature about Object Oriented Design; an introduction to the theme can be found
in [Booch 1991].

 - 49 -

Applications using smart objects will have their own specific smart object
reasoning module, in order to retrieve only the applicable object features for their specific
needs. These concepts are published in two previous works [Kallmann 1998] [Kallmann
1999a], and will be detailed in the following sections.

4.2 Related Work

Object interaction in virtual environments is an active topic and many approaches
are available in the literature. However, in most cases, the concerned topic is the direct
interaction between the user and the environment [Hand 1997].

Suppliers of CAD systems are starting to integrate some simulation parameters in
their models [Berta 1999]. The knowledgeware extension of the [Catia] system can
describe characteristics like costs, temperature, pressure, inertia, volume, wetted area,
surface finish, formulas, link to other parameters, etc; but still no specific considerations
are done to define objects functionality or interactivity.

Actor-object interaction techniques were first specifically addressed in a simulator
based on natural language instructions using an object specific reasoning (OSR) module
[Levinson 1994a] [Levinson 1994b]. The OSR keeps a relational table informing
geometric and functional classification of objects, in order to help the interpretation of
natural language instructions. With such information, it is possible to interpret and
expand given text instructions [Geib 1994a] [Geib 1994b].

Some interaction information is also kept by the OSR module: for each object
graspable site, the appropriate hand shape and grasp approach direction. This set of
information is sufficient to decide and perform grasping tasks, but no considerations are
done for the interaction with more complex objects. In particular, [Webber 1995] identify
the limited perception of actors as a main limitation to correctly interpret text
instructions, resulting in a poor knowledge construction. Smart objects can overcome
such difficulties.

The smart object description is much more complex, based on interaction plans,
permitting to synchronize movements of object parts with the actor’s hand, and to model
the functionality of objects.

Interactive plans are defined using a specific simple programming language. In
another direction, some works have been done in order to link language to modeling
[Paoluzzi 1995], and towards a definition of a standard and data structure-independent
interface to model geometric objects [Bowyer 1995].

 - 50 -

A key concept in smart objects is that they contain their own semantic and
interaction information. A recent game [TheSims] also use this object-oriented approach
to describe interaction with objects. In this game, the user creates and coordinates a
family of actors and their day life activities, which include some interaction with objects.
Another “object oriented system” is proposed by [Okada 1999], where objects can be
composed with many boxes which have input and output connectors that can be linked to
achieve different functionalities. However, no specific considerations regarding actor-
object interactions are presented.

A typical application for smart objects is to train complex machines usage in a
virtual environment. Although many simulation systems are proposed in the literature
(for instance: [Luckas 1997]), no special considerations are done regarding object
interaction. An interesting system is proposed by [Johnson 1997], where a virtual human
agent teaches users how to correctly operate machines in many situations in an interactive
application. His focus is on the system description and no specific techniques to model
actor-object interactions are presented.

None top-down AI approaches were found specifically focusing the problem of
solving general actor-object interactions. Most of the concerns are related to sub-
problems, as for the specific problem of grasping. For instance, from the robotics area, a
classification of hand configurations for grasping is proposed by [Cutkosky 1989]. Also
[Huang 1995] proposes an algorithm for the autonomous actor’s decision of manipulation
details (as the hand shape to use) for grasping.

From the robotics domain, planning algorithms are able to define collision-free
paths for articulated structures [Koga 1994] [Simeon 2000]. Although realistic results can
be obtained, the computational cost today is too high for interactive simulations.

Such algorithms focus on specific sub-problems, and an integration of all of them
in a single system is a challenge. However, some of them can be integrated and used in
an animation system based on smart objects. For instance, a specific smart object
reasoning module can refuse a proposed hand shape for a manipulation, and determine a
more convenient one, according to its own reasoning processes.

4.3 Feature Modeling of Interactive Objects

Feature modeling is an expanding topic in the engineering field [Barwick 1993].
The word feature conjures up different ideas when presented to people from different
backgrounds. A simple general definition, suitable for our purposes, is “a feature is a
region of interest on the surface of a part” [Pratt 1985].

 - 51 -

The main difficulty here is that, in trying to be general enough to cover all
reasonable possibilities for a feature, such a definition fails to clarify things sufficiently to
give a good mental picture.

From the engineering point of view, it is possible to classify features in three main
areas: functional features, design features and manufacturing features [Barwick 1993]. As
we progress from functional features through design features to manufacturing features,
the quality of detail that must be supplied or deduced increases markedly. In the other
hand, the utility of the feature definitions to the target application decreases. For example,
manufacturing features of a piece may be hard to describe and have little importance
while really using the piece. A similar compromise arises in the smart object case. This
situation is depicted in figure 4.1 and will be explained later.

A huge literature is available for the feature modeling technique in the scope of
engineering. A good coverage of the theme is done by [Shah 1995].

4.3.1 Interaction Features

In the smart object description, a new class of features for simulation purposes is
proposed: interaction features. In such context, a more precise idea of a feature can be
given as follows: all parts, movements and descriptions of an object that have some
important role when interacting with an actor.

For example, not only buttons, drawers and doors are considered as interaction
features in an object, but also their movements, purposes, manipulation details, etc.

Interaction features can be grouped in four different classes:

• Intrinsic object properties: properties that are part of the object design, for
example: the movement description of its moving parts, physical properties such as
weight and center of mass, and also a text description for identifying general objects
purpose and the design intent.

• Interaction information: useful to aid an actor to perform each possible
interaction with the object. For example: the identification of interaction parts (like a
knob or a button), specific manipulation information (hand shape, approach direction),
suitable actor positioning, description of object movements that affect the actor’s position
(as for a lift), etc.

• Object behavior: to describe the reaction of the object for each performed
interaction. An object can have various different behaviors, which may or may not be
available, depending on its state. For example, a printer object will have the “print”
behavior available only if its internal state variable “power on” is true. Describing
object’s behaviors is the same as defining the overall object functionality.

 - 52 -

• Expected actor behavior: associated with each object behavior, it is useful to
have a description of some expected actor behaviors in order to accomplish the
interaction. For example, before opening a drawer, the actor is expected to be in a
suitable position so that the drawer will not collide with the actor when opening. Such
suitable position is then proposed to the actor during the interaction.

This classification covers the needed interaction features to simulate common
actor-object interactions. Still, many design choices appear when trying to specify in
details each needed interaction feature.

The most difficult features to specify are those relative to behaviors. Behavioral
features are herein specified using pre-defined plans composed with primitive behavioral
instructions. This has shown to be the most straightforward approach because then, to
perform an interaction, the actor will only need to “know” how to interpret such
interaction plans.

In the smart object description, a total of 8 interaction features were identified,
with the intention to make the most simple classification possible. These interaction
features are described in table 4.1.

Feature Class Data Contained

Descriptions Object Property Contains text explanations about the object, organized by
different types: semantic properties, purposes, design intent, and
any general information.

Parts Object Property Describes the BRep of each component part of the object, their
hierarchy, and other information as mass, center of mass, and a
positioning matrix in relation to the object’s skeleton root.

Actions Object Property Actions are specially used to define movements, but also to
define any other changes that the object may undertake, as color
changing, texture, etc. Actions are defined independently of any
parts.

Commands Interaction Info. Commands are used to parameterize and associate to a specific
part the defined actions. For example, the translation movement
of a drawer is an intrinsic property of the object and is modeled
as an action. The commands “open” and “close” will then permit
to parameterize the translation according to each interaction.

Positions Interaction Info. General positions needed to specify interactions are defined here
relatively to the object’s skeleton root. Such positions are then
referenced from the behavioral plans to suggest for the actors
suitable positions to be used during interactions.

Gestures Interaction Info. Gestures are considered to be any movement to suggest to an
actor. Hand shapes and locations for grasping and manipulation
are defined here, also parameters to specify the actor to sit, or to
apply any pre-recorded motion are defined here and later
referenced from the behavioral plans.

 - 53 -

Variables Object Behavior Variables are generally used in the behavioral plans, but specially
used to define the state of the object. The state of an object is a
key information in the description of the object’s functionality,
which is done with the behavioral plans.

Behaviors Obj./Actor Behavior Behaviors are defined with plans composed with primitive
instructions. Such plans can check or change the states of the
object, trigger commands and gestures, call other plans, etc; and
specify both object behaviors and expected actors’ behaviors.
These plans form a simple scripting language that is used for the
actor-object communication during interactions.

Table 4.1 – The eight types of interaction features that are used in the smart object
description.

4.3.2 Interpreting Interaction Features

Once a smart object is modeled, a simulation system will be able to load it and
animate it in the VE. For this, the simulator will need to implement a smart object
reasoning module, that will correctly interpret the behavioral plans to perform
interactions. For example, a VR application in which the user wears a virtual glove to
press a button of a smart object will not make the same use of proposed hand shapes.

There is a trade-off when choosing which features to be considered in an
application. As shown in figure 4.1, when taking into account the full set of object
features, less reasoning computation is needed, but less general results are obtained. As
an example, minimum computation is needed to have an actor passing through a door
following strictly a proposed path to walk. However, such solution would not be general
in the sense that all agents would pass the door using exactly the same path. To achieve
better results, external parameters should also take effect, as for example, the current
actor emotional state.

Figure 4.1 – The choice of which interaction features to take into account is directly
related to many implementation issues in the simulation system.

Note that a realistic result is a context dependent notion. For example pre-defined
paths and hand shapes can make an actor to manipulate an object very realistically.
However, in a context where many actors are manipulating such objects exactly in the
same way, the overall result is not realistic.

Interaction Info.

Less Computation, Easier Usage - Less General, Less Adaptability

Agent Behaviors Object BehaviorsObject Properties

 - 54 -

Interaction plans form the interface between stored object’s features and the
application specific smart object reasoning. Figure 4.2 illustrates the connection between
the modules. The simulation program requires a desired task to be performed. The
reasoning module will then search for suitable available behaviors in the smart object.
For any selected behavior, the reasoning module follows and executes each instruction of
the behavior plan, retrieving the needed data from the smart object representation.

Figure 4.2 - Diagram showing the connection between the modules of a typical smart
object application. Arrows represent function calls.

When a task to perform becomes more complex, it can be divided into smaller
tasks. This work of dividing a task into sub-tasks can be done in the simulation program
or in the reasoning module. In fact, the logical approach is to leave the reasoning module
only to perform tasks that have a direct interpretation from the Smart Object behaviors.
Then, additional layers of planning modules can be built according to the simulation
program goal.

Another design choice appears while modeling objects with too many potential
interactions. This issue is related to definition of the component parts of a composed
object. In such cases, in order to exercise a greater control over the interactions, it is
possible to model the object as many independent smart objects, each one containing only
basic interactions. For example, to model an actor interacting with a car, the car can be
modeled as a combination of different smart objects: car door, radio, and the car panel. In
this way, the simulation application can explicitly control a sequence of actions like:
opening the car door, entering inside, turning on the radio, and starting the engine, thus
permitting more personalized interactions. On the other hand, if the simulation program is
concerned only with traffic simulation, the way an agent enters the car may not be
important. In this case, a general behavior of entering the car can be encapsulated in a
single smart object car.

Later in this chapter the example of modeling a smart lift is given and two
approaches are shown. In one approach, a main interaction plan “enter” is modeled which
details all steps of taking the lift to go to the other floor. In a second approach, in order to
accomplish the same interaction, a sequence of plans needs to be selected by the
simulator: “press”, “go in”, “go out”, etc.

The smart object approach introduces the following main characteristics in a
simulation system:

Object Reasoning
Module

Ask for
some task

Search suitable
interaction plans

Simulation
Program

Smart
Object

 - 55 -

• Decentralization of the animation control. Object interaction information is
stored in the objects, and can be loaded as plug-ins, so that most object-specific
computation is released from the main animation control.

• Reusability of designed smart objects. Not only by using the same smart object
in different applications, but also to design new objects by merging any desired feature
from previously designed smart objects.

• A simulation-based design is naturally achieved. The designer can take control
of the loop: design, test and re-design. A designed smart object can be easily inserted into
a simulation program, to get feedback for improvements in the design.

4.3.3 Implementation Issues

A library composed of C++ classes has been developed to interpret smart object
plans. A main class SmartObj keeps a list of SmartObjUser classes, which knows how to
correctly interpret each instruction in the plan. The SmartObjUser class is a base class
that interprets all object related instructions, but the user related instructions call pure
virtual methods, which have to be implemented for each specialized type of user. For
instance, different kinds of users can be implemented: an actor, an avatar, interaction with
only a pointing device, or with VR devices.

In the scope of this thesis, three types of users were implemented, inheriting the
SmartObjUser class: the first type simply ignores all user-related instructions, permitting
to animate objects independently. A second type implements the virtual actor user (see
next chapter), and a last type implements a real user wearing a data glove (see chapter 7).

4.4 Somod Description

The somod application was developed specifically to model smart objects. Somod
permits to import BRep models of the component parts of an object, and then specify
interactively all needed interaction features. All the features are defined using a graphical
user interface. Even for the definition of the behavioral plans, a specific dialog box was
designed that guides all possible parameters to specify for each primitive instruction. In
addition, some graphical programming techniques are used in order to graphically specify
plans using a finite state machine graph.

4.4.1 Software Platform

Somod was initially developed based on the Motif user interface library, with
some dependency on AgentLib under SGI with the Irix system. With the evolution of the

 - 56 -

software in the lab, and the tendency to move to PC platforms, somod completely
changed to use platform-independent libraries. The actual version of somod is written in
C++, and uses the Fast and Light Toolkit [FLTK] for the graphical user interface
programming. The FLTK library has shown to be very easy and powerful to use and is
available free of charge for nearly all computer platforms.

As graphics library, OpenInventor is used. OpenInventor is the best available
graphics library for the purpose of high level modeling. The built-in manipulators classes
permit to easily manipulate 3D objects with a 2D mouse as input device. This library is
available from [SGI] and [TGS] for different computer platforms, and some initiatives
exist to propose an open source version of OpenInventor. For instance, [SGI] has released
the source code of OpenInventor to the Linux platform for free, and the same code has
been already adapted to the Microsoft Windows platform.

For the definition of hand shapes in somod, an internal module of DodyLib is
used, which provides the deformation of a hand skin envelope, based on the actual
skeleton joints. This module was developed by Laurent Moccozet [Moccozet 1997].

Somod is currently used only in SGI machines, but due to the platform-
independent nature of its libraries, it can be ported to other computer systems.

4.4.2 Defining Object Properties

The main window of somod is shown in figure 4.3. Features are organized by
type, and for each type, a list of features can be defined. The main window permits to
manage these lists in a unified way. For each feature, the specific parameters can be
edited with the corresponding specialized dialog box. In figure 4.3 the list of parts is
shown. Windows in somod have two colors: the blue ones are those that can work in
parallel, and the yellow ones are dialogs that block all other windows while opened.

Figure 4.3 – The main window of somod, showing a list of interaction features of the
selected type. When Edit is pressed, the specific dialog box to edit the parameters of
the selected feature appears. Menus are used to access extra functionalities.

 - 57 -

An object description dialog contains simple text entries where the user can type
text descriptions. The two main fields used are to describe a semantic name for the
object, and to describe overall object characteristics. These definitions can then be
retrieved by simulators for any kind of processing.

The dialog box to define the parameters for each part is shown in figure 4.4.
Among other parameters, it is possible to specify the geometry files of the part and their
hierarchy (i.e., the skeleton). Also, the positioning of each part can be done interactively
using the OpenInventor manipulators.

The same technique of using manipulators is adopted to define the movement
actions that can be applied to the object. For example to define a translation, the user
select an object’s part and a manipulator, being able to displace the part from its original
position. The transformation movement from the initial position to the user selected
position is then saved as an action. Note that actions are saved independently of parts, so
that they can be later parameterized differently (defining commands) and applied to many
different parts.

Figure 4.4 – Defining the specific parameters of a drawer. The drawer is a part of the
smart object desk, which contains many other parts. The image shows in particular the
positioning of the drawer in relation to the whole object.

4.4.3 Defining Interaction Information

The definition of commands is done with the simple dialog box shown in figure
4.5. Commands fully specify how to apply an action to a part and will be directly
referenced from the behavioral plans whenever a part of the object is required to move.

 - 58 -

Figure 4.5 – The command editor dialog box permits to parameterize actions and to
associate an action to part.

Positions are defined using the dialog box shown in figure 4.6. Positions can be
used for any purpose and can specify also a direction vector. It is possible to set their
position interactively, using the widgets in the dialog box, or directly in the 3D graphical
window using manipulators. Each position (as each feature) is identified with a given
name for later referencing in the interaction plans.

Note that all features that are related to graphical parameters can be defined
interactively, what is important in order to see their location in relation to the object.
Positions are defined in relation to the object skeleton’s root, so that they can be
transformed to the same reference frame of the actor whenever is needed, during the
simulation. Note that smart objects can be loaded and positioned anywhere in the virtual
environment.

Figure 4.6 – Positions can be defined for any purpose. In the image, many different
positions (and orientations) are placed to propose possible places for actors to walk
when arriving from any of the door sides.

Gestures are the most important interaction information. Gestures parameters are
defined in somod and proposed to actors during an interaction. We use the term gesture to
refer to any kind of motion that an actor is able to perform. The most used gesture is to
move the hand towards a position in space in order to press a button (a push movement),

 - 59 -

or to grasp something. The possible parameters for the gesture feature are shown in figure
4.7.

Figure 4.7 – Gestures parameters dialog box. Depending on the action algorithm
chosen, some parameters may be used differently. In the image, the action algorithm
push is selected.

For each gesture, a hand shape, a positioning matrix for the hand, and the desired
action algorithm must be supplied (see figure 4.8). The action algorithm here refers to the
actions of AgentLib. Depending on the selected algorithm, some extra parameters can be
used or not. For example, three main actions are often used: reach, push, and sit.

The used action algorithms depend directly on the capabilities of the animation
system, so that they are configurable using descriptive files. When somod starts, a special
folder is scanned where files define each supported action algorithm in the target
animation system, and also some pre-defined hand shapes. The developed simulation
system (ACE) is based on AgentLib, and is the subject of the chapter 6. AgentLib
provides already the action “reach”. Additionaly, the actions “push” and “sit” where
developed and are the subject of chapter 5.

In short, the action reach will only animate an actor’s arm to put its hand in a
given location. Depending on the state of extra parameters, after the hand has reached the
defined goal, the actor can then take or put an associated part. The push action differs in
two aspects: it is able to animate the whole actor’s body in order to achieve better
postures, and the actor’s hand can then follow a movement of an associated part in order
to simulate the movement of opening, pressing, pushing, etc. The sit action, will define
the actor to sit, using a target position defined as a path to follow. All these actions use
inverse kinematics as the motion motor. Additionally, it is also possible to define a pre-
defined motion to be played as a keyframe.

 - 60 -

Figure 4.8 – The left image shows a hand shape being interactively defined. The right
image shows all used hand shapes being interactively located with manipulators.

4.4.4 Defining Behaviors

As already explained, behaviors are defined using pre-defined plans formed by
primitive instructions. It is difficult to define a closed and sufficient set of instructions to
use. Moreover, a complex script language to describe behaviors is not the goal. The idea
is to keep a simple format with a direct interpretation to serve as guidance for reasoning
algorithms, and which non-programmers can create and test.

A first feature to recognize in an interactive object is its possible states. States are
directly related to the behaviors one wants to model for the object. For instance, a desk
object will typically have a variable state for its drawer which can be assigned two
values: “open”, or “close”. However, depending on the context, it may be needed to
consider another midterm state value. Variables are used to keep the states of the object
and can be freely defined by the user to approach many different situations. Variables are
defined by assigning a name and an initial value, and can be used for many purposes
from the interaction plans.

Interaction plans are defined using a specific dialog box (figure 4.9) which guides
the user through all possible primitive instructions to use. In addition, a help window is
available (figure 4.10) to describe each available instruction.

The following key concepts are used for the definition of interaction plans:

• An interaction plan describes both the behavior of the object and the expected
behavior of its user. Instructions that start with the word “user” are instructions that are
proposed to the user of the object. Examples of some user instructions are: UserGoto,
UserDoGest, UserAttachTo, etc. For a complete list of the available primitive
instructions, see section 10.1 in the appendix.

 - 61 -

• In somod, an interaction plan is also called as a behavior. Many plans (or
behaviors) can be defined and they can call each other, as subroutines. Like
programming, this enables building complex behaviors based on simpler behaviors.

Figure 4.9 – The dialog box used to define interaction plans. Menu-buttons are used to
list all possible instructions to use, and for each instruction, the possible parameters
are listed in additional menu-buttons. Also, each instruction has a built-in help
description that can be automatically shown in the help window (see also figure 4.10).

Figure 4.10 – The help window. A description of each primitive instruction is
available to use during the definition of the interaction plans.

• There are three types of behaviors (or plans): private, object control, and user
selectable. Private behaviors are kept only to be called from other behaviors. An object
control behavior is a plan that is interpreted all the time since the object is loaded in a
virtual environment. This enable to have objects acting like agents, for example sensing
the environment to trigger some other behavior, or to have a continuous motion as for a
ventilator. Object control behaviors cannot have user-related instructions. Finally, user
selectable behaviors are those that can be selected by users, in order to perform a desired
interaction.

• Selectable behaviors can be available or not, depending on the state of specified
variables. For example for a door, one can design two behaviors: to open and to close the
door. However, only one is available at a time depending on the open state of the door.

 - 62 -

The instruction CheckVar is used to control the availability of behaviors and is
exemplified in figures 3.9 and 3.10. When the CheckVar test is false the behavior is not
available for selection (from the simulation system) and also it makes its interpretation to
stop.

The behavior showed in figure 4.9 uses the state_passing variable to avoid closing
the door while agents are still passing. Some instructions were specifically designed to
cope with more than one actor interacting with the object at the same time. For instance,
the UserGetClosest instruction is used to detect in which side of the door the actor is, so
that the correct positions are then given to make it pass the door. The full file description
of this automatic door example, coping with many actors at a same time, is shown in the
section 10.2.1 (appendix). Figure 4.11 shows two agents passing through the door.

Figure 4.11 – Two actors passing through an automatic door. The used interaction
plans can correctly manage more than one actor interaction at the same time.

Multi-Actor Interaction with a Same Object

Whenever interaction plans are designed, it should be taken into account if the
object will need to interact with many agents at a same time or not. The interaction plans
are responsible to correctly call the available primitive instructions for synchronization. If
synchronization is not ensured by the interaction plans, the simulator application will not
be able to guarantee a correct result.

Most of the time, variables are used to keep the number of agents currently
interacting with the object, and based on that, different strategies can be taken. Note that
it is not possible to predict a global behavior for all kind of objects when a multi agent
interaction is required. For instance, in the automatic door example, up to three actors can
pass the door together at a same time, however, to press the calling button of a lift only
one actor at a time can access the button and press it.

 - 63 -

As an example, the automatic door shown in figure 4.11, uses two strategies to
synchronize up to three actors passing the door at the same time. One strategy is to count
the number of actors actually passing through the door, in order to forbid closing the door
if this number is not zero. Another used strategy is to define three different positions on
both sides of the door, which are then given as walking targets in parallel for the actors,
without generating collision of paths.

Graphical State Machines

Somod plans are very simple to use to describe simple interactions and
functionalities. They can still cope with much more complex cases, but then plans start to
get more complex to design. It is like trying to use a specific purpose language to solve
any kind of problems.

As an example, consider the case of modeling a two-stage lift where actors can
take. Such a lift is composed of many parts: doors, calling buttons, the cabin, and the lift
itself. These parts need to have synchronized movements, and many details need to be
taken into account in order to correctly control actors interacting with the lift.

To simplify modeling the behaviors of such complex objects, somod has a
graphical dialog box to graphically design finite state machines. The proposed solution is
to start designing basic interaction plans for each components of the lift, using the
standard behavior editor (figure 4.9). Then, when the components have their functionality
defined, the state machine window is used, permitting to define the states of the whole
object lift, and the connections between the components.

Figure 4.12 shows a first example of using this graphical window in the case of
the lift. The user has first designed the plans for the functionality of each component part
in particular. For example, there are behaviors to open and close each door of the lift, to
press each calling button, to move the cabin, and so on. The description file generated
with this lift example is available in the appendix, section 10.2.3.

Then, the user opens the graphical state machine editor to design the functionality
of the lift as a whole. A first simple example is considering that the lift can have only two
states: floor_1 and floor_2. When the lift is in floor_1, the only possible interaction is
enter_12, that will call a behavior which calls the full sequence of instructions to perform
the full interaction: pressing the calling button, opening the door, entering inside, closing
the door, move the cabin up, opening the other door, and going out. This simple state
machine example is showed in figure 4.12.

 - 64 -

Figure 4.12 – A state machine for a lift functionality where all interaction during the
process of taking the lift are programmed inside plans enter_12 and enter_21. In the
image, the double circle state is the current state, and the rectangular boxes show the
interaction needed to change of state. For example, to change from floor_1 to floor_2
state, interaction enter_12 is required.

Designed state machines are automatically translated into interaction plans so that,
from the simulator point of view, all behaviors are treated as plans. When the smart lift is
loaded in a simulation environment, the created available behaviors can then be selected.
A drawback of this simple state machine is that the single interaction of entering the lift
can be very long, giving no options to the actor in the middle. A more complex solution
is given in Figure 4.13.

Figure 4.13 shows a more complex state machine that models the functionality of
the lift by taking into account possible intermediate states. In this case, the actor needs to
select, step by step, a sequence of interactions in order to take the lift to the other floor.
Figure 4.14 shows some snapshots of the animation sequence of an actor entering the lift.

Figure 4.13 – A more complex state machine for the lift where intermediate states are
considered. Additionally, behaviors are associated with each state to be triggered
whenever the object enters that state.

 - 65 -

Figure 4.14 – An actor entering the smart lift.

This lift model can be much more complex in order to cope with many actors at
the same time, entering from any floor, etc. The lift model has been extended in order to
correctly cope with up to three actors entering from each floor at a same time. However,
it is difficult to evaluate if the programmed behaviors can correctly solve all possible
combination of cases. Moreover, it is possible to find examples where avoiding a
deadlock situation would be difficult. For example, a deadlock can easily occur when
trying to solve the classical problem of simultaneous access of resources that is called the
dining philosophers [Andrews 1991].

When an actor selects an interaction plan, a new process is opened in order to
interpret this plan. This process can be seen as the actor skill to interact with objects, and
is part of the smart object reasoning module. The issue of correctly interpreting plans in
parallel is discussed in chapter 5.

4.4.5 Templates

Another utility available in somod is to load template objects. The idea is that any
pre-modeled smart object can serve as a template to model new smart objects. A specific
window to load templates was designed permitting to scan directories containing smart
objects and to choose the desired features to import (figure 4.15).

 - 66 -

Figure 4.15 – The template loader dialog box. This window permits to scan a
directory with pre-modeled objects and components, visualize their internal features,
and import any selected set of features.

The template loader window can import any kind of features from other smart
objects. Many of the features have dependencies on other features, and these
dependencies are all tracked and coherently loaded. In addition, names are automatically
updated whenever conflicts with previously created names appear. Each time features are
imported, the user can inspect and adapt the results, using the main window.

The template loader window associated with the graphical state machine editor
forms an effective way of definition and reuse of object interactivity and interaction. Sets
of components can be maintained in proper folders in order to be easily imported and
connected, testing different combination of components to compose a whole object.

For example, a set of different types of door can be defined, each one having a
different geometry or functionality, as double or single panels, center or side opening,
translation or rotation opening, etc. These doors can then be easily imported to compose,
for instance, the lift.

4.5 Somod Extensions

Somod has been used to model smart objects for different purposes. Some times
objects have simple geometry but a lot of semantic information, and some times objects
simply don’t offer interaction, and somod is used only, for instance, to define relative
positions around the object for collision avoidance.

Somod is flexible in the sense that it permits the user to define only the desired
features, relative to the object, that can be used later for any purpose. For example, one

 - 67 -

can use somod to model a complete set of hand shapes (like the one proposed by
[Cutkosky 1989]) to use for approaching different grasping configurations.

When modeling more complex behaviors, the simplicity of the available set of
primitive instructions may not be sufficient. The extension to connect with a high-level
and complete interpreted language was integrated in somod. The used language is Python
[Lutz 1996], so that python commands can be stored in the plans with the instruction
PythonFunc (see appendix section 10.1).

To make use of the Python extension, the simulator system must be able to
interpret python scripts, and this is the case of the simulator developed, which is the topic
of chapter 6. Python is a very powerful language, available for nearly all platforms, and
the source code is available for free. There is even a Java module that is able to interpret
Python, opening the possibility to interpret Python scripts in standard web browsers.

For the sake of simplicity, somod uses a simple ascii text file format to save
modeled smart objects (see appendix section 10.2). No special standards were used, but
conversion to other file formats can be easily done, as for instance to a XML format.

Smart objects can also be described using a VRML syntax. However, it is not
possible to fully translate interaction plans into VRML nodes. Standard VRML nodes
only provide basic sensors and movements, so that external Java scripts would need to be
used.

Moreover, browsers that load and animate VRML scenes don’t provide an agent
environment with actors being animated and ready to interact with objects. Note
however, that some efforts have been done to create virtual human animations using Java
and VRML [Babski 2000]. A major problem of such systems is the much lower frame
rates achieved, as Java is an interpreted language.

A simple translator from the smart object format to an animated and interactive
VRML scene was developed, however with several limitations. Only simple behaviors
can be correctly translated, and interaction is done only using mouse clicks. Figure 4.16
shows a smart object in a VRML format loaded in a web browser. In this example,
whenever the user clicks on a drawer, the drawer will open or close. This example uses
only standard VRML nodes.

 - 68 -

Figure 4.16 – A smart object translated into a VRML file can be loaded and animated
in a VRML browser.

4.6 Chapter Conclusion

In this chapter, the following topics were stressed: the feature modeling concepts
used to model interactive objects, the smart object description, and the implementation
issues of somod. In addition, examples of modeled objects were presented and discussed.

The most important aspect of the smart object description is the fact that any user
of the object can ask for a list of available interactions, which is generated in run time,
depending on the current state of the object. This list of possible interactions is the
communication language between actors and objects, forming a behavioral interface to
coherently manage any kind of users interacting with objects at a same time.

The next chapter explains the details and implementation issues related to the
interpretation of interaction plans, and chapter 6 exposes the simulator system (ACE) that
contains all such capabilities to simulate actor-object interactions.

 - 69 -

5 Interpreting Interaction Plans

This chapter exposes the solutions adopted to overcome two main problems that
appear during the interpretation of interaction plans: synchronization of many plans
interpreted in parallel, and the motion control of actors to perform manipulation
instructions.

The whole process from the high level interpretation of behaviors to the low level
control of primitive actions and motions is explained. In addition, the synchronization
rules adopted, and their limitations are also discussed.

5.1 Introduction

Given a set of instructions, i.e., an interaction plan, there are some strategies to
consider in order to correctly animate the actor’s skeleton accordingly.

A first issue is how to synchronize plans that are interpreted in parallel. Note that,
in the scope of this thesis, interaction plans can dictate the behaviors of both actors and
objects. One can see an interaction plan as a program that runs in an independent process,
and that must access resources from actors and objects.

The many synchronization problems involved have a direct relation with the
concurrent programming area [Andrews 1991]. In this way, standard techniques can be
used: barriers, flags, etc. A simple synchronization rule to activate and block the many
processes interpreting plans is adopted and is discussed in section 5.3, together with the
many related issues.

Another key issue is the animation of the virtual actor interacting with objects,
i.e., how to correctly animate the actor’s skeleton according to a behavioral instruction. In
most of the animation cases, a method to define a realistic skeleton posture, given a
desired location for the actor’s hand is required. From now on, this specific problem will
be referred to as the reaching problem.

 - 70 -

The movement control of virtual actors, and specifically the reaching problem, is
a key issue in many areas, specifically for human factors analysis [Stanney 1998], and
ergonomics [Wang 1998], in the scope of many different applications.

Real time inverse kinematics is a key component of any human modeling system,
allowing to directly approach the reaching problem. Mechanisms with more than six
degrees of freedom (DOF) are considered redundant and thus some strategies to control
the obtained result must be taken. In section 5.4 the adopted strategies in this work are
explained.

5.2 Related Work

The parallel interpretation of plans or behaviors is an issue that appears in many
behavioral animation systems. One specific structure to define parallel programs for
describing behaviors is the parallel transitions network (PaTNets) [Granieri 1995]
[Bindiganavale 2000]. PatNets can be modeled graphically, but no specific considerations
about object interaction are done.

Many other works address the problem of concurrency in behavioral systems, as
for instance [Donikian 1994], but none has straight similarities with the object interaction
synchronization issues appearing here. The approach used in this thesis is to design
independent plans and then, to use state variables together with a simple built-in rule for
threads (or light processes) synchronization.

The animation of a virtual actor, and specifically the reaching problem, is an
active topic with many techniques proposed in the literature. Techniques can be grouped
into four categories: those based on inverse kinematics methods, those based on path
planning, those based on adaptation of pre-recorded motions, and those based on
interpolation of pre-recorded motions stored in a database, covering a discrete volume
space around the actor.

Methods based on the adaptation of pre-recorded motions are still not flexible
enough to be used for general cases, but some interesting results have been presented
[Bindiganavale 1998].

Inverse kinematics is still the most popular technique due to the fact that it is
directly applicable to solve the reaching problem. However, realistic results are hard to
obtain. Most works present specific implementations regarding only the movement of the
actor’s arm [Tolani 1996] [Wang 1998]. Although interesting results are obtained, few
considerations are done regarding full body animation for the reaching problem, towards
more realistic postures. For instance, to determine a coherent knee flexion when the actor
need to reach with its hand a very low position.

 - 71 -

In another direction, database driven methods can easily cope with full body
postures. The idea is to define pre-recorded (thus realistic) motions for reaching each
position in the space inside a discrete and fixed volumetric grid around the actor. Then,
when a specific position is to be reached the respective motion is obtained through
interpolation of the pre-recorded motions relative to the neighboring cells. This is exactly
the approach taken by [Wiley 1997] with good results achieved. Database methods were
also successfully used to determine grasping postures [Aydin 1999] [Huang 1995].

Motion planning [Simeon 2000] represents a promising approach due to the often-
used probabilistic aspect, which allows finding solutions for complex animations,
however increasing the required computational time. So that, motion planning methods
can be considered not yet applicable to real time systems.

Table 5.1 makes a comparison of these many methods.

 Realism Real-Time Generality Collisions

Motion Adaptation + + - -
Motion Database + + - -

Path Planning - - + +
Inverse Kinematics - + + -

Table 5.1 – Comparison of the many motion control methods, regarding: the realism
of the generated movements, the real-time ability of computation, generality for being
applied to different kinds of interactions, and the ability to handle and solve collisions
with the environment. Inverse kinematics still provides the best compromise
concerning generality and real-time computation.

The approach adopted in this thesis is based on a reasoning of how to determine
inverse kinematics constraints in order to achieve visually acceptable body postures for
the reaching problem in a good range area. For this, the inverse kinematics module
InvKinLib developed by Paolo Baerlocher [Baerlocher 1998] was extensively used in this
thesis.

The solutions adopted here are simple and general, so that they can be used in real
time virtual environments with acceptable computational costs, and with good
adaptability to general situations. The aim is to be able to simulate actor-object
interactions in large virtual environments, so that the most important is the overall final
animation obtained, and not the correctness of each movement detail. Section 5.4
explains in detail the solutions adopted.

 - 72 -

5.3 Interpretation of Plans

Each time a user selects an interaction plan to perform, a specific thread is created
to follow the instructions of the plan (figure 5.1). The state variables of the object are
accessed from all threads and can be used to synchronize the threads. The final situation
is a simultaneous access to a resource, i.e, the smart object.

With this approach, it is possible to have many users (and of different types)
accessing and interacting with the same smart object. However, the interaction plans of
the object need to be well designed in order to cope with all possible combinations of
simultaneous access. For example, complex situations appear in the dining philosophers
problem [Andrews 1991]: Suppose that a round table is designed with four dishes equally
distributed on its surface. Between each pair of dishes, there is one fork or knife,
alternatively distributed. But then, each time someone starts to eat, both a fork and a knife
are required. The situation is that it is impossible to have everybody eating at the same
time, and the problem is to design strategies to share the resources.

Although such complex cases are not automatically handled, a simple built-in
synchronization rule between threads is used. For this, plans instructions are grouped into
two categories: long instructions, and local instructions. Long instructions are those that
cannot start and complete in a single time step of the simulation. For example,
instructions that trigger movements will take several frames to be completed, depending
on how many frames the movement needs to finish. In the current set of instructions, the
following are considered long: UserGoTo, UserDoGest, WaitVar, DoCmd,
WaitUserProp, and Pause (see appendix section 10.1). All other instructions are said to be
local.

Figure 5.1 - For each actor performing an interaction with an object, a thread is used
to interpret the selected interaction plan. Each thread accesses and controls its related
actor and object, according to the plan’s instructions.

Thread 2 Thread 1 Thread N

BEHAVIOR x
…
END

ACTOR
1

SMART OBJECT

ACTOR
N

BEHAVIOR x
…
END

ACTOR
2

BEHAVIOR x
…
END

 - 73 -

Plans are interpreted instruction by instruction, and each instruction needs to be
finished before the next one is executed. When a plan is being interpreted by some thread
t, all other threads are suspended until a long instruction is found. In this way, t will fully
execute sequences of local instructions, while all other threads remain locked. When a
long instruction is reached, it is initialized, the other threads are activated, and t stays
observing if the instruction has finished. This scheme results with the situation where all
activated threads are in fact monitoring movements and other long instructions, and each
time local instructions appear, they are all executed in a single time step, while other
threads are locked.

This approach automatically solves most common situations. For example,
suppose that the lift has a call behavior which interaction plan consists of: “if state of
calling button is pressed do nothing; otherwise set state of the calling button to pressed
and press it”. Suppose now that two actors, exactly at the same time, decide to call the
lift. The synchronization rule says that while one thread is interpreting local instructions,
all others are locked. In this way, it is guaranteed that only one actor will actually press
the button. Without this synchronization, both actors would press the button together at
the same time, resulting serious inconsistent results.

5.3.1 Instructions Reasoning

The simulator system needs to animate the actor’s skeleton in order to achieve the
correct animation corresponding to each user related behavioral instruction. The most
complex instruction to perform is UserDoGest. All other user related instructions have a
direct animation interpretation, like walking, being attached to some object part, saving a
property, etc.

The gesture instruction, according to its parameters defined in somod, will signify
an action of sitting, pushing, or reaching. The used AgentLib framework (see section 2.5)
provides already the reach action for the animation of virtual actors. The reach action
uses inverse kinematics to specify the joint values of the actor’s arm in order to reach a
goal location in space with the hand. This action works well in some specific cases, but it
is not sufficient for all interaction cases, so that the specific action push was developed
and will be the subject of the next section. Other auxiliary actions as hand and sit will be
also presented in a later section.

During the push action, the hand shape, i.e. the configuration of the fingers, need
also to be changed in order to reach the specified pre-defined hand shape. In addition,
depending on the goal hand location, different skeleton movements need to be
undertaken, and the direction of the actor’s head should be also controlled. The correct
connection and synchronization of these primitive motions is the result of the reasoning

 - 74 -

module of the animation system. Figure 5.2 illustrates the steps from a behavioral
instruction until the definition of primitive motions and actions to animate an actor.

Figure 5.2 – Each interaction instruction is translated into primitive actions by a
reasoning process, specifying the animation result to be obtained.

5.4 Manipulation Actions

Depending on its parameters, the instruction UserDoGest can mean different actor
movements, but in the most common case, it is used to determine that the actor should
perform some manipulation with the object. A manipulation movement is divided in three
phases: reaching, middle, and final phases (figure 5.3).

Figure 5.3 – Reasoning diagram for the interpretation of a manipulation instruction.

All manipulation movements start in the reaching phase. In this phase, inverse
kinematics is used in order to animate the actor’s skeleton to have its hand in the
specified position. Then three cases can happen, depending on the parameters: follow,
take, and put (see figure 4.7). Parameters follow and take are used to specify the
attachment of objects to the actor’s hand. The follow parameter indicates that the actor’s
hand should then follow a specified movement. This is the case for example to press
buttons and open drawers: the specified translation movement to animate the object part

SMART OBJECT

A
ct

or
 A

ni
m

at
io

n

ACTOR ACTIONS
Walk
Reach
Hand
Look

BEHAVIOR bh1
…
UserGoTo
UserDoGest
…
END

In
te

ra
ct

io
n

 S
el

ec
tio

n

BEHAVIOR bh1
…
UserGoTo
UserDoGest
…
END

BEHAVIOR bh1
…
UserGoTo
UserDoGest
…
END

In
st

ru
ct

io
ns

 R
ea

so
ni

ng

M
ot

io
n

B
le

nd
in

g

Reaching
Phase

Final
Phase

Middle
Phase

Finish Start Param.
Check

R
ea

ch
in

g
M

ov
em

en
t Following Movement

Object Attach

Object Detach

Rest Posture

Keep Posture

Rest Posture

follow

take

put

 - 75 -

is followed by the actor’s hand, while inverse kinematics is used in order to adjust the
posture of the actor’s skeleton.

Additionally to the inverse kinematics motion controlled by the developed action
push, two other primitive actions are used in parallel: look, and hand. The AgentLib look
action permits to animate the head orientation to face a given point in space. This action
is used to keep the actors head to look to the object being manipulated. However, this
feature can be deactivated if some external behavioral module wants to control the head
orientation during an interaction.

The hand action developed simply interpolates the current joints of the fingers
until they reach the pre-defined manipulation hand shape (stored in the smart object). In
this way, hand animation for grasping is obtained through direct interpolation between
the initial actor’s hand shape to the desired pre-defined hand shape. These two “extra”
primitive actions run in parallel with the push action.

5.4.1 The Inverse Kinematics Module

The AgentLib primitive action push was developed, which directly uses the
inverse kinematics module. In order to better explain how constraints are used, an
introduction to the used actor skeleton and the inverse kinematics module of [Baerlocher
1998] is given here.

As already stated, the actor’s skeleton is composed of many joints, disposed in a
hierarchy. The whole hierarchy can be seen in figure 10.1 (in the appendix). The
skeleton’s root is a node between the pelvis and the column, and which separates the
hierarchies of the legs and feet from the hierarchies of the column, head and arms.

The motion flow root is a node in the hierarchy from whom the “motion” is
propagated to adjacent nodes. The motion flow root does not necessarily correspond to
the hierarchy root; it can be moved at any time, for example to constrain a foot to be
firmly planted on the floor. In the scope of the utilization done in this thesis, for the
manipulation of objects, the motion flow root is always kept the same as the skeleton
root.

The animation results obtained have a fixed motion flow root while the arms, legs
and head are moved to reach pre-defined constraints. Many different constraints can be
defined. The most used type of constraint is to define a position and/or orientation in
space where a specified joint must reach.

For example, it is possible to specify the actor’s hand to reach a position p in
space. In this case, the inverse kinematics module will generate a suitable skeleton
posture so that the actor’s hand reach the point p. The actor’s hand is also called as end-

 - 76 -

effector, and p as a task. The allowed joints of the skeleton to be animated by the inverse
kinematics module can be specified to attend different needs. To calculate a final skeleton
posture, the inverse kinematics module uses iterative numerical methods, so that some
iteration steps are required to converge to the solution, with a specified precision error.

When defining many tasks to be solved, some times it may not be possible to
solve all tasks. For example if one task says that the actor’s head should stay in its
original straight position while the actor’s hand should reach a very far position, it may
not possible to satisfy both tasks. Priorities can be set for each task in order to say which
of them have higher priority to be solved. In the example, if the hand’s task is given a
higher priority the actor’s column will move towards the position to reach with the hand.

When a smart object instruction requires an actor to do some manipulation with
the object, a reasoning about the situation is done in order to coherently distribute the
needed constraints to animate the manipulation using inverse kinematics.

5.4.2 Constraints Distribution

At the beginning of a manipulation (see figure 5.3), the actor’s skeleton sizes and
the task position to reach with the hand are analyzed and different constraints are set:

• First, the inverse kinematics module is set to only animate the joints of the arm,
shoulder, clavicle, and the upper part of the column (see appendix 10.5.2 for a precise
listing of the used joints). This set of joints makes larger the reach volume space, as the
actor can reach farther positions by flexing the column. However, a side effect is that
even for closer positions to reach, the column can move, generating weird results. To
overcome this, two new constraints are created. A positional constraint, with a low
priority, is used to keep the vertebra VT5 joint in its original position. In addition, a low
priority orientation constraint is applied to the vertebra VC8 to maintain a vertical
orientation. These two constraints ensures that the column stays straight as long as it is
possible, while permitting the column to rotate along its vertical axis. This feature
correctly runs in parallel with the look action that controls the head orientation. Figure
5.4 shows some results obtained with this approach.

• Secondly, if the goal position (the task) to reach with the hand is lower than the
lowest position achieved with the hand in a straight rest position, a special knee flexion
configuration is set. The joints of the hip, knee, and ankle (see appendix 10.5.2) are added
to the allowed joints to be animated by the inverse kinematics module, and two new
constraints, with high priorities, are added to keep each foot on its original position and
orientation. This configuration makes the actor to flex the knees, keeping its feet fixed in
the ground, when the actor’s skeleton root is gradually lowered. Figure 5.5 shows
different knee flexions obtained while reaching positions of different heights.

 - 77 -

Figure 5.4 – A specific constraint is used to keep the actor’s column straight as long as
it is possible, while permitting a rotation movement of the body along its vertical axis.

Figure 5.5 – When the position to reach with the hand is too low, additional
constraints are used in order to obtain knee flexion. The images show, from left to
right, the postures achieved when reaching each time lower positions.

5.4.3 Animation Control

After the initial phase of constraints and joints control distribution, a higher
priority hand task is set. The hand task is set to make the hand to follow given positions p
and orientations q.

During the reaching phase, only the final hand position (p1) and orientation (q1)
are given. These values are retrieved from the smart object data. The initial hand position

 - 78 -

(p0) and orientation (q0) are determined from the global position of the actor’s hand at the
beginning of the reaching phase.

Then, the number of desired time steps (n) to accomplish the reaching phase is
determined. This number is determined based on the distance to the goal final position.
Experimentally, good results were obtained having 35 time steps per meter. In this way,
considering that positions are measured in millimeters, n is determined with the following
formula: n=dist(p0,p1)*(35.0/1000.0). In addition, a test is done to ensure that n has a
minimum value of 5, for better results with short, detailed movements.

During the animation loop, in the reaching phase, the hand task is set to a position
interpolated along the straight line from p0 to p1, giving the most direct way to achieve
the final goal. When, in the middle phase, a following movement is required, the hand
keeps its orientation, but its position is updated to follow the movement of the object
being manipulated. Intermediate orientations are obtained with quaternion interpolation.
The final algorithm can be summarized as follows:

perform_push_action_step ()
 {
 if (start) { t=0.0; inc=1.0/n; }

 if (reaching_phase)
 { t = t + inc;
 p = (1.0-t)*p0 + t*p1; // position interpolation
 q = quat_slerp (q0, q1, t); // quaternion interpolation
 set_hand_constraint_to (p, q);
 if (do_knee_flexion) lower_skeleton_root_position();
 converge_inverse_kinematics ();
 if (t==1.0) reaching_phase = false;
 }

 if (doing_following_movement)
 { p = actual_hand_position ();
 q = actual_hand_orientation ();
 p = p + position_difference_of_object_being_followed ();
 set_hand_constraint_to (p, q);
 converge_inverse_kinematics ();
 }

 update_current_phase ();
 }

An example of the animation obtained during the reaching phase is given in figure
5.6. Note that the showed animation of button pressing also has a middle phase with the
following movement, which is needed to actually press the button and not only to touch
it. Another example of the “following movement” is given in figure 5.7 to close a drawer
in a difficult lower position. Note that during the following-movement the same
constraints used for the reaching phase are kept.

 - 79 -

Figure 5.6 – The reaching phase of a button press manipulation. Note that the action
look makes the actor to look to the button, and the action hand gradually interpolates
the initial hand shape towards the final button press shape.

Figure 5.7 – The reaching and following movements used to close a drawer. Note that
during the following phase (closing the drawer) the knee flexion is kept.

5.5 Other Actions

The instruction UserDoGest can be also used to specify other type of movements.
A movement that is interesting to have using inverse kinematics is sitting. The animation
of a sitting movement is normally done using pre-defined keyframe animation because of
its complex nature. However, the main drawback is that the used motion only works for a
specific pair chair-actor. Each time the actor or height to sit change, a new motion need to
be created. To overcome this, the inverse kinematics action sit was also developed.

 - 80 -

Figure 5.8 – The sit action. The position of the arms are controlled by other modules
for any purpose, as for instance using the push action or a pre-defined keyframe
motion.

The used constraints are the same used for the knee flexion configuration, the only
difference is that the root of the skeleton is interpolated along a straight line from its
current position to the specified position to sit (which is retrieved from the smart object
chair).

The position of the arms is not changed, but additional instructions can be used to
manipulate the arms, or to play a keyframe animation for the upper body part. Figure 5.8
exemplifies the results obtained with such a sitting action.

5.6 Chapter Conclusion

This chapter explained the issues related with the interpretation of interaction
plans. The main problems addressed were the parallel execution of plans, and the used
constraints distribution to animate object manipulations.

The implemented action push was explained and some results of animations
generated were presented. An important aspect of the action push is its flexibility. It can
be used for many manipulation cases, and in fact, it was used to generate all actor
animations showed in the figures of this thesis.

The next chapter introduces the ACE system that incorporates the push action to
perform actor-object interactions.

 - 81 -

6 Agent Common Environment

This chapter describes the implemented system for virtual human agents
simulation supporting interaction with smart objects. The system is able to coherently
manage a virtual environment shared by agents (actors and objects), and is called “agent
common environment” (ACE).

The description of the system architecture is presented and discussed in this
chapter. Most of the results obtained and showed in this thesis were generated using
ACE.

6.1 Introduction

The importance of simulations with virtual humans has already been stressed in
previous chapters. The ACE system presented here was developed to perform many kinds
of behavioral simulations with actors, including the capability of interaction with smart
objects. ACE can also be connected with some virtual reality devices (see section 2.4) in
order to permit a direct interaction with smart objects: this capability is the topic of the
next chapter.

ACE is controllable through Python scripts [Lutz 1996], and provides the basic
agent requirements in a virtual environment: to be able to perceive and to act in a shared,
coherent and synchronized way. ACE is thus a system that has been used as a platform to
the development of different kind of applications based on virtual human simulations.

The central point of ACE is the easy connection of behavioral modules as plug-
ins, following a trend in computer animation systems [Badler 2000]. Such plug-ins can be
defined in two ways: actor-object interactions using smart objects and a behavioral
library composed of modular Python scripts.

 - 82 -

6.2 Related Work

Many simulation systems are described in the literature, and many of them are
driven by scripts. The Improv system (Improvisational Animation) [Perlin 1996] is
controlled by behavioral scripts designed to be easily translated from a given storyboard.
Scripts have a simple syntax, close to a natural language specification of storyboards.

Also using scripts, [Motivate] and [Nemo] systems use hierarchical finite state
machines to define characters behaviors, targeting game development. Another recent
successful game is [TheSims], where the user can interact with a simulation of actors
living day-life situations.

Game engines are more and more appearing, providing many behavioral tools that
can be easily integrated as plug-ins to build games. Although they offer many powerful
tools, they may not be well suitable for applications different from games.

In another direction, the Jack software package [Badler 1999b], available from
Transom Technologies Inc., is more oriented for human factors applications rather than
social and behavior animation. Jack is a software package for human animation with a
large palette of features including collision detection, balance control and dynamic
strength considerations. Different systems have been built, developing their own
extensions to the Jack software [Johnson 1997] [Bindiganavale 2000].

[Blumberg 1995] built autonomous animated creatures for interactive virtual
environments, which are also capable of being directed at multiple levels: motivational,
task level, and motor level.

The main difference between these systems and ACE is that they don’t exhibit
any specific approach to model actor-object interaction. They’re more concentrated in the
behavioral modeling of the actors alone. For instance, ACE can be used to implement the
many different approaches for actors behavior definition.

The only system that shows some actor-object interactions is the game [TheSims].
It was not possible to know much about their approach, but some texts about the game
reveal that they associate somehow interaction information with objects, thus having
some similarities with the approach herein presented.

6.3 ACE System

6.3.1 Software Platform

ACE is a system implemented on top of AgentLib (see section 2.5), integrating
nearly all libraries available in the lab for virtual human agents animation. For the

 - 83 -

graphics visualization, the Performer library from [SGI] is used, and thus the system runs
in SGI machines.

 For the graphical user interface [FLTK] is used, and for the scripting capabilities,
[Python] is used. Apart the Performer library, the other libraries are platform-
independent.

6.3.2 ACE Functionality

The core of the ACE system understands a set of commands in Python to control a
simulation. For a complete list of the currently available Python functions executed in
ACE, see appendix section 10.3. Among other features, these commands can:

• Create and place different virtual humans, objects, and smart objects. Actors
information (size, appearance, clothes, etc) is defined in a specific .inf file which is
loaded by DodyLib. Objects in general can be declared only by giving a geometry file to
display them, and smart objects are loaded from their .so description file. The smart
object loader is able to share the geometry representation between many instances of
smart objects.

• Apply a primitive action to a virtual human. Examples of such actions are: key-
frame animations, walking, facial expressions, etc. These motion motors can be triggered
in parallel and are correctly blended by AgentLib [Boulic 1997].

• Trigger a smart object interaction with a virtual human actor.

• Ask for a collision-free path among previously defined 2d obstacles (figure 6.1).
The implemented algorithm is based on an exact cell decomposition of a 2d environment,
using a similar (less optimized) structure to the star-vertex (chapter 3), which I have also
developed.

• Query pipelines of perception [Bordeux 1999] for a given virtual human. Such
pipelines, integrated in AgentLib, can be configured in order to simulate, for instance, a
synthetic vision. In this case, the perception query will return a list with all objects
perceived inside the specified range and field of view. As an example, figure 6.2 shows a
map constructed from the results of the perception information received by an actor.

All previously described features are available through simple Python scripts.
When ACE starts, two windows appear. One window shows the virtual environment
being simulated. The other one is the main window, which contains the interactive
Python shell (figure 6.3).

The main window contains also menus to access other available dialog boxes to
control and monitor the ongoing simulation. Such dialogs can interactively place actors

 - 84 -

and objects in the scene, set lights, control camera parameters and behavior (as automatic
perception and attachment to actors), control actor-object interactions, inspect the
perception of actors, send natural language orders, etc. Some of these controls will be
exposed in section 6.6.

Figure 6.1 – The image illustrates the use of a 2d path planner in ACE: once obstacles
are declared as polygonal approximations, an exact cell decomposition process is
used, based on a constrained Delaunay triangulation. Free paths are then computed by
just exploiting free cells adjacency, using any known graph search algorithm.

Figure 6.2 – Perception map of the lowest actor in the image. In this example, a range
of 2.6 meters and a field of view of 180° are used. The darker points in the map
represent the positions of each perceived actors and objects. The lighter point
represents the position of the perceiver.

 - 85 -

Figure 6.3 – The ACE system with the graphical output window and its main window,
witch contains the interactive Python shell.

6.3.3 A Script Example

In the interactive Python shell it is possible to load or type scripts to control the
simulation. An example of a valid Python script is as simple as the following:

Create a virtual human and a smart object:
bob = vhnew (“bob”, “sports-man”)
computer = sonew (“computer”, “linux-cdrom”)

Query a 3 meters perception with a 170 degress field of view:
perception = vhperceive (bob, 3000, 170)

If the computer was perceived, perform two interactions with it:
if computer in perception :
 sointeract (computer, bob, “eject_cd”)
 sowait (computer)
 sointeract (computer, bob, “push_cd”)

Figure 6.4 shows a snapshot of the animation generated from this script. The

created agent is performing the “push_cd” interaction (note that in the image other
objects that were previously created are also shown). Other example scripts are showed in
the appendix section 10.4.

 - 86 -

Figure 6.4 – An actor-object interaction being performed.

The smart object “computer” loaded in this example (figure 6.4) was defined with
somod (chapter 4), where all low-level 3D parameters were defined, as shown in figure
6.5.

Figure 6.5 – Modeling phase of the smart object computer using somod.

In this way, the low-level motion control is performed internally in ACE by
following the interaction plans defined inside each smart object description. All the issues
discussed in chapter 5 regarding the interpretation of such plans are implemented inside
ACE. Python scripts can then easily instruct an actor to interact with a smart object
without the need of any additional information. After an interaction, the state of the smart
object is updated, and the virtual human actor will wait for another Python order.

 - 87 -

6.4 Multi Actor Simulations

In order to coherently control a multi actor simulation in ACE, each actor runs in
a separate thread, handled by a common agents controller module. This module is
responsible for transporting messages between the threads by providing a shared area of
memory for communication (figure 6.6).

Figure 6.6 – ACE system architecture.

Usually, each time an actor is created, a new thread starts in order to control it.
This is directly implemented at the Python layer. The display update is handled by the
controller, which also provides synchronization facilities between threads. Keeping the
display update into the controller ensures that no conflicts arise (this could be the case if
concurrent processes update the display at a same time).

Concurrent actions (motions or facial expressions) are already handled internally
in ACE with AgentLib. However, in some cases it may be interesting to have specific
concurrent modules controlling the evolution of specific primitive actions. For such
cases, new threads can be created within the agent thread, as depicted in figure 6.6.

Agent Thread #n

action
thread 1

action
thread n …

Agent Thread #1

action

thread 1

action
thread n …

Agents Controller

Shared Area

Python Layer

ACE – Agents Common Environment

Perceptions Management

Smart Object Control

Facial Expressions Control

Low-level Motion Control

 - 88 -

Inside an actor’s thread, the user of the system can ask actor-object interactions to
be performed, and also initialize any primitive action directly. Note that an actor-object
interaction may trigger many primitive motions sequentially or in parallel, so that all
current motions being applied to a virtual human agent need to be correctly blended, what
is guaranteed by AgentLib.

Whenever an object interaction is asked, a special Object Interaction Thread
(figure 6.7) is created to monitor the execution of the needed motions until completion.
This module implements the smart object reasoning issues, and is implemented internally
in ACE (not in the Python layer). It can be seen as the actor capability to interpret object
interaction instructions; like reading the user’s manual of a new object to interact. The
object interaction thread does not use any system-related libraries for thread creation; it is
programmed (and simulated) inside ACE, in the same executable program.

Figure 6.7 – Motion blending permits other control mo dules to run in parallel with an
object interaction, for example, to control body parts that are not used during the
interaction.

In this way, at the Python layer, an object interaction is seen as any other
primitive action. Motion blended is supported in all cases, but the user is responsible to
coherently start the motions and object interactions. For instance, when an object
interaction to push a button with the right hand is requested, the object interaction thread
will be active until the interaction finishes. If, at the same time, another module is
controlling the right arm towards a different position, a deadlock may happen.

Although object interactions are defined with pre-defined plans, many issues still
need to be solved during run time as minimal information inside the plans is kept. In this
way, there is space for the agent’s autonomy when generating motions for interactions.
This is exactly the role of the smart object reasoning module, and the developed primitive
action push (see section 5.3 and 5.4). For example, for a simple interaction like opening a
drawer, the related interaction plan defines a position to stand near the drawer, a position

Blending of all Activated Motions

Object Interaction Thread: Thread per agent
and per plan controlling needed motions

Interaction Plan selected

Final Joint Values

Python Layer

Other Motion Control Modules

ACE Core

 - 89 -

for the hand end-effector and a suitable hand shape to use. But where to look and if it is
needed to flexion the knees or not are decisions taken by the actor during run time (see
figures 5.5 and 5.7 of the previous chapter).

6.5 User Control of the Animation

ACE has several capabilities to permit the user to control and inspect the ongoing
simulation. A first way to interact with the simulation is by using the interactive Python
shell (figure 6.3). During a simulation, new Python commands can be typed in order to
send orders to actors, for example, to command them to walk, play animation keyframes
or interact with objects.

Concerning actor-object interaction, a special dialog box was designed (figure
6.8). This window permits to visualize, for each smart object loaded in the VE, its current
available interactions. In this way, the user can quickly select an actor, an object and an
interaction available, and the actor will promptly perform the animation.

It is also possible to select an object interaction without selecting an actor to
perform it: in this case, all actor-related instructions of the interaction plan are simply
ignored, and the object appears to move by itself. This feature is important in several
cases. One example is a modeled room that has an interaction of turning off lights. Then,
each time an actor perform this interaction, it is no more possible to see the simulation as
the VE becomes dark. In such a case, the ability to turn on the lights is used, without
having to ask some actor to do it, what would interfere the simulation.

Figure 6.8 – Object interaction window. When a smart object is selected, the list of its
current available interactions appears for selection. In this way, the user can easily
command actors to perform object interactions.

Each available interaction with a smart object is identified by a text description,
which should reflect the meaning of the interaction. ACE has another built-in interactive

 - 90 -

shell for controlling the simulation, which is based on natural language. This shell
translates simple natural language instructions into Python scripts.

The use of natural language to create, animate and control a simulation is an area
of active research, with many proposed systems [Strassmann 1991] [Bindiganavale
2000]. In ACE, the natural language interpreter was built to command actors in the
virtual environment, specifically to command object interaction.

The interpreter was mainly developed to test the connection with semantic
information contained in smart objects. As expected, a simple implementation was
possible as it was not necessary to have any previous table associating possible actions to
perform with existing objects, as it is normally done. The interpreter is able look inside
each smart object of the scene, which are the actions (or interactions) that the object is
capable of doing. For this, coherent semantic information must exist in objects.

The natural language interpreter was tested with an environment that is a
computer lab with many smart objects such as computers, printers, tables, cup boards, etc
(figure 6.11). The interpreter can then be used to easily command actors inside this
environment. After receiving an instruction, the interpreter analyses it, and translates the
instruction into a Python script that is then interpreted by ACE. Figure 6.9 shows the
result of an instruction accessing the actor’s perception and information inside the
perceived smart objects.

Figure 6.9 – Interactive natural language shell. When the instruction “What can you
do, Bob?” is entered, the interpreter generates a Python script that lists all available
interactions of the smart objects perceived by the actor. The Python script is executed
by ACE, and the result is written in the shell window.

The interpreter saves information about the current context of the “dialog”, so that
if an actor or object name is missing in the written sentence, the previously referenced
subjects are used. Actions to perform are those provided by AgentLib (walk, look, etc),
otherwise they’re searched inside the list of available behaviors of the smart object in

 - 91 -

question, and if no match is found, they’re looked inside all smart objects perceivable by
the actor. Figure 6.10 exemplifies a case where only an action verb is entered and the
missing subjects are automatically found.

Figure 6.10 – When an action is entered, it is searched in the last referenced object, or
in all smart objects perceivable by the actor. If an interaction matching the requested
action is found, the previous actor referenced is used to perform the interaction.

Building an effective natural language interpreter that works in all contexts is still
a challenge. Normally, results are obtained only after some time of use, when the user
starts to get used how to write sentences in a way that they’re correctly interpreted. At the
end, is like having an interactive shell that works with key sentences and key words. No
much time was invested in building an effective natural language interpreter, as the main
purpose was only to test the communication with smart objects; and this was easily
achieved.

Other auxiliary ways of controlling the simulation are available in ACE. For
instance, it is possible to graphically set positions for placing agents and objects, and also
to define locations for the actors to walk.

Another important type of user interaction investigated in ACE is the direct
interaction (using VR devices) with smart objects. This kind of interaction will be
specifically exposed in the next chapter.

6.6 Extension Through Python Scripts

Python scripts can be organized in modules, which are dynamically loaded from
other scripts. Many available modules exist for different purposes, as graphical user
interface generation, image processing, mathematical computation, threads creation,
TCP/IP connection, etc. The Python interpreter, together with such modules, is available
for most computer platforms, including Unix systems and PC Windows. Moreover, if

 - 92 -

required, new modules can be implemented in Python that might also dynamically access
methods in C/C++ to achieve better performance.

As shown in the previous section, threads creation is a key issue to obtain agents
running their own behavioral modules in an asynchronous environment. The use of
behavioral Python modules is straightforward: the animator chooses one module from a
library of pre-programmed modules and runs it inside its actor thread. However, such
modules need to be carefully designed in order to avoid conflicts and to guarantee a
correct synchronization between them.

As an example, a virtual computer lab was created with around 90 smart objects
(many of them repeated), each one containing up to four simple interactions. Then, inside
the actor’s Python thread, a simple behavior of random walk or random interaction was
easily implemented in Python, and a dialog box was created showing the actor’s status
and enabling to change the current actor behavior. This example shows how new
applications can be built on top of ACE. A snapshot of this example simulation is shown
in figure 6.11.

Figure 6.11 – A virtual lab being animated by ACE. Each small dialog box at the left
was created in Python and are used to individually control each actor in the
simulation.

ACE has been currently used by many people in the lab as a platform for
development of many applications. Virtual humans behavioral research has been done on
top of ACE, as for example, in the topic of sound propagation for communication
between human agents [Monzani 2000], and an agent-based decision-making system

 - 93 -

written in Lisp (and later Java) [Caicedo 1999]. In this last case, the Python module for
TCP/IP connections is extensive used to send Lisp orders to ACE. Some results obtained
with these applications are showed in chapter 8. For a better overview about the
connection with Lisp, see [Kallmann 2000a].

Most of the features available in ACE are being integrated with the previously
developed system VHD (virtual human director) [Sannier 1999]. This integration will
merge the capabilities of both systems, resulting on a new simulation system platform.

6.7 Chapter Conclusion

This chapter detailed the ACE system, which has built-in capabilities to control
actor-object interactions. ACE was used to generate most of the example images shown
in this thesis. The important characteristic of being connected with a high-level and
object oriented script language (Python), makes ACE an extendible system, which can be
used in the development of many other applications.

The next chapter shows the specific feature of ACE to perform direct interaction
with smart objects using VR devices, and chapter 8 shows the main results achieved with
ACE.

 - 94 -

 - 95 -

7 Direct Interaction with Smart Objects

This chapter introduces a high-level direct interaction metaphor based on smart
objects. The user, i.e. a real person, wearing virtual reality devices to immerse in the
virtual environment, can trigger the behaviors stored in smart objects. During the
interaction, smart objects help the user by means of visual clues.

The concepts and implementation issues involved are discussed, and an example
of an interaction session is presented.

7.1 Introduction

Virtual Reality (VR) technology has been employed on various different
applications. A common point to all applications is the fact that the user wears VR
devices, immerses in the virtual environment (VE), and interacts with the virtual world in
order to accomplish some specific task. In many cases, such a task involves direct
manipulation of virtual objects.

Direct manipulation of objects in virtual environments is often awkward and
inconvenient, because of mainly two factors: the use of simplified physical models due to
computation time constraints, and limitations of the current VR devices. A simple task of
grabbing and moving a virtual object may be a frustrating experience because of the lack
of a tactile feedback, weightlessness of virtual objects, positioning tracker noise, and poor
design of interaction techniques, among other factors.

For direct manipulation, the most common used device is a data glove (see figure
2.6). This device has known many enhancements during the last years [Sturman 1994].
However, limitations as the lack of force-feedback, are still hard to solve.

Although direct manipulation intends to be similar to manipulation in real world,
there are significant differences, which have to be fully understood in order to exploit the
full potential of VR technology.

If virtual systems are to be effective and well received by their users, considerable
human factors issues must be taken into account [Stanney 1998]. Will the user get sick?

 - 96 -

Which are the important tasks to perform? Will the user perceive system limitations (e.g.,
flicker)? What type of design metaphors will enhance the user’s performance in VE? The
main challenge concerns defining an efficient, simple and natural interaction paradigm, in
order to overcome the VR limitations.

Using smart objects it is possible to define an architecture where the virtual object
aids the user on how to accomplish a desired interaction task by giving visual clues. The
framework herein presented focuses on high-level interactions, instead of a direct
manipulation based on selection and displacement. The concerns are about interactions
with objects having some functionality governing its moving parts, but that cannot be
directly displaced by the user. Instead, the user can trigger the movements of the object,
according to its functionality. Such issues were already published in the previous work
[Kallmann 1999b].

The framework proposed is not meant to solve all limitations involving direct
interaction with VEs, but illustrates a technique that can be combined with other existing
techniques in order to achieve easier and higher level object interactions.

7.2 Related Work

7.2.1 Interaction with Body Postures

There are many systems being proposed in the literature where the user is
interacting with a virtual environment. Many of them focus on interaction based on
recognizing the full body postures of the user.

In the ALIVE system (Artificial Life Interactive Video Environment) [Maes
1995], the user interacts, in an augmented virtual environment, with a reactive virtual
dog. [Davis 1998] introduces a virtual personal aerobics trainer (PAT), that, based on
optical motion capture system, monitors if the user is correctly repeating some showed
exercises.

Face-to-face communications either between synthetic actors [Cassell 1994] or
between the user and a synthetic character [Cassell 1999] have already been addressed.
Also, [Emering 1999] proposes a system where the user, wearing magnetic sensors, can
fight with a virtual actor.

7.2.2 Manipulation and Navigation

Most interaction techniques being proposed in the literature target manipulation
and navigation in VEs. For instance, [Mine 1995] shows many examples of such
techniques, including a VR metaphor for menu selection. In a more recent work [Mine

 - 97 -

1997], the concept of proprioception is exploited in order to enhance the direct
manipulation of objects. An overview of techniques for object manipulation, navigation
and application control in VEs is presented by [Hand 1997].

In order to implement a complex VR application, it is possible to identify three
main distinct layers, which have to be correctly designed and put together:

• The low-level physical simulation model, which should give a physically based
visual feedback to the user when an object is touched, deformed, or moved, correctly
managing all possible intersections.

• The direct manipulation metaphor, responsible to define how the user, wearing
VR devices (as a data glove), can interact with the virtual objects in order to touch, move
and displace them. This metaphor is directly linked to the adopted physical model.

• The direct high-level interaction metaphor. This layer will permit the user to
achieve other tasks that are not feasible only by means of direct manipulation, needing
also to take into account other interaction rules and also user gestures.

7.2.3 Physical Models

Many physical models have been proposed in the literature. For instance, [Sauer
1998] describes a rigid body method for the simulation of unilateral contacts, filling the
gap of impulse-based and constraint-based simulations, including a friction model. An
approach to model a haptic glove force transference was proposed by [Popescu 1999].

Another interesting approach has been proposed to deal with collision and
interference in VR systems, making some use of the graphics rendering hardware in order
to minimize time computation during a virtual hand grasping application [Baciu 1998].
Many related topics as collision detection, optimized rendering, real-time deformations,
etc, are in constant development and are employed in VR applications.

7.2.4 Manipulation Metaphors

Many manipulation metaphors have been also proposed. For instance, [Poupyrev
1997] presents a manipulation metaphor based on three main steps: Selection,
Positioning, and Orientation. [Boulic 1996] presents an approach where each finger of the
virtual hand has spherical sensors for detecting collision with the virtual object. These
sensors are used for deciding when the virtual object is grasped or when the virtual hand
needs a posture correction.

The work presented by [Okada 1999] introduces intelligent boxes, which are
modules having basic specific functionality and that can be inter-connected and

 - 98 -

connected to VR devices data input. However, no specific manipulation metaphors are
proposed.

As commonly stated, object manipulation needs to be optimized [Poupyrev 1997]
in order to let the immersed participant to concentrate on high-level tasks rather than on
low-level motor activities. Some solutions to this matter start to be proposed [Kitamura
1998].

7.2.5 High Level Metaphors

Unfortunately, less attention has been given to exploit implementations of high-
level interaction metaphors. Existing works remain in the theoretical level [Gibson 1977],
or mainly concern hand gesture recognition, as for instance, a dynamic two-handed
gesture recognition system for object modelling [Nishino 1997].

Aiming to fulfill this gap in the VR research, a framework to perform high-level
interactions with virtual objects modeled as smart objects is herein proposed. The smart
object framework can be integrated as a top layer of interactive VR systems, providing
higher-level capabilities of interaction.

Figure 7.1. - Modeling the behaviors of a smart desk for interaction. The hand shapes
and positions, used as end-effectors for actor-object interactions, are used as hand
clues for direct user interactions.

Plan to open First Drawer

Hand Clues

Reference Position

 - 99 -

7.3 Smart Object Interaction Metaphor

Once smart objects are modeled, they can be loaded into the virtual environment.
The interaction information contained in each smart object is used in order to facilitate
the user interaction (see figure 7.1). This approach frees the user many difficult low-level
motor activities.

The user is considered to be immersed in the virtual environment using a data
glove and a six degrees of freedom tracker placed on the glove (see figure 7.5). In this
way, the user can freely move its hand in the virtual environment (however in a restricted
space). The position of the user in the VE is considered to be the position of its virtual
hand representation, captured by the positional tracker.

Two main modules control our interaction metaphor: The smart object controller,
and the interaction manager. The interaction manager is responsible to aid the user to
select available smart object’s behaviors, while the controller interprets the selected
behavioral instructions.

7.3.1 Interaction Manager

The interaction manager monitors the user position in relation to each object
reference position. When the user reaches a certain distance from the object reference
position, we say that the user is inside the interaction range of the object. In this way, a
dynamic list of all objects inside the interaction range of the user is maintained updated.

For each smart object in range, all available interactions are checked in order to
determine those that are closest to the current user’s hand position. This is done by
measuring the distance of the user’s hand position to the clue hand that each behavioral
plan specifies as a parameter of its first UserDoGest instruction. A specific plan
instruction VrClue can be also used for the same purpose, when it is desirable to define
different hand positions for actor interaction and user interaction.

All available behaviors in range have an associated hand clue. All hand clues that
are within a certain distance (in relation to the user position) are displayed in the virtual
environment, and are kept in another dynamic list. This list keeps a link to all available
behaviors that are currently in range. Figure 7.2 depicts this architecture.

The interaction manager monitors the position of the smart objects and the user’s
hand, in order to display only the hand clues corresponding to closer available behaviors
in range. Once the user actually places its hand near the same position and orientation
given by a hand clue, the corresponding smart object behavior is selected and interpreted
by the controller.

 - 100 -

Figure 7.2 – The interaction manager module keeps updated a list of smart objects in
range and a list of their available behaviors that are closest to the user. A visibility
distance parameter defines the range to consider.

Note that when the user selects a behavior, other behaviors may change their
availability state, what will cause the interaction manager to dynamically update the
displayed hand clues.

Figure 7.3 – To close the book or the drawer of the smart desk, the user selects the
corresponding object behavior by placing the hand closer to the desired hand clue.

Figure 7.3 shows the case where the user’s hand position is in the range of two
available behaviors of the smart desk: to close a book on it, and to close its first drawer.
To trigger one of these two behaviors, the user sees the two related hand clues, so that by
just putting its hand near a hand clue, the associated smart object behavior will be
triggered.

Figure 7.4 shows another smart object that is a dossier containing six drawers.
The behaviors definitions are similar to the desk drawer, so that the object has a total of

VE SOBJ 1 SOBJ n User

Interaction Manager:
Monitors positions in the VE

…

Update List 1: Dynamic List
of SOBJs in Range

Update List 2: Dynamic List of
available behaviours of the objects

in L1, that are closer to the user.

Hand Clues for the
behaviours of L2

are displayed.

Hand Clues

User’s Hand

 - 101 -

six pairs of behaviors, each pair being related to each drawer (open and close). In this
way, only six interactions (or behaviors) are available at a same time. Figure 7.4 shows
two moments of the interaction of opening a drawer.

Figure 7.4 – The image on the left shows three hand clues indicating that there are
three available interactions in range to open the drawers. The image on the right
shows the final state of the drawer after the middle one is chosen.

7.3.2 The Smart Object Controller

When a hand clue is selected, the smart object controller starts to directly interpret
each instruction of the related behavioral plan, animating the object and updating its
internal state variables, i.e. performing the interaction.

As the first UserDoGest instruction found in the selected behavior serves as the
behavior hand clue, this one is directly skipped. But, in the case where another
UserDoGest instruction is found, the controller will wait the user to place its virtual hand
near to the associated hand clue to then skip to the next instruction. In this case, all hand
clues displayed by the interaction manager are turned off. Only the hand clue related to
the current UserDoGest being interpreted is displayed.

Similarly, if a UserGotoPosition instruction is found, all other clues are turned
off, just displaying the goal position clue that the user must reach in order to let the
following instructions be executed.

The scenario is simple: the user can navigate in the VE with its virtual hand
seeing many clues being turned on and off on the screen. The understanding of which
interaction is related to a clue is obvious. For example, by seeing a hand clue positioned
in the handle of a closed drawer, there are no doubts that the available interaction is to
open the drawer.

In this way, all interactions are triggered by means of comparing distances,
minimizing the needed low-level motor activities of the user. Only when two hand clues

 - 102 -

are too close to each other that the hand posture of the user will be used in order to decide
which interaction to select.

7.4 An Interaction Example

When started with the option of direct user interaction, ACE uses one Ascension
Flock of Birds (FOB) magnetic 3d positional tracker [Motion Star], attached to a Cyber
Touch data glove from Virtual Technologies [VirTech]. To give a 3D visual feedback,
the Stereo Glasses from [Stereographics] is used, attached to a [SGI] machine.

The number of used VR devices is minimized in order to reduce discomfort
during usage, and also simplify the system setup. For the example showed here, it is
sufficient that the user wears only one data glove. Figure 7.5 illustrates a user wearing the
needed VR devices.

Figure 7.5 – A picture of the user with the needed VR devices, ready to use the
system.

Figure 7.6 shows a simulated scene. It is composed of two smart objects with
many possibilities of interactions. The user stays in front of the computer screen, and can
see its virtual hand being displaced accordingly to its real hand position. Depending on
the position of the virtual hand, some hand clues are displayed, indicating that
interactions can be selected.

The Cyber Touch data glove contains small special devices on the palm and on
each finger, which can generate a variable vibration sensation. This gives a total of six
vibration devices. Such vibrations can be used to give two different kinds of feedback to
the user: To indicate how many hand clues are displayed, by activating a different

FOB

FOB sensor

Stereo Glasses

Cyber
Touch

 - 103 -

number of vibration devices. And to indicate that an interaction was selected, it is
possible to send, for a short period of time, a stronger vibration on all activated vibration
devices.

The use of the vibration devices gives an interesting feedback to the user in cases
where many close interactions exist. Many different uses can be also designed, but, in the
other hand, sometimes the excessive feeling of vibrations is uncomfortable.

Figure 7.6 –The interaction behavior depends on two parameters: the visibility and the
activation distance. The visibility distance controls the range for showing hand clues,
and the activation distance specifies the minimum distance to consider the user’s hand
triggering a selected hand clue. In the image, three hand clues are displayed.

7.5 Analysis

In this application example, no metaphor for navigating in large virtual
environments was designed. Just the natural tracked hand position is used, what limits the
interaction space to a rather small VE.

Also, in order to select a desired interaction, only distances measured between the
user’s hand and the clue hands are used. The shape of the user’s virtual hand could also
be used to distinguish between two hand clues that are too close one to another. This
situation does not occur with the showed example.

The objects used in this application have a simple functionality to open and close
some of their parts, but more complex smart objects behaviors can also be used. For
example, manufacturers could provide a smart object description of their products
together with the user’s guide. In this way, the user could see all possible actions to
perform with the equipment, virtually seeing what happens when, for instance, some
button is pressed.

 - 104 -

One important aspect of this approach is that smart objects are modeled in a
general way that is independent of the application. This introduces a way to have
standard interactive object descriptions that can be used to describe many different types
of objects. The key idea is that each object contains a complete description of its possible
interactions; then its up to the application to interpret this description accordingly to its
needs. For example, inside ACE smart objects can be manipulated simultaneously by
virtual actors and users (see figure 8.9 in next chapter).

Users that have experienced the system showed that the interaction process is
straightforward to learn and understand. However, the action of getting close to a hand
clue was sometimes not so easy to perform without activating surrounding clues. This
factor is strongly related to the specific objects used in the application. In summary, the
facility to activate the clues can be an advantage in some cases, but not in all cases, what
suggests the use of variable thresholds.

7.6 Chapter Conclusion

This chapter presented a high-level interaction metaphor using smart objects.
Because of the architecture simplicity, the system easily achieves interactive frame rates.

This prototype system permits an interesting analysis of the designed furniture
regarding human factor aspects. Another direct application for this framework is training
the use of complex equipments, by experiencing with them.

Other techniques still need to be integrated in order to have a complete
operational system for direct interaction. For instance, a low-level physical model would
enhance the correctness of the VE, and a navigation metaphor would be essential to free
the user from the real world space constraints.

 - 105 -

8 Achievements and Results

This chapter presents the many results achieved with the proposed smart object
approach. Sections are divided by type of results, showing and explaining the results
obtained in each different topic, application or integration with other works.

8.1 Modeled Smart Objects

Many different smart objects were modeled for many different purposes. Figure
8.1 shows some objects modeled for simulations with the virtual lab room. Figure 8.2
shows another room with some interactive furniture.

Figure 8.3 shows two actors entering the smart lift. This lift has one of the most
complex functionality modeled with the interaction plans. It was tested to fully handle
three actors entering at a same time in a same floor. For this, many variable states are
used to determine all the possible configurations of access. However, it is not possible to
state that the modeled functionality can handle all combination of cases.

Figure 8.4 shows a table modeled with a single interaction that is to propose
actors a fruit on the table to be grasped. Again, state variables are used to control which
are the current free fruits to be grasped.

Regarding the actor animation control, all actor manipulations in these examples
are handled with the implemented action push (section 5.4), showing that a single
strategy can serve to many kinds of interactions.

However, one main drawback of this generalization is that the resultant actor
movements are not specifically designed for a given situation. The point is that it would
not be possible to obtain complex, and large, interactive environments without
approaching the problem with a simple solution. Moreover, experience showed that
people working on behavioral animation that needed to use smart objects, were not
looking for a highly parameterized interaction with realistic low-level motor activities,
and simple, specially fast, solutions were always preferred.

 - 106 -

Figure 8.1 – Four images showing different smart objects interactions. Such objects
are part of the virtual lab simulated in ACE, with many different interactive objects.

Figure 8.2 – Interactive furniture. The desk model has many possibilities of
interaction, including opening the book and moving the lamp.

 - 107 -

Figure 8.3 – Two actors entering the smart lift.

Figure 8.4 – An interactive table that always proposes free fruits to be grasped.

8.2 Urban Environment Simulations

A smart object reasoning and animation library was specifically developed for
integration with a system for simulation of urban environments. This system is the result
of an integration of many different modules: a module managing environmental data, a
module for crowd behavioral control, a rule-based system that generates sub-tasks from a
high-level given goal, and smart objects. These modules are interconnected using a
message protocol passing through a central controller. For the detailed description of this
system, see [Farenc 2000]. Figure 8.5 shows a snapshot of a simulation obtained with this
system.

 - 108 -

Figure 8.5 – A snapshot of an urban simulation application. The image shows a crowd
of people inside a train station. Actors of the crowd can interact with automatic doors,
escalators, and the lift shown.

Figure 8.6 - Example smart objects that can interact with many actors at a same time.

Figure 8.6 shows some snapshots of a simulation involving crowds [Musse 1997],
which virtual actors can interact with smart objects. Smart objects are considered an
action point for the behavioral model of the crowd. Then, each time an individual actor
reaches an interaction point, the actor’s control is released from the crowd behavioral
model, and the smart object interaction plan is interpreted. When the interaction is
finished, the actor is back under the control of its crowd behaviors.

8.3 Behavioral Animation

ACE has shown to have a good flexibility to be used for many different
applications, in particular regarding behavioral animation research. A virtual computer

 - 109 -

lab with around 90 smart objects, each one containing up to four simple interactions, was
modeled and can be animated in ACE.

In this environment, actors were created inside ACE Python threads, controlling
navigation, gestures played as key-frame sequences, smart object interactions, and other
behavioral modules written in Python. One example of a Python module is an idle state
thread developed in the scope of the work of [Monzani 2000]. Whenever the actor is
detected to stop acting, the idle thread is activated, sending specific key-frames and facial
expressions to the actor, according to the actor’s emotional state, simulating a human-like
idle state (see figure 8.7).

Figure 8.7 – The idle thread in action: different facial expressions and head
movements are controlled in order to achieve a more human-like behavior.

The Lisp agent-oriented behavioral model IntelMod [Caicedo 1999] was
connected with the ACE Python threads by means of a TCP/IP connection. This
connection allows Lisp rules to send orders to the actors in ACE. A simple test
storyboard was then written in Lisp: a woman that has access to the virtual lab comes in a
day-off to steal some information. So she enters into the room, turns on the lights, read in
a book where is the diskette she would like to steal, then she takes the diskette, turns off
the lights and go out of the room. During all the simulation, the woman is nervous about
being discovered by someone, and so the idle state module was set to synchronize many
head movements and some small specific facial expressions to demonstrate this state.
Figure 8.8 shows some snapshots taken from this simulation.

 - 110 -

Figure 8.8 – Some snapshots of a simulation with ACE inside the virtual lab. Lisp
plans are used to follow a simple storyboard, and orders from the Lisp behavioral
module are sent through TCP/IP to control the actor in ACE. In parallel with the Lisp
control, a Python thread runs to control the actor’s idle state.

8.4 Virtual Life Simulations

A motivational model for the action selection problem was implemented in
Python specifically for virtual human actors [Sevin 2001]. This model is composed of a
free flow hierarchy [Tyrrel 1993], associated to a hierarchical classifier system [Donnart
1996]. Such a model permits to take into account different types of motivations, and also
information coming from the environment perception.

The main used motivations are to eat, drink, rest and to use the toilet. Each time
one of these motivations becomes “urgent”, there is a relative object interaction to be
selected that will “satisfy” the motivation, lowering its urgency level. When no
motivations are urgent, then the actor will go to work. Figure 8.9 shows a snapshot of the
scenario simulated with ACE.

 - 111 -

Figure 8.9 – A snapshot of a virtual life simulation achieved with ACE. The curves on
the left (implemented in Python) show the variation of the internal motivational
parameters of the virtual human, at different levels in the action selection model.

All object interactions performed in the simulation are done using smart object
capabilities, using the low level motions generated by the walking motor, and the inverse
kinematics module. The scenario contains a sofa where the actor sits to rest, a cup of
coffee and a hamburger that the actor is able to grasp and bring them to its mouth,
satisfying the eat and drink motivations. The actor can also sit at the toilet, and work with
a computer. The interaction to work with the computer involves sitting on a chair, turning
on the computer, putting the hands on the keyboard and also moving the mouse. Figure
8.10 shows a snapshot of the actor working with the computer. The details of such smart
objects are discussed in a recent workshop publication [Kallmann 2000b].

Figure 8.10 – Testing object interactions relative to the work motivation.

 - 112 -

8.5 Direct Interaction

Chapter 7 introduced the approach used to let real users, wearing VR devices, to
interact with smart objects. As a result of the smart object architecture, it is straight
forward to have in ACE different kinds of users immersed in the same virtual
environment and interacting with objects.

Figure 8.11 shows, in the same scenario exposed in chapter 7, a virtual actor
interacting with objects together with the user wearing its data glove.

Figure 8.11 – Smart objects allow simultaneous interaction with many kinds of users.
The image shows a virtual actor opening a drawer, and a “flying hand”, which is the
graphical representation of the real user’s data glove.

8.6 Augmented Reality Applications

A part of the smart object framework was integrated with VHD system [Sannier
1999] for the analysis of human factors related to object design and prototyping. VHD is
a client-server system where the server maintains an augmented reality environment, and
clients can connect to the environment to control simulations. A Python based client was
implemented which can read smart object files (translated to python). This Python client
can thus send to the server the needed interaction information to control interactions.

This framework was tested to evaluate modifications in the design of existing
objects. As example, a SGI computer was modeled with the interaction information to
open the CD player drawer. Then, with Python scripts, different positions for the CD
drawer could be specified giving different actor interaction results. To enhance the

 - 113 -

reality, the entire background scene is taken from a real input video. Just the new CD
drawer and the virtual actor are virtual entities. This framework was presented in a recent
publication [Balcisoy 2000], and an image showing an obtained result is shown in figure
8.12. For other augmented reality applications, see [Balcisoy 1998].

Figure 8.12 – An actor interacting with a smart object in an augmented reality
environment. The computer and the background scenario are real. A virtual CD
drawer was put in a lower position, to be tested as a design change in the computer.
The virtual actor can interact with the added virtual part, giving a feedback for the
design change. Such framework focuses simulation-based design of objects.

 - 114 -

 - 115 -

9 Conclusions

This final chapter presents the main conclusions about the proposed smart object
approach. Each previous chapter of this thesis already exposed some conclusions related
to each specific sub-topic, so that a more global view of the work is done here. In
addition, limitations and future work directions are discussed.

9.1 Main Conclusions

The smart object approach presented in this thesis provides a consistent definition
of how objects are animated, and how actors can interact with them. The approach was
successfully tested in the ACE simulator for different applications, and many related
topics were examined.

The main conclusion obtained from this work is that, in order to achieve complex
simulated environments, an extendible module organization, with coherent inter
communication protocols need to be defined. This is exactly the approach used in this
thesis: object interaction is defined in smart objects, which users can access interpreting
pre-defined interaction plans.

The main point is where to put the separation line between modules. How far
actors should decide what to do by their own, and how far they should follow pre-defined
interaction instructions. Similar issues, regarding pre-defined data from motion capture
versus calculated data, appear also when animating actors for object manipulation. For
instance, the used inverse kinematics procedures cover a wide range of manipulation
configurations, but pre-recorded keyframe motions would give a much more realistic
movement. This gap between motion-capture animation and simulation/procedural
animation has been recognized as a major problem in computer graphics [Foley 2000].

In this thesis, animations were achieved using all pre-defined information of the
interaction plans and using standard animation techniques to control actors. Such design
decisions lead to easier control of simulations. In general, the smart object approach
introduces the following characteristics in a simulation system:

 - 116 -

• Decentralization of the animation control. By following object and actor
behaviors stored in smart objects, many object-specific computation is released from the
main animation control module.

• Reusability of designed smart objects. A smart object can be modeled for some
specific application, and used in many others. Moreover, it can be easily updated if
needed to achieve the requirements of a new application.

• A simulation-based design is naturally achieved. The designer can take control
of the loop: design, test and re-design of objects. A designed smart object can be easily
inserted into a simulation program, which gives feedback for improvements in the design.

• Easy connection with higher-level behavioral modules. Interactions are
identified with meaningful text tags and smart objects can contain any kind of semantic
information. An example is the easy connection of the interactive natural language shell
of ACE.

• Smart objects can be loaded in simulators as behavioral plug-ins. In this way,
objects can be easily selected and loaded to form a new interactive scenario. This feature
was successfully achieved with ACE. Behavioral plug-ins have been identified to be a
current trend in animation systems [Badler 2000].

• Having the low-level object interaction issues solved in the simulation system,
simulators can concentrate on animating the behavior of actors and achieving simulations
with higher complexity. ACE capabilities have shown to be suitable for many types of
applications, so that the system has been used as a simulation development platform for
other internal projects in the lab.

9.2 Limitations

Many details can still be adjusted in the developed software to better attend other
applications. For example, the command to trigger an object interaction could receive
more parameters, like to permit actors to choose only to open 50% of a drawer. Other
extensions would be to have both hands of an actor manipulating a same object, or to
better define smart objects containing other smart objects, for instance to better simulate
putting things inside cupboards or drawers. Many other possible extensions could be
listed, but they are more related to implementation extensions regarding the intended
simulation context than real limitations of the proposed architecture.

However, three main limitations with the proposed approach have been identified:

• The quality of the actors movements is directly related to the pre-defined
geometric parameters stored in smart objects. For instance: if positions to reach with the

 - 117 -

hand are not close enough, weird postures are generated. Also, actors can happen to
collide with object parts during manipulation, depending on the defined positions to walk
and hand locations to reach. No collision detection techniques were used in this thesis.

• The proposed actor animation control does not update the position of the actor
during an interaction. This limitation is noticed with manipulations where the actor’s
hand needs to follow some object part during long distances. For instance, it is not simple
in real life to grab a door’s handle and open it, without walking at the same time. Similar
limitations regard more complex issues, like being able to take some object without
needing to stop walking, etc. In fact, these limitations come from the organization of the
used animation tools, which target different kinds of actor motions. One direction to
overcome this limitation would be to simplify robot motion planning techniques in order
to allow real time control of the full articulated actor body.

• Each defined interaction runs without intervention until completion. This is a
direct consequence of the main design choice of easy controlling actor-object
interactions: when an interaction is selected, all needed information to complete it is
already defined. For instance, if the complete interaction of taking the lift is selected, the
actor will not be able to change of mind when it is inside the lift cabin. The actor will
need to wait until the end of the interaction to then choose another one. To minimize this
effect, long interactions can be divided into smaller ones. However, it is always needed to
well define what is considered to be a “primitive interaction” in the context.

9.3 Future work

Some of the main research directions to extend the proposed smart object
framework are listed here.

• Data structures are the basis of all computer systems. Many important geometric
algorithms for multi-resolution changing, deformable models, morphing, subdivision,
collision detection, motion planning, etc, need specific and efficient data structures. To
integrate all such algorithms in a single and coherent interactive virtual environment, a
data structure representation suitable for all cases and with acceptable memory
requirements is needed. The proposed star-vertex structure already addresses some of the
issues involved, but research still have to be done in order to integrate each algorithm
with a common data structure, and make them to work together. This would enable to
have, for instance, an actor’s skin envelope to be deformable, displayed in multi-
resolution, with possible morphing effects and also able to efficiently answer to collision
detection queries. Related to this issue, there is also the problem of data structure

 - 118 -

conversion, specifically from standard formats like VRML, which uses a large set of
possible descriptions with no guarantees concerning the model validity.

• Modeling object functionality and behaviors in general is a complex issue. The
smart object representation uses a simple script language organized in interaction plans to
describe the object functionality. State machines and graphical programming are also
used. However, a general, intuitive and simple way to define functionalities and
behaviors is still a topic of intense research. Another issue is to investigate possible
standards and protocols for connection and communication of entities containing
functionality. Such issues, and other related topics, are mainly addressed in the agents
field.

• Fill the gap between motion-capture animation and simulation/procedural
animation. Some ideas are to mix pre-recorded motion (database driven or not), corrected
with simple interpolation or inverse kinematics methods. The goal is to reach realistic
human-like movements, parameterized for a wide range of object manipulation.

• Algorithms for planning low-level manipulation procedures. Rather then always
using pre-defined geometric parameters for general manipulations, robust algorithms still
need to be developed in order to generate realistic human motions, taking into account
collision detection with the manipulation space, and automatic decision and dynamic
update of hand configurations and placements. For instance, the actor’s hand
configuration should change during the movement of opening a drawer, and the same for
the whole skeleton configuration. Opening a door realistically would also involve a
combination of walking and hand manipulation. One possible approach for future
investigations is to adapt human constraints to robotics planning algorithms, as the one
introduced by [Simeon 2000].

• Integrate low-level and high-level virtual reality interaction metaphors. Physical
models exist that can be used to drive realistic object interactions, and methods have been
proposed for the low level displacement of objects. However, it is still a challenge to
obtain realistic virtual environments where the user can really feel immersed inside,
touch, feel and manipulate complex objects, walk and perform tasks together with
autonomous actors, etc, and all of this in an intuitive way.

 - 119 -

10 Appendix

10.1 Primitive Plans Instructions

This section lists the current available set of behavioral instructions that can be
used to form smart object interaction plans:

UserAddProp <text> : Gives any text property to the smart object user. The text is
converted to lower case on all property operations.

UserDelProp <text> : Removes a property from the smart object user. The text is
converted to lower case on all property operations.

UserNumProp <var> <text> : Put in var the number of smart object user properties
<text> found.

UserGoTo <pos> : Move the smart object user to pos. For a virtual human user, walking
action should be used. If there is more than one position with the same name and if there
is already some user associated with this position, the position having the same name, but
with less users associated is chosen. This is useful for interactions with many users at the
same time.

UserGetClosest <pos> <var> <poslist> : Compares all positions in poslist to the smart
object user current position, saving in pos the closest one. Also, the index of the selected
position in the list is saved in var (1,2,...,n). Note that pos and var are not affected by the
UseIndex instruction as they are return values. Also, if different positions with a same
name exist, only the first one is considered.

UserDoGest <gest> <hand> : Will make the smart object user move to a close enough
position (if necessary) and will perform the gesture with the hand specified. The hand
parameter is just not considered when it is not applicable.

UserAttachTo <part> : Attach the smart object user to follow the movements of some
smart object part.

UserDetach : Detach the smart object user from any previously attached smart object
part.

WaitVar <var1> <var2> : Will make the user or the controller to stop interpreting its plan
until the variable var1 becomes equal to var2.

 - 120 -

DoCmd <cmd> : Will make the smart object execute the command cmd.

SetPos <pos1> <pos2> : Makes pos1=po2, i.e., put the value of pos2 in pos1.

SetVar <var1> <var2> : Changes the state variable var1 to var2, i.e. var1=var2.

InitVar <var> <value> : Changes the state variable var to value.

CheckVar <var1> <var2> : Checks if var1==var2 and stops the behavior execution in
case of false result, returning to the caller behavior, if any. If it is used in a behavior that
is not Object Control neither Private it also determines the availability of the behavior to
the smart object user. In this case, just the first CheckVar instruction found is considered.

AddVar <var1> <var2> : Adds var2 to the variable var, i.e. var1+=var2.

IncVar <var> <value> : Adds value to the variable var, i.e. var1+=value.

WaitUserProp <text> : Makes the current smart object control module to wait its plan
interpretation until all smart object users have the property text.

Private : Indicates that the current behavior will not be user selectable. Can be put
anywhere in the behavior, but better as the first instruction.

ObjectControl : Indicates that the current behavior will be executed all the time by the
smart object. This is expensive to use, and cannot contain user-related instructions. If
more then one exists, they run in parallel. Can be anywhere in the behavior, but better as
the first instruction.

UseIndex <var> : Index the parameters of only the next affect able instruction if var>1. If
the indexed parameter name do not exist, the normal name is used. For example, if we
have “UseIndex ind” where ind is a variable containing value 2, the instruction
“UserGoTo pos” will be translated to “UserGoTo pos_2”. Instructions affected are:
UserGoTo, UserGetClosest, UserDoGest, UserWaitVar, UserAttachTo, DoCmd, SetPos,
SetVar, CheckVar, AddVar, DoBh, If and ElseIf.

DoBh <bh> : Executes the behavior bh. Works as calling a subroutine.

If <var1> <var2> : Start a conditional block, see also: ElseIf, Else and EndIf.

ElseIf <var1> <var2> : Continues a conditional block, see also: If, Else and EndIf.

Else : Continues a conditional block, see also: If, ElseIf and EndIf.

EndIf : Ends a conditional block, see also: If, ElseIf and Else.

Pause : Forces the simulator to leave the interpretation of this plan, an so to update the
display and other application modules. This is sometimes an important keyword to
guarantee synchronization of many plans being interpreted in parallel.

VrClue : Defines a gesture to be the virtual reality interaction clue. These clues are used
in the beginning of each behavior, defining the position of the virtual hand to trigger the
behavior.

PythonFunc : Defines a call to an external defined python function. The function call is
stored as a text string and it is up to the simulator to interpret it when needed.

 - 121 -

10.2 Example of Smart Object Description Files

This section shows the smart object description file generated by somod to three
smart objects showed in section 3: an automatic door, a desk, and a lift.

10.2.1 autodoor.so

SMART OBJECT DESCRIPTION

PARTS
name filename | mass masscenter
all autodoor_main.iv
part1 autodoor_p1.iv
part2 autodoor_p2.iv
END # of parts

HIERARCHY
parent sun
ROOT all
ROOT part1
ROOT part2
END # of hierarchy

ACTIONS
name type and data (matrix, rot:cent/axis/ang)
trans1 matrix
1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 -826.997253 1.00

trans2 matrix
1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 -1651.752319 1.00
END # of actions

POSITIONS
name position / orientation
pos_in -645.00 0.00 150.00 1.00 0.00 0.00
pos_in -645.00 0.00 600.00 1.00 0.00 0.00
pos_in -960.00 0.00 260.00 1.00 0.00 0.00
pos_in -940.00 0.00 730.00 1.00 0.00 0.00
pos_out 450.00 0.00 150.00 1.00 0.00 0.00
pos_out 450.00 0.00 600.00 1.00 0.00 0.00
pos_out 670.00 0.00 260.00 1.00 0.00 0.00
pos_out 720.00 0.00 730.00 1.00 0.00 0.00
pos_in_2 450.00 0.00 150.00 -1.00 0.00 0.00
pos_in_2 450.00 0.00 600.00 -1.00 0.00 0.00
pos_in_2 660.00 0.00 270.00 -1.00 0.00 0.00
pos_in_2 720.00 0.00 740.00 -1.00 0.00 0.00
pos_out_2 -645.00 0.00 150.00 -1.00 0.00 0.00
pos_out_2 -645.00 0.00 600.00 -1.00 0.00 0.00
pos_out_2 -970.00 0.00 270.00 -1.00 0.00 0.00

 - 122 -

pos_out_2 -930.00 0.00 720.00 -1.00 0.00 0.00
pos 0.00 0.00 0.00 0.00 0.00 0.00
END # OF POSITIONS

COMMANDS
name action part ini end inc
opendoor trans1 part1 0.00 1.00 0.0500
opendoor trans2 part2 0.00 1.00 0.0500
closedoor trans1 part1 1.00 0.00 0.0500
closedoor trans2 part2 1.00 0.00 0.0500
END # of commands

VARIABLES
 state_open 0.00
 state_passing 0.00
 tmp 0.00
 true 1.00
 false 0.00
 one 1.00
END # of variables

BEHAVIORS :
BEHAVIOR open
 Private
 IncVar state_passing 1.00
 CheckVar state_open false
 SetVar state_open true
 DoCmd opendoor
END # of behavior

BEHAVIOR close
 Private
 IncVar state_passing -1.00
 CheckVar state_open true
 CheckVar state_passing false
 SetVar state_open false
 DoCmd closedoor
END # of behavior

BEHAVIOR go_1_2
 Private
 UserGoTo pos_in
 DoBh open
 UserGoTo pos_out
 DoBh close
END # of behavior

BEHAVIOR go_2_1
 Private
 UserGoTo pos_in_2
 DoBh open
 UserGoTo pos_out_2
 DoBh close
END # of behavior

BEHAVIOR enter
 UserGetClosest pos tmp pos_in,pos_in_2

 - 123 -

 If tmp one
 DoBh go_1_2
 Else
 DoBh go_2_1
 EndIf
END # of behavior

END OF BEHAVIORS

END # of file

10.2.2 desk.so

SMART OBJECT DESCRIPTION

INFO
name
desk_with_drawers
END # of info

PARTS
name filename | mass masscenter
desk desk_main.iv
drawer1 desk_drawer1.iv
drawer2 desk_drawer2.iv
door desk_door.iv
lamp desk_lamp.iv
book desk_book.iv
bookcover desk_book_cover.iv
END # of parts

ACTIONS
name type and data (matrix, rot:cent/axis/ang)
translate matrix
1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 200.00 1.00

open_book rotation
-91.257004 983.854980 -0.001039 0.00 0.06 1.00 1.800000

move_lamp rotation
-624.843018 764.047974 14.526200 0.00 1.00 0.00 0.500000

open_door rotation
801.242004 956.505981 376.069000 0.00 1.00 0.00 0.800000
END # of actions

GESTURES
name filename actionfile part follow
gest1 DrawerPull ActionDefault drawer1 true
false false 0.080000
-0.360000 -0.110000 -0.930000 0.00
-0.060000 0.990000 -0.100000 0.00
0.930000 0.020000 -0.360000 0.00

 - 124 -

-500.00 893.711975 565.882996 1.00
RightHandGeom: false

gest2 DrawerPull PartialSpine drawer2 true
false false 0.080000
-0.437588 -0.356673 -0.825409 0.00
-0.296295 0.923888 -0.242147 0.00
0.848953 0.138604 -0.509963 0.00
-464.392761 721.660645 557.591492 1.00
RightHandGeom: false

gest3 DrawerPull ActionDefault door true
false false 0.080000
0.592971 -0.190616 -0.782336 0.00
0.059617 0.979299 -0.193418 0.00
0.803014 0.068050 0.592061 0.00
337.719543 894.270264 577.408081 1.00
RightHandGeom: true

gest3close DrawerPull ActionDefault door true
false false 0.080000
0.350000 -0.890000 -0.300000 0.00
0.430000 -0.130000 0.890000 0.00
-0.830000 -0.440000 0.340000 0.00
395.154999 955.836975 541.934021 1.00
RightHandGeom: true

gestlamp DrawerPull ActionDefault lamp true
false false 0.080000
0.310000 -0.370000 -0.880000 0.00
-0.950000 -0.070000 -0.310000 0.00
0.050000 0.930000 -0.370000 0.00
-450.933990 1283.089966 383.074005 1.00
RightHandGeom: false

gestbook DrawerPull ActionDefault bookcover true
false false 0.080000
-0.040000 0.040000 -1.00 0.00
-0.040000 1.00 0.040000 0.00
1.00 0.040000 -0.040000 0.00
91.553673 1048.533203 385.387939 1.00
RightHandGeom: false
END # of gestures

POSITIONS
name position / orientation
pos_desk 0.00 0.00 750.00 -0.050367 -0.001221 -0.998730
pos1 0.00 0.00 750.00 -0.050367 -0.001221 -0.998730
pos2 0.00 0.00 750.00 -0.050367 -0.001221 -0.998730
pos3 0.00 0.00 750.00 -0.050367 -0.002317 -0.998728
END # OF POSITIONS

COMMANDS
name action part ini end inc
open_1 translate drawer1 0.00 1.00 0.0500
close_1 translate drawer1 1.00 0.00 0.0500
open_2 translate drawer2 0.00 1.00 0.0500

 - 125 -

close_2 translate drawer2 1.00 0.00 0.0500
open_3 open_door door 0.00 1.00 0.0500
close_3 open_door door 1.00 0.00 0.0500
move_lamp move_lamp lamp 0.00 1.00 0.0500
move_lamp_back move_lamp lamp 1.00 0.00 0.0500
open_book open_book bookcover 0.00 1.00 0.0600
close_book open_book bookcover 1.00 0.00 0.0600
END # of commands

VARIABLES
 open_1 0.00
 open_2 0.00
 open_3 0.00
 open_book 0.00
 lampmoved 0.00
 true 1.00
 false 0.00
END # of variables

BEHAVIORS :
BEHAVIOR move_lamp
 CheckVar lampmoved false
 VrClue gestlamp
 UserGoTo pos1
 UserDoGest gestlamp LeftHand
 SetVar lampmoved true
 DoCmd move_lamp
END # of behavior

BEHAVIOR move_lamp_back
 CheckVar lampmoved true
 VrClue gestlamp
 UserGoTo pos1
 UserDoGest gestlamp LeftHand
 SetVar lampmoved false
 DoCmd move_lamp_back
END # of behavior

BEHAVIOR open_book
 CheckVar open_book false
 VrClue gestbook
 UserGoTo pos1
 UserDoGest gestbook LeftHand
 SetVar open_book true
 DoCmd open_book
END # of behavior

BEHAVIOR close_book
 CheckVar open_book true
 VrClue gestbook
 UserGoTo pos1
 UserDoGest gestbook LeftHand
 SetVar open_book false
 DoCmd close_book
END # of behavior

BEHAVIOR open_1

 - 126 -

 CheckVar open_1 false
 VrClue gest1
 UserGoTo pos1
 UserDoGest gest1 LeftHand
 SetVar open_1 true
 DoCmd open_1
END # of behavior

BEHAVIOR close_1
 CheckVar open_1 true
 VrClue gest1
 UserGoTo pos1
 UserDoGest gest1 LeftHand
 DoCmd close_1
 SetVar open_1 false
END # of behavior

BEHAVIOR open_2
 CheckVar open_2 false
 VrClue gest2
 UserGoTo pos2
 UserDoGest gest2 LeftHand
 SetVar open_2 true
 DoCmd open_2
END # of behavior

BEHAVIOR close_2
 CheckVar open_2 true
 VrClue gest2
 UserGoTo pos2
 UserDoGest gest2 LeftHand
 DoCmd close_2
 SetVar open_2 false
END # of behavior

BEHAVIOR open_3
 CheckVar open_3 false
 VrClue gest3
 UserGoTo pos3
 UserDoGest gest3 RightHand
 DoCmd open_3
 SetVar open_3 true
END # of behavior

BEHAVIOR close_3
 CheckVar open_3 true
 VrClue gest3
 UserGoTo pos3
 UserDoGest gest3close RightHand
 DoCmd close_3
 SetVar open_3 false
END # of behavior

END OF BEHAVIORS

INTENT

 - 127 -

Desk with many interaction capabilities: two drawers, one door, a book
and a lamp. Contain interaction information for data gloves (vrclue).
END # of intent

END # of file

10.2.3 lift.so

SMART OBJECT DESCRIPTION

PARTS
name filename | mass masscenter
lift lift_main.iv
door1l lift_door1l.iv
door1r lift_door1r.iv
door2r lift_door2r.iv
door2l lift_door2l.iv
cabine lift_cabine.iv
button1 lift_button.iv
button2 lift_button.iv
END # of parts

MATRICES
name type and matrix data
button1
0.163373 0.00 0.00 0.00
0.00 0.163373 0.00 0.00
0.00 0.00 0.183531 0.00
2260.166992 1192.737793 1525.454346 1.00

button2
0.197661 0.00 0.00 0.00
0.00 0.197661 0.00 0.00
0.00 0.00 0.246796 0.00
737.667236 6565.471680 -1533.418945 1.00
END # of matrices

ACTIONS
name type and data (matrix, rot:cent/axis/ang)
ac_up matrix
1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 5400.00 0.00 1.00

ac_openr matrix
1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
550.00 0.00 0.00 1.00

ac_openl matrix
1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
-550.00 0.00 0.00 1.00

 - 128 -

ac_press1 matrix
1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 -50.00 1.00

ac_press2 matrix
1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 50.00 1.00
END # of actions

GESTURES
name filename actionfile part follow
press ButtonPress ActionDefault button1 true
false false 0.080000
0.311908 0.083569 -0.946429 0.00
-0.053292 0.996094 0.070391 0.00
0.948613 0.028482 0.315144 0.00
2192.496094 1231.207886 1716.597168 1.00
RightHandGeom: false

press_2 ButtonPress ActionDefault button2 true
false false 0.080000
-0.193824 -0.102024 0.975717 0.00
0.116514 0.985143 0.126156 0.00
-0.974093 0.138137 -0.179056 0.00
759.944946 6623.169434 -1735.859863 1.00
RightHandGeom: false
END # of gestures

POSITIONS
name position / orientation
pos_press 1850.00 0.00 1935.00 0.347226 -0.001221 -0.937781
pos_enter 1290.00 0.00 2300.00 -0.050367 -0.003516 -0.998725
pos_enter 1800.00 0.00 2600.00 -0.151799 -0.003516 -0.988405
pos_goout 1290.00 0.00 2500.00 -0.050183 -0.001221 0.998739
pos_goout 1613.00 0.00 2000.00 -0.050183 -0.001221 0.998739
pos_goout 1290.00 0.00 1700.00 -0.050183 -0.001221 0.998739
pos_press_2 1100.00 5400.00 -2100.00 -0.250528 -0.054506 0.966574
pos_enter_2 1400.00 5400.00 -2300.00 0.050774 -0.001221 0.998709
pos_enter_2 1100.00 5400.00 -2581.00 0.050774 -0.001221 0.998709
pos_goout_2 1935.00 5400.00 -2600.00 0.050574 -0.024041 -0.998431
pos_goout_2 1613.00 5400.00 -2258.00 0.250901 -0.000185 -0.968013
pos_goout_2 1935.00 5400.00 -1835.00 0.050574 -0.024041 -0.998431
pos_cabine 1613.00 0.00 -550.00 0.151031 -0.000185 -0.988529
pos_cabine 1290.00 0.00 -123.00 0.151031 -0.000185 -0.988529
pos_cabine 1800.00 0.00 445.00 0.151031 -0.000185 -0.988529
pos_cabine_2 1613.00 5400.00 323.00 0.050774 -0.001221 0.998709
pos_cabine_2 1450.00 5400.00 -323.00 0.050774 -0.001221 0.998709
pos_cabine_2 1750.00 5400.00 -645.00 0.050774 -0.001221 0.998709
pos 0.00 0.00 0.00 0.00 0.00 0.00
END # OF POSITIONS

COMMANDS

 - 129 -

name action part ini end inc
cmd_cabto ac_up cabine 1.00 0.00 0.025000
cmd_cabto_2 ac_up cabine 0.00 1.00 0.025000
cmd_open ac_openr door1r 0.00 1.00 0.050000
cmd_open ac_openl door1l 0.00 1.00 0.050000
cmd_close ac_openr door1r 1.00 0.00 0.050000
cmd_close ac_openl door1l 1.00 0.00 0.050000
cmd_open_2 ac_openl door2r 0.00 1.00 0.050000
cmd_open_2 ac_openr door2l 0.00 1.00 0.050000
cmd_close_2 ac_openl door2r 1.00 0.00 0.050000
cmd_close_2 ac_openr door2l 1.00 0.00 0.050000
cmd_press ac_press1 button1 0.00 1.00 0.050000
cmd_press_2 ac_press2 button2 0.00 1.00 0.050000
cmd_unpress ac_press1 button1 1.00 0.00 0.050000
cmd_unpress_2 ac_press2 button2 1.00 0.00 0.050000
END # of commands

VARIABLES
 open 0.00
 open_2 0.00
 floor 1.00
 false 0.00
 one 1.00
 two 2.00
 true 1.00
 tmp 0.00
END # of variables

BEHAVIORS :
BEHAVIOR open
 CheckVar open false
 SetVar open true
 DoCmd cmd_open
END # of behavior

BEHAVIOR open_2
 CheckVar open_2 false
 SetVar open_2 true
 DoCmd cmd_open_2
END # of behavior

BEHAVIOR close
 CheckVar open true
 SetVar open false
 DoCmd cmd_close
END # of behavior

BEHAVIOR close_2
 CheckVar open_2 true
 SetVar open_2 false
 DoCmd cmd_close_2
END # of behavior

BEHAVIOR press
 UserGoTo pos_press
 UserDoGest press RightHand
 DoCmd cmd_press

 - 130 -

 DoCmd cmd_unpress
END # of behavior

BEHAVIOR press_2
 UserGoTo pos_press_2
 UserDoGest press_2 RightHand
 DoCmd cmd_press_2
 DoCmd cmd_unpress_2
END # of behavior

BEHAVIOR moveto_2
 CheckVar floor one
 SetVar floor two
 DoCmd cmd_cabto_2
END # of behavior

BEHAVIOR moveto
 CheckVar floor two
 SetVar floor one
 DoCmd cmd_cabto
END # of behavior

BEHAVIOR move_cabine
 If floor one
 SetVar floor two
 DoCmd cmd_cabto_2
 Else
 SetVar floor one
 DoCmd cmd_cabto
 EndIf
END # of behavior

BEHAVIOR enter_12
 DoBh press
 DoBh moveto
 DoBh open
 UserGoTo pos_cabine
 DoBh close
 UserAttachTo cabine
 DoBh move_cabine
 UserDetach
 DoBh open_2
 UserGoTo pos_goout_2
 DoBh close_2
END # of behavior

BEHAVIOR enter_21
 DoBh press_2
 DoBh moveto_2
 DoBh open_2
 UserGoTo pos_cabine_2
 DoBh close_2
 UserAttachTo cabine
 DoBh move_cabine
 UserDetach
 DoBh open
 UserGoTo pos_goout

 - 131 -

 DoBh close
END # of behavior

BEHAVIOR enter
 UserGetClosest pos tmp pos_press,pos_press_2
 If tmp one
 DoBh enter_12
 Else
 DoBh enter_21
 EndIf
END # of behavior

BEHAVIOR goin
 UserGoTo pos_cabine
END # of behavior

BEHAVIOR goin_2
 UserGoTo pos_cabine_2
END # of behavior

BEHAVIOR goout
 UserGoTo pos_goout
END # of behavior

BEHAVIOR goout_2
 UserGoTo pos_goout_2
END # of behavior
END OF BEHAVIORS

END # of file

10.3 ACE Python Interface Description

s = cmdline () : Returns a string with the arguments passed to ACE in the command line.
Arguments that ACE understands are not included in the string.

viewfloor (onoff) : Turns on if 1 is the argument, off otherwise.

viewaxis (onoff) : Turns on if 1 is the argument, off otherwise.

setcamera (vx, vy, vz, fx, fy, fz, [roll, fovx, fovy]) : Sets camera parameters view point,
focus point, roll, and fovs. Defaults are roll=0, fovx=45, fovy=-1.

setlight (id, x, y, z, r, g, b) : Sets light id. By default only ids 0 or 1 are ok. (x,y,z)
defines the light direction, and (r,g,b) the color in the range [0,1] for each component.

update ([n]) : Makes the screen and the simulation to be updated. n specifies how many
times to update, default==1.

f = lastframe () : Returns the last frame number updated.

setcury (y) : Sets the current y position.

y = getcury () : Gets the current y position.

 - 132 -

loadfile (filename) : Loads an iv/wrl file and displays it.

avoidwalkcol (onoff, [range, fov, gap, freq, sleep]) : Turns on/off a simple collision
avoidance during walk. Default is off, default parameters: range=1400, fov=10, gap=700,
freq=3, sleep=5.

n = numvos () : Return the number of virtual objects. All ids created are inside the
interval 0<=id.

vo = vonew (name, filename, [px, pz, ox, oy, oz, color, d1, d2, d3]) : Creates a virtual
object solid or from a iv/wrl file at position (px,cury,pz) and orientation (ox,oy,oz). If
filename == 'CUBE', (d1,d2,d3) = (length,height,width). If filename == 'CYLINDER',
(d1,d2) = (radius,height). If filename == 'SPHERE', (d1) =(radius). String color can be:
black, red, darkred, green, darkgreen blue, darkblue, yellow, darkyellow, magenta,
darkmagenta cyan, darkcyan, gray, darkgray, white, skin.

vosetdata (vo, data) : Associates with vo any data for user usage.

data = vogetdata (vo, [keep]) : Retrieves the previously associated data. By default,
keep==1, what means that the vobject keeps referencing the data. If keep==0, the data is
dereferenced and thus destroyed automatically if the ref counter becomes 0.

bool = voisvh (vo) : Returns 1 if vo is the id of a virtual human, and false otherwise.

bool = voisso (vo) : Returns 1 if vo is the id of a smart object, and false otherwise.

vo = vofind (name) : Returns the id of the virtual object with the given name. -1 is
returned if the name is not found.

name = voname (vo) : Returns the name of the virtual object vo.

vosetpos (vo, x, z, [ox, oz, y, oy]) : Puts vo in position (x,y,z) with orientation (ox,oy,oz)
if y is not given, the current y is used.

voseeable (vo, state) : Sets vo to be perceivable or not from a vhuman. By default, all
objects are seeable.

p = vogetpos (vo) : Gets the current position and orientation of vo. p is a list containing
(x,z,ox,oz,y,oy). This order is to simplify most applications that work with 2d
coordinates.

vodisplay (vo, onoff) : Will display or hide a vo.(not working...).

matrix = vogetlocalmat (vo, [jointid]) : Will get the matrix relative to the parent node.
JointId can be specified for a vhuman and can be any of BODY_N3D* numbers in the
file body_def.h.

vosetlocalmat (vo, matrix, [jointid]) : Will set the matrix relative to the parent node.
JointId can be specified for a vhuman and can be any of BODY_N3D* numbers in the
file body_def.h.

matrix = vogetglobalmat (vo, [jointid]) : Will get the matrix relative to the root scene
node. JointId can be specified for a vhuman and can be any of BODY_N3D* numbers in
the file body_def.h.

 - 133 -

vr = vrusernew ([onoff=1]) : Creates a virtual hand connected to the fob and cyber
glove. Only smart objects created before this command will be considered. If onoff is 0,
FOB and Glove are not used.

vh = vhnew ([name, inffile, px, pz, ox, oz]) : Creates a new virtual human using the
default virtual human path and the current y position. If inffile=="SOLID", a solid-type
agent is created.

ok = vhstop (vh, action_name, [face_decay]) : Stops an action. action_name is a string
containing the name of the saction. For example 'walk', 'look', etc. For actions that have a
specific id, this id is to be used, like for 'keyframe'. 1 is returned if the action was found.

ok = vhactivate (vh, action_name, [face_duration, face_weight, face_intensity]) :
Activates an action. action_name is a string containing the name of the saction. For
example 'walk', 'look', etc. For actions that have a specific id, this id is be used, like for
'keyframe'. 1 is returned if the action was found.

vhbreathe (vh, time, intensity) : Changes the parameters of sa_breathe, default: 0.4, 1.5.

ok = vhtransitions (vh, action_name, initial, final) : Changes the transitions durations
(in secs) of an action.

ok = vhloadface (vh, face_name, filename) : Loads a face expression file.

vhwalkspeed (vh, lin, [ang]) : Sets the linear and angular speed during walk. If a value
is 0, it is not modified. By default, ang is 0.

vhwalk (vh, px, pz, [ox, oz]) : Makes the current virtual human to walk to the given
location. The current y position is used.

bool = vhwalking (vh) : Returns 1 if the virtual human vh is walking, otherwise returns
0.

vhlook (vh, x, z, [y]) : Makes the virtual human to look to the given point. By default, y
is equal to 1600.

vhloadkf (vh, keyframe_name, trk_file) : Load a keyframe and associate it to
keyframe_name.

vhplay (vh, keyframe_name) : Play a previous loaded keyframe.

bool = vhplaying (vh, keyframe_name) : Returns 1 if the virtual human vh is playing
the, keyframe with given name, otherwise returns 0.

l = vhperceive (vh, [range, fov]) : Returns list of perceived vo ids. By default, range and
fov are -1, what makes the perception to work with the last value set for vh. Initially, the
values are: range==10000mm, and fov==120 degrees.

sopath (path) : Changes the current path to search for smart objects.

so = sonew (name, sofile, [px, pz, ox, oz]) : Creates a new smart object. The default
smart object path and the current y position are used.

sointeract (so, vh, [bhname, bhindex]) : Start interaction bhname. If a second integer
argument indicating the index of the interaction is given, the index is used and the name
is not considered.

 - 134 -

bool = sointeracting (so, [vh]) : Returns 1 if the virtual human vh is interacting with the
smart object so.

sowait (so) : Waits until all interactions are done.

soexec (so, [bhindex, bhname]) : Execute a smart object behavior with index bhindex.
If bhindex is not given, the first interaction is used. To specify the interaction by a name,
call with bhindex==-1 and bhname with the interaction name.

so = sogetcur () : Returns the last smart object that called a python callback.

n = sonumbhs (so) : Returns the number of available behaviors in the smart object.

s = sobhname (so, bhid) : Returns the name of the bhid behavior of the smart object.

n = sonumvars (so) : Return the number of state variables in the smart object.

s = sovarname (so, varid) : Returns the name of the varid state var of the smart object.

f = sogetvar (so, varid, [varname]) : Returns the state var value. If varid<0, varname is
used.

souselook (yes_or_no) : Enable or not the use of sa_look during an object interaction.

10.4 ACE Example Python Scripts

The Python function extension used by ACE are defined as the module aglib, so
that scripts must import this module. Some simple example Python scripts are shown
here, the following one creates one actor, and inside a loop makes it walk in circles:

from math import *
from aglib import *

vh1 = vhnew("bob")

radius = 2000
ang = 0

while ang<=6.4:
 if vhwalking(vh1)==0:
 ang = ang+0.5
 vhwalk (vh1, radius*sin(ang), radius*cos(ang))
 update()

The next script just creates 2 actors, an automatic door smart object, and
commands the actors to interact with the door. Note that many default parameters are
assumed, like when asking for the actor-object interaction, if no extra parameters are
defined, the first available interaction of the smart object is used.

 - 135 -

from aglib import *

vh1 = vhnew ("", "", 1000, 0)
vh2 = vhnew ("", "", 1200, 0)
so1 = sonew ("", "newso/autodoor.so")

sointeract (so1, vh1)
sointeract (so1, vh2)

The next script loads an actor and a smart object computer and then calls a
sequence of different actions and interactions, controlling a short animation sequence to
take and put back the computer’s diskette.

from aglib import *

setcamera (2578, 1354, 194, -2805, 497, 3242, 0, 45, -1)

vh1 = vhnew ("vh1")
vo = sonew ("computer", "test/computer.so")
vosetpos (vo, 1500, 1500, -1, 0);

sointeract (vo, vh1, "eject_floppy")
sowait (vo)
sointeract (vo, vh1, "take_floppy")
sowait (vo)
vhwalk (vh1, 0, 0)
update (50)
sointeract (vo, vh1, "put_floppy")
sowait (vo)
sointeract (vo, vh1, "push_floppy")
sowait (vo)

10.5 Actor Skeleton Joints

10.5.1 Skeleton Hierarchy

Figure 10.1 shows the skeleton joint hierarchy used to represent actors in
BodyLib. For an explanation of the related libraries, see section 2.5.

 - 136 -

Figure 10.1 – BodyLib skeleton Hierarchy.

 - 137 -

10.5.2 Joints Used by Action Push

The following joints are animated by the implemented push action, using the
inverse kinematics module, to perform actor-object manipulations. Note that some of the
listed joint names exist both for right and left limbs, so that they’re used according if the
manipulation is being done with the right or left hand.

VL1_TILT, VL2_TILT, VL2_ROLL, VL3_TILT, VL3_ROLL, VT4_TILT, VT4_ROLL,
VT4_TORSION, VT5_ROLL, VT5_TORSION, CLAV_ABDUCT, CLAV_ROTATE,
SHOULDER_FLEXION, SHOULDER_ABDUCT, SHOULDER_TWISTING, ELBOW_FLEXION,
ELBOW_TWISTING, WRIST_FLEXION, WRIST_PIVOT.

The following joints are used only when the knee flexion configuration is used.
Here, both the left and right joints relative to the following listed names are used. See
section 5.4 for details.

HIP_FLEXION, KNEE_FLEXION, ANKLE_FLEXION.

 - 138 -

 - 139 -

References

[Andrews 1991] G. Andrews, “Concurrent Programming: Principles and Practice”,
The Benjamin/Cummings Publishing Company, Inc., California,
ISBN 0-8053-0086-4, 1991.

[Aydin 1999] Y. Aydin, and M. Nakajima, “Database Guided Computer
Animation of Human Grasping Using Forward and Inverse
Kinematics”, Computers & Graphics, 23, 145-154, 1999.

[Babski 2000] C. Babski, and D. Thalmann, “Real Time Animation and Motion
Capture in Web Human Director”, Proceedings of Web3D and
VRML 2000 Symposium, 2000.

[Baciu 1998] G. Baciu, W. Wong, and H. Sun, “Hardware-Assisted Virtual
Collisions”, Proceedings of the ACM Symposium on Virtual Reality
Software and Technology, VRST, Taipei, Taiwan, 145-151, 1998.

[Badler 1997] N. N. Badler, “Virtual Humans for Animation, Ergonomics, and
Simulation”, IEEE Workshop on Non-Rigid and Articulated Motion,
Puerto Rico, June 97.

[Badler 1999a] N. Badler, C. Phillips, and B. Webber, “Simulating Humans:
Computer Graphics, Animation, and Control”, Oxford University
Press, March 25, 1999.

[Badler 1999b] N. Badler, R. Bindiganavale, J. Bourne, J. Allbeck, J. Shi, and M.
Palmer, “Real Time Virtual Humans”, International Conference on
Digital Media Futures, Bradford, UK, April, 1999.

[Badler 2000] N. Badler. "Animation 2000++", IEEE Computer Graphics and
Applications, January/February, 28-29, 2000.

[Baerlocher 1998] P. Baerlocher, R. Boulic, “Task-Priority Formulations for the
Kinematic Control of Highly Redundant Articulated Structures”, In
Proceedings of IROS, Victoria, Canada, 323-329, 1998.

 - 140 -

[Balcisoy 1998] S. Balcisoy, and D. Thalmann, “Hybrid Participant Embodiments in
Networked Collaborative Virtual Environments”, In Proceedings of
Multimedia Modeling’98, 130-137, IEEE, Lausanne, Switzerland,
1998.

[Balcisoy 2000] S. Balcisoy, M. Kallmann, P. Fua, and D. Thalmann, "A Framework
for Rapid Evaluation of Prototypes with Augmented Reality",
Proceedings of the ACM Symposium on Virtual Reality Software
and Technology (VRST), 2000.

[Barwick 1993] S. Parry-Barwick, and A. Bowyer, “Is the Features Interface
Ready?”, In “Directions in Geometric Computing”, Ed. Martin R.,
Information Geometers Ltd, UK, Cap. 4, 129-160, 1993.

[Battista 1999] G. Battista, P. Eades, R. Tamassia, and I. Tollis, “Graph Drawing –
Algorithms for the Visualization of Graphs”, Prenticce Hall, ISBN
0-13-301615-3, 432pp, 1999.

[Baumgart 1972] B. G. Baumgart, “Winged−Edge Polyhedron Representation”,
Technical Report STAN/CS/320, Stanford University, 1972.

[Becheiraz 1998] P. Becheiraz, “Un Modèle Comportemental et Émotionnel pour
l’Animation d’Acteurs Virtuels”, PhD thesis, Swiss Federal Institute
of Technology at Lausanne (EPFL), Lausanne, Switzerland, 1998.

[Berta 1999] J. Berta, “Integrating VR and CAD”, IEEE Computer Graphics and
Applications, 14-19, September / October, 1999.

[Bindiganavale 1998] R. Bindiganavale, and N. Badler, “Motion Abstraction and
Mapping with Spatial Constraints”, Proceedings of CAPTECH’98,
Lecture Notes in Artificial Intelligence 1537, Springer, ISBN 3-540-
65353-8, 70-82, 1998.

[Bindiganavale 2000] R. Bindiganavale, W. Schuler, J. Allbeck, N. Badler, A. Joshi, and
M. Palmer, “Dynamically Altering Agent Behaviors Using Natural
Language Instructions”, Proceedings of the 4th Autonomous Agents
Conference, Barcelona, Spain, June, 293-300, 2000.

[Blumberg 1995] B. Blumberg, and T. Galyean, “Multi-Level Direction of
Autonomous Creatures for Real-Time Virtual Environments”,
Proceedings of SIGGRAPH’95 6(11), 47-54, Los Angeles, 1995.

[Booch 1991] G. Booch, “Object Oriented Design with Applications”, The
Benjamin Cummings Publishing Company, Inc., ISBN 0-8053-
0091-0, 1991.

 - 141 -

[Bordeux 1999] C. Bordeux, R. Boulic, and D. Thalmann, “An Efficient and Flexible
Perception Pipeline for Autonomous Agents”, Proceedings of
Eurographics '99, Milano, Italy, 23-30, 1999.

[Boulic 1990] R. Boulic, N. Magnenat-Thalmann, and D. Thalmann, “A Global
Human Walking Model with Real Time Kinematic Personification”,
The Visual Computer, 6, 344-358, 1990.

[Boulic 1996] R. Boulic, S. Rezzonico, and D. Thalmann, “Multi Finger
Manipulation of Virtual Objects”, Proceedings of the ACM
Symposium on Virtual Reality Software and Technology, VRST, 67-
74, 1996.

[Boulic 1997] R. Boulic, P. Bécheiraz, L. Emering, and D. Thalmann, “Integration
of Motion Control Techniques for Virtual Human and Avatar Real-
Time Animation”, In Proceedings of VRST’97, ACM press, 111-
118, September 1997.

[Bowyer 1995] K. Bowyer, S. Cameron, G. Jared, R. Martin, A. Middleditch, M.
Sabin, and J. Woodwark, “Introducing Djinn – A Geometric
Interface for Solid Modelling”, Information Geometers, ISBN 1-
874728-08-9, 24pp, 1995.

[Brisson 1989] E. Brisson, “Representing Geometric Structures in d-Dimensions:
Topology and Order”, ACM Computational Geometry, 218-227,
1989.

[Brooks 1986] R. A. Brooks, “A Robust Layered Control System for a Mobile
Robot”, IEEE Journal of Robotics and Automation, 2(1), 14-23,
1986.

[Burdea 1993] G. Burdea, and P. Coiffet, “Virtual Reality Technology”, Wiley
Interscience, John Wiley & Sons, inc., ISBN 2-866601-386-7, 1993.

[Burdea 2000] G. Burdea, “Haptics Issues in Virtual Environments”, Proceedings of
Computer Graphics International, 295-302, Geneva, Switzerland,
June, 2000.

[Caicedo 1999] A. Caicedo, and D. Thalmann, “Intelligent Decision making for
Virtual Humanoids”, Workshop of Artificial Life Integration in
Virtual Environments, 5th European Conference on Artificial Life,
Lausanne, Switzerland, September 1999, 13-17.

 - 142 -

[Campagna 1999] S. Campagna, L. Kobbelt, and H. P. Seidel, “Directed Edges – A
Scalable Representation for Triangle Meshes”, Journal of Graphics
Tools 3, 4, 1-12, 1999.

[Carey 1997] R. Carey, and G. Bell, “The Annotated VRML 2.0 Reference
Manual”, Addison Wesley, ISBN 0-201-41974-2, 1997.

[Cassel 1994] J. Cassel, C. Pelachaud, N. Badler, M. Steedman, B. Achorn, T.
Becket, B. Douville, S. Prevost, and M. Stone, “Animated
Conversation: Rule-Based Generation of Facial Expression, Gesture
& Spoken Intonation for Multiple Conversational Agents”,
Proceedings of SIGGRAPH’94, 413-420, 1994.

[Cassel 1999] J. Cassell, H. Vilhjálmsson, K. Chang, T. Bickmore, L. Campbell
and H. Yan, “Requirements for an Architecture for Embodied
Conversational Characters”, Eurographics Computer Animation and
Simulation Workshop, 109-120, Springer Verlag, ISBN 3-211-
83392-7, Vienna, Austria, 1999.

[Catia] Catia V5 Product from IBM. The Knowledgeware Technology.
www-3.ibm.com/solutions/engineering/escatia.nsf/Public/know.

[Cavazza 1998] M. Cavazza, R. Earnshaw, N. Magnenat-Thalmann, and D.
Thalmann, “Motion Control of Virtual Humans”, IEEE Computer
Graphics & Applications, 18(5), 24-31, September/October, 1998.

[Cutkosky 1989] M. Cutkosky, “On Grasp Choice, Grasp Models, and the Design of
Hands for Manufacturing Tasks”, IEEE Transactions on Robotics
and Automation, 5(3), 269-279, 1989.

[Davis 1998] J. Davis, and A. Bobick “A Robust Human-Silhouette Extraction
Technique for Interactive Virtual Environments”, Proceedings of the
International Workshop on Modelling and Motion Capture
Techniques for Virtual Environments, CAPTECH ‘98, 12-25, ISBN
3-540-65353-8, Geneva, Switzerland, 1998.

[Delingette 1994] H. Delingete, “Simplex Meshes: A General Representation for 3D
Shape Reconstruction”, Proceedings of the International Conference
on Computer Vision and Pattern Recognition, CVPR'94, Seattle,
USA, June, 1994.

[Dinsmore 1995] M. Dinsmore, N. Langrana, G. Burdea, and J. Ladeji, “Virtual
Reality Training Simulation for Palpation of Subsurface Tumors”,
Proceedings of the Virtual Reality Annual International Symposium,
VRAIS’95, March 1-5, Albuquerque, New Mexico, 54-60, 1995.

 - 143 -

[Donikian 1994] S. Donikian, and B. Arnaldi, “Complexity and Concurrency for
Behavioral Animation and Simulation”, Eurographics Computer
Animation and Simulation Workshop, Oslo, Norvege, September,
1994.

[Donnart 1996] J. Y. Donnart, and J. A. Meyer, “Learning Reactive and Planning
Rules in a Motivationally Autonomous Animat”. IEEE Transactions
on Systems, Man, and Cybernetics, part B: Cybernetics, 26(3), 381-
395, June, 1996.

[Emering 1999] L. Emering, “Human Action Modeling and Recognition for Virtual
Environments”, PhD Thesis, Swiss Federal Institute of Technology -
EPFL, Lausanne, Switzerland, 1999.

[Farenc 2000] N. Farenc, S. R. Musse, E. Schweiss, M. Kallmann, O. Aune, R.
Boulic, and D. Thalmann, “A Paradigm for Controlling Virtual
Humans in Urban Environment Simulations”, Applied Artificial
Intelligence Journal 14(1), ISSN 0883-9514, January, 69-91, 2000.

[Farin 1992] G. Farin, “Curves and Surfaces for Computer Aided Geometric
Design: a Practical Guide”, 3rd edition, Academic Press, London,
ISBN 0-12-249052-5, 1992.

[FLTK] FLTK web address: www.fltk.org.

[Foley 1992] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Jughes, “Computer
Graphics: Principles and Practice”, 2nd edition, Reading MA:
Addision/Wesley, 1992.

[Foley 2000] J. D. Foley, “Getting There: The Ten Top Problems Left”, IEEE
Computer Graphics and Applications, January/February, 66-68,
2000.

[Franklin 1996] S. Franklin, and A. Graesser, “Is it an Agent, or Just a Program?: a
Taxonomy for Autonomous Agents”, Proceedings of the Third
International Workshop on Agent Theories, Architectures, and
Languages, Springler Verlag, Berlin/Heidelberg, Germany, 1996.

[Funge 1999] J. Funge, “AI for Games and Animation: A Cognitive Modeling
Aproach”, A. K. Peters, Natick, MA, 1999.

[Geib 1994a] C. Geib, L. Levison, and M. Moore, “SodaJack: An Architecture for
Agents that Search for and Manipulate Objects”, Technical Report
MS-CIS-94-13, University of Pennsylvania, 1994.

 - 144 -

[Geib 1994b] C. Geib, “The Intentional Planning System: ItPlanS”, Proceedings of
AIPS, 1994.

[Gibson 1977] J. J. Gibson, “The theory of affordances”, In R. Shaw & J.
Brandsford (eds.), Perceiving, Acting and Knowing. Hillsdale,
NJ:Erlbaum, 1977.

[Granieri 1995] J. Granieri, W. Becket, B. Reich, J. Crabtree, and N. Badler,
“Behavioral Control for Real-Time Simulated Human Agents”,
Symposium on Interactive 3D Graphics, 173-180, 1995.

[Guibas 1985] L. Guibas and J. Stolfi, “Primitives for the Manipulation of General
Subdivisions and the Computation of Voronoi Diagrams”, ACM
Transaction on Graphics, 4, 75-123, 1985.

[Hand 1997] C. Hand, “A Survey of 3D Interaction Techniques”, Computer
Graphics Forum, 16(5), 269-281, 1997.

[Hettinger 1997] L. Hettinger, “Perceiving in Virtual Environments: The Multisensory
Nature of Real and Virtual Worlds”, Tutorial Notes, Proceedings of
the ACM Symposium on Virtual Reality Software and Technology
(VRST), September, Lausanne, Switzerland, 1997.

[Hodgins 1995] J. Hodgins, W. Wooten, D. Brogan, and J. O'Brien, “Animating
Human Athletics”, In Proceedings of SIGGRAPH '95, 6(11), 71-78,
Los Angeles, 1995.

[Huang 1995] Z. Huang, R. Boulic, N. Magnenat-Thalmann, and D. Thalmann, “A
Multi-Sensor Approach for Grasping and 3D Interaction”,
Proceedings of Computer Graphics International, Leeds, UK, June,
1995.

[Johnson 1997] W. Johnson, and J. Rickel, “Steve: An Animated Pedagogical Agent
for Procedural Training in Virtual Environments”, SIGART Bulletin,
ACM Press, 8(1-4), 16-21, 1997.

[Kalawsky 1993] R. S. Kalawsky, “The Science of Virtual Reality and Virtual
Environments”, Addison-Wesley, ISBN 0-201-63171-7, 1993.

[Kallmann 1998] M. Kallmann and D. Thalmann, “Modeling Objects for Interaction
Tasks”, EGCAS’98 - 9th Eurographics Workshop on Animation and
Simulation, 73-86, Lisbon, Portugal, 1998.

[Kallmann 1999a] M. Kallmann and D. Thalmann, “A Behavioral Interface to Simulate
Agent-Object Interactions in Real-Time”, Proceedings of Computer
Animation 99, IEEE, 138-146, Geneva, 1999.

 - 145 -

[Kallmann 1999b] M. Kallmann, D. Thalmann, “Direct 3D Interaction with Smart
Objects”, Proceedings of ACM VRST'99, London, December, 1999.

[Kallmann 2000a] M. Kallmann, J. Monzani, A. Caicedo, and D. Thalmann, “ACE: A
Platform for the Real Time Simulation of Virtual Human Agents”,
EGCAS’2000 - 11th Eurographics Workshop on Animation and
Simulation, Interlaken, Switzerland, 2000.

[Kallmann 2000b] M. Kallmann, E. de Sevin, and D. Thalmann, “Constructing Virtual
Human Life Simulations”, Proceedings of the Avatars’2000
workshop, Lausanne, Switzerland, 2000.

[Kalra 1992] P. Kalra, A. Mangeli, N. Magnenat Thalmann, and D. Thalmann,
“Simulation of Facial Muscle Actions Based on Rational Free Form
Deformations”, Proceedings of Eurographics’92, 59-69, 1992.

[Kalra 1998] P. Kalra, N. Magnenat Thalmann, L. Moccozet, G. Sannier, A.
Aubel, and D. Thalmann, “Real-Time Animation of Realistic Virtual
Humans”, IEEE Computer Graphics & Applications, 18(5), 42-56,
September/October, 1998.

[Kettner 1998] L. Kettner, “Designing a Data Structure for Polyhedral Surfaces”,
Proceedings of the Fourteenth Annual Symposium on Computational
Geometry, Minneapolis, Minnesota, USA, 146-154, June, 1998.

[Kitamura 1998] Y. Kitamura, A. Yee, and F. Kishino, “A Sophisticated Manipulation
Aid in a Virtual Environment using Dynamic Constraints among
Object Faces”, Presence, 7(5), 460-477, October, 1998.

[Koga 1994] Y. Koga, K. Kondo, J. Kuffner, and J. Latombe, “Planning Motions
with Intentions”, Proceedings of SIGGRAPH’94, 395-408, 1994.

[Latombe 1991] J.-C. Latombe, “Robot Motion Planning”, ISBN 0-7923-9206-X,
Kluwer Academic Publishers, Boston, 1991.

[Levinson 1994a] L. Levinson and N. Badler, “How Animated Agents Perform Tasks:
Connecting Planning and Manipulation Throught Object-Specific
Reasoning”, In Working Notes from the Workshop on “Towards
Physical Interaction and Manipulation”, AAAI Spring Symposium,
1994.

[Levinson 1994b] L. Levinson, “Connecting Planning and Acting: Towards an
Architecture for Object-Specific Reasoning”, PhD thesis, University
of Pennsylvania, 1996.

 - 146 -

[Lienhardt 1989] P. Lienhardt, “Subdivisions of N-Dimensional spaces and N-
Dimensional Generalized Maps”, ACM Symposium on
Computational Geometry, 228-236, 1989.

[Luckas 1997] V. Luckas, and T. Broll, “CASUS, An Object-Oriented Three-
Dimensional Animation System for Event-Oriented Simulators”,
Proceedings of Computer Animation, IEEE, 144-150, Geneva, 1997.

[Lutz 1996] M. Lutz, “Programming Python”, Sebastapol: O’Reilly, 1996. (see
also: www.python.org)

[Maes 1995] P. Maes, T. Darrell, B. Blumberg, and A. Pentland, “The ALIVE
System: Full-body Interaction with Autonomous Agents”, In
Proceedings of Computer Animation, IEEE, 11-18, Geneva,
Switzerland, 1995.

[Mäntylä 1988] M. Mäntylä, “An Introduction to Solid Modeling”, Computer
Science Press, Maryland, ISBN 0-88175-108-1, 1988.

[Microsoft] Microsoft Corporation web page, www.microsoft.com.

[Millar 1999] R. J. Millar, J. R. P. Hanna, and S. M. Kealy, “A Review of
Behavioural Animation”, Computer & Graphics, 23, 127-143, 1999.

[Mine 1995] M. Mine, “Virtual Environment Interaction Techniques”, UNC
Chapel Hill, Computer Science, Technical Report TR95-018, 1995.

[Mine 1997] M. Mine, F. P. Brooks Jr., and C. Sequin, “Moving Objects in Space
Exploiting Proprioception in Virtual Environment interaction”,
Proceedings of SIGGRAPH’97, Los Angeles, CA, 1997.

[Moccozet 1997] L. Moccozet, and N. Magnenat-Thalmann, “Dirichlet Free-Form
Deformations and their Application to Hand Simulation”, in
Proceedings of Computer Animation, IEEE, 93-102, Geneva, 1997.

[Molet 1996] T. Molet, R. Boulic, and D. Thalmann, “A Real-Time Anatomical
Converter for Human Motion Capture”, in Proceedings of
Eurographics Workshop on Computer Animation and Simulation,
79-94, Springer, Wien, 1996.

[Molet 1998] T. Molet, “Etude de la Capture de Mouvements Humains pour
l’Interaction en Environnements Virtuels”, PhD thesis, Swiss
Federal Institute of Technology at Lausanne (EPFL), Lausanne,
Switzerland, 1998.

 - 147 -

[Monzani 2000] J. Monzani and D. Thalmann, “A Sound Propagation Model for
Interagents Communication”, Procedings of the 2nd Virtual Worlds
Conference – VW2000, 135-146, Paris, France, 2000.

[Moreau 1998] G. Moreau, and S. Donikian, “From Psychological and Real-Time
Interaction Requirements to Behavioural Simulation”, EGCAS’98 -
9th Eurographics Workshop on Animation and Simulation, Lisbon,
Portugal, 29-44, 1998.

[Motion Star] Ascension web address: www.ascension-tech.com.

[Motivate] Motivate product information, Motion Factory web address:
www.motion-factory.com.

[Musse 1997] S. Musse, and D. Thalmann, “A Model of Human Crowd Behavior:
Group Inter-Relationship and Collision Detection Analysis”, In
Proceedings of the Eurographics Workshop on Computer Animation
and Simulation, 39-51, Budapest, Hungary, September, 1997.

[Nemo] Nemo game engine web page: www.nemo.com.

[Newel 1982] A. Newell, “The knowledge level”, Artificial Intelligence, 18, 87-
127, 1982.

[Nishino 1997] H. Nishino, K. Utsumiya, D. Kuraoka and K. Korida, “Interactive
Two-Handed Gesture Interface in 3D Virtual Environments”,
Proceedings of the ACM Symposium on Virtual Reality Software
and Technology, VRST, Lausanne, Switzerland, 1-14, 1997.

[Norvig 1992] P. Norvig, “Paradigms of Artificial Intelligence Programming: Case
Studies in Common Lisp”, M. Kaufmann, ISBN 1-55860-191-0,
1992.

[Noser 1996] H. Noser, “A Behavioral Animation System based on L-Systems and
Synthetic Sensors for Actors”, PhD thesis, Swiss Federal Institute of
Technology at Lausanne (EPFL), Lausanne, Switzerland, 1996.

[Okada 1999] Y. Okada, K. Shinpo, Y. Tanaka and D. Thalmann, “Virtual Input
Devices based on Motion Capture and Collision Detection”,
Proceedings of Computer Animation 99, Geneva, May, 1999.

[Paoluzzi 1995] A. Paoluzzi, V. Pascucci, and M. Vicentino, “Geometric
Programming: A Programming Approach to Geometric Design”,
ACM Transactions on Graphics, 14(3), 266-306, July, 1995.

 - 148 -

[Pentland 1995] A. Pentland, “Machine Understanding of Human Action”, 7th
International Forum on Frontier of Telecom Technology, Tokyo,
Japan, 1995.

[Perlin 1996] Perlin K., and A. Goldberg, “Improv: A System for Scripting
Interactive Actors in Virtual Worlds”, In Proceedings of
SIGGRAPH’96, 205-216, 1996.

[Popescu 1999] V. Popescu, G. Burdea, and M. Bouzit, “VR Simulation Modelling
for a Haptic Glove”, Proceedings of Computer Animation 99,
Geneva, May, 1999.

[Poupyrev 1997] I. Poupyrev, S. Weghorst, M. Billinghurst, and T. Ichikawa, “A
Framework and Testbed for Studying Manipulation Techniques for
Immersive VR”, Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, VRST, Lausanne, Switzerland,
21-28, 1997.

[Pratt 1985] M. J. Pratt, and P. R. Wilson, “Requirements for Support of Form
Features in a Solid Modeling System”, Report R-85-ASPP-01,
CAM-I, 1985.

[Renault 1990] O. Renault, N. Magnenat-Thalmann, and D. Thalmann, “A Vision-
based Approach to Behavioral Animation”, The Journal of
Visualization and Computer Animation, 1(1), 18 – 21, 1990.

[Reynolds 1987] C. Reynolds, “Flocks, Herds and Schools: A Distributed Behavioral
Model”, Proceedings of SIGGRAPH ’87, Computer Graphics, v.21,
n.4, July, 25-34, 1987.

[Reynolds 1999] C. Reynolds, “Steering Behaviours for Autonomous Characters”,
Game Developers Conference, 1999.

[Russel 1995] K. Russell, T. Starner, and A. Pentland, “Unencumbered Virtual
Environments”, International Joint Conference on Artificial
Intelligence Entertainment and AI, ALife Workshop, 1995.

[Sannier 1999] G. Sannier, S. Balcisoy, N. Magnenat-Thalmann, and D. Thalmann,
“VHD: System for Directing Real-Time Virtual Actors”, The Visual
Computer, Springer, 15(7/8), 320-329, 1999.

[Sauer 1998] J. Sauer and E. Schömer, “A Constraint-Based Approach to Rigid
Body Dynamics for Virtual Reality Applications”, Proceedings of
the ACM Symposium on Virtual Reality Software and Technology,
VRST, Taipei, Taiwan, 153-161, 1998.

 - 149 -

[Sevin 2001] E. de Sevin, M. Kallmann and D. Thalmann, “Towards Real Time
Virtual Human Life Simulations”, Submitted to Computer Graphics
International Symposium 2001.

[Simeon 2000] T. Simeon, J. P. Laumond, and C. Nissoux, “Visibility Based
Probabilistic Roadmaps for Motion Planning”, Advanced Robotics
Journal 14(2), 2000.

[Schoeler 2000] A. Schoeler, R. Angros, J. Rickel, and W. Johnson, “Teaching
Animated Agents in Virtual Worlds”, Smart Graphics, Stanford, CA,
USA, 20-22, March, 2000.

[SGI] Silicon Graphics Inc. web page, www.sgi.com.

[Shah 1995] J. J. Shah, and M. Mäntylä, “Parametric and Feature-Based
CAD/CAM”, John Wiley & Sons inc. ISBN 0-471-00214-3, 1995.

[Stanney 1998] K. M. Stanney, R. R. Mourant, and R. S. Kennedy, “Human Factors
Issues in Virtual Environments: A Review of the Literature”,
Presence, 7(4), 327-351, August, 1998.

[Stanney 1998] K. Stanney, R. Mourant, and R. Kennedy, “Human Factors Issues in
Virtual Environments: A Review of the Literature”, Presence 7(4),
327-351, August, 1998.

[Stereographics] Stereo Graphics web address: www.stereographics.com

[Strassmann 1991] S. H. Strassmann, “Desktop Theater: Automatic Generation of
Expressive Animation”, PhD thesis, Massachusetts Institute of
Technology (MIT), School of Architecture and Planning, Media Arts
and Sciences Section, June, 1991.

[Sturman 1994] D. Sturman, and D. Zeltzer, “A Survey of Glove-based Input”, IEEE
Computer Graphics and Applications, 30-39, January, 1994.

[Tate 1995] D. Tate and L. Sibert, “Virtual Environments for Shipboard
Firefighting Training”, Proceedings of the Virtual Reality Annual
International Symposium, VRAIS’95, March 1-5, Albuquerque,
New Mexico, 61-68, 1995.

[TGS] Template Graphics Software Inc. web page, www.tgs.com.

[Thalmann 1990] N. Magnenat Thalmann and D. Thalmann, “Computer Animation:
Theory and Practice”, 2nd edition, Springer-Verlag Tokyo, ISBN 0-
387-70051-X, 1990.

 - 150 -

[Thalmann 1991] N. Magnenat Thalmann and D. Thalmann, “New Trends in
Animation and Visualization”, John Wiley & Sons Ltd., England,
ISBN 0-471-93020-2, 1991.

[Thalmann 1993] N. Magnenat Thalmann and D. Thalmann, “Models and Techniques
in Computer Animation”, Springer-Verlag, Tokyo, ISBN 0-387-
70124-9, 1993.

[Thalmann 1996] D. Thalmann, J. Shen, and E. Chauvineau, “Fast Human Body
Deformations for Animation and VR Applications”, Proceedings of
the Computer Graphics International, CGI’96, 166-174, June, 1996.

[TheSims] “The Sims” game web address: www.thesims.com/us.

[Tolani 1996] D. Tolani, and N. Badler, “Real-Time Inverse Kinematics of the
Human Arm”, Presence 5(4), 393-401, 1996.

[Tsutsuguchi 2000] K. Tsutsuguchi, S. Shimada, Y. Suenaga, N. Sonehara, and S.
Ohtsuka, “Human Walking Animation Based on Foot Reaction
Force in the Three-Dimensional Virtual World”, The Journal of
Visualization and Computer Animation, 2(1), February, 3-16, 2000.

[Tu 1994] X. Tu, and D. Terzopoulos, “Artificial Fishes: Physics, Locomotion,
Perception, Behaviour”, Proceedings of Computer Graphics, 43-50,
1994.

[Tyrrel 1993] T. Tyrrel, “Defining the Action Selection Problem”, Proceedings of
the Fourteen Annual Conference on Cognitive Science Society”,
Lawrence Erlbaum Associates, 1993.

[Vince 1992] J. Vince, “3-D Computer Animation”, Addison-Wesley, ISBN 0-
201-62756-6, 1992.

[VirTech] Virtual Technologies web address: www.virtex.com.

[VRML] VRML web address: www.vrml.org.

[Wang 1998] X. Wang, and J. Verriest, “A Geometric Algorithm to Predict the
Arm Reach Posture for Computer-aided Ergonomic Evaluation”,
The Journal of Visualization and Computer Animation, 9, 33-47,
1998.

[Watt 1989] A. Watt, “Fundamentals of Three-Dimensional Computer Graphics”,
Wokingham: Addison-Wesley, 1989.

[Watt 1992] A. Watt and M. Watt, “Advanced Animation and Rendering
Techniques”, Wokingham: Addison-Wesley, 1992.

 - 151 -

[Webber 1995] B. Webber, N. N. Badler, B. Di Eugenio, C. Geib, L. Levison, and
M. Moore, “Instructions, Intentions and Expectations”, Artificial
Intelligence Journal, 73, 253-269, 1995.

[Weiler 1985] K. Weiler, “Edge based Data Structures for Solid Modeling in
Curved-Surface Environments”, IEEE Computer Graphics and
Applications, 5(1):21-40, January 1985.

[Wernecke 1994] J. Wernecke, “The Inventor Mentor: Programming Object-Oriented
3D Graphics with Open Inventor Rel. 2”, Addison-Wesley, ISBN 0-
201-62495-8, 1994.

[Wiley 1997] D. Wiley, and J. Hahn, “Interpolation Synthesis for Articulated
Figure Motion”, Virtual Reality Annual International Symposium,
Albuquerque, New Mexico, March, 1997.

[Wooldridge 1995] M. Wooldridge, and N. R. Jennings, “Intelligent Agents: Theory and
Practice”, Knowledge Engineering Review, 10(2), June, 1995.

[Zeltzer 1991] D. Zeltzer, “Task-level Graphical Simulation: Abstraction,
Representation and Control”, Making them Move: Mechanics,
Control and Animation of Articulated Figures, N. Badler, B. Barsky
and D. Zeltzer eds., 3-33, 1991.

[Ziemke 1998] T. Ziemke, “Adaptive Behavior in Autonomous Agents”, Presence,
vol. 7, no. 6, 564-587, december 1998.

[Zorin 2000] D. Zorin, and P. Schröder, “Subdivision for Modeling and
Animation”, SIGGRAPH course notes, 2000.

 - 152 -

 - 153 -

Curriculum Vitae

Marcelo Kallmann is currently a PhD candidate at the
Computer Graphics Lab of the Swiss Federal Institute of Technology
in Lausanne (EPFL) since 1997. He obtained his diploma on
mathematics from the State University of Rio de Janeiro (UERJ) in
1993, and after following some courses at the Institute for Pure and
Applied Mathematics (IMPA), he did his MSc thesis on the subject of
polyhedral morphing at the Computer Graphics Lab of the Federal

University of Rio de Janeiro (COPPE/UFRJ), Brazil. His research interests range from
Computational Geometry, Robotics and Data Structures to Behavioral Animation,
Modeling and Virtual Reality. His web address is ligwww.epfl.ch/kallmann.html.

Publications

E. de Sevin, M. Kallmann, and Daniel Thalmann, “Towards Real Time Virtual
Human Life Simulations”, Computer Graphics International (CGI), 2001 (to appear).

S. Balcisoy, M. Kallmann, R. Torre, P. Fua, and D. Thalmann, “Interaction
Techniques with Virtual Humans in Mixed Environments”, Proceedings of the Second
International Symposium on Mixed Reality, Yokohama, Japan, 2000.

M. Kallmann, E. de Sevin, and D. Thalmann, “Constructing Virtual Human Life
Simulations”, Avatars’2000 Workshop, EPFL, Lausanne, Switzerland, 2000.

S. Balcisoy, M. Kallmann, P. Fua, and D. Thalmann, “A Framework for Rapid
Evaluation of Prototypes with Augmented Reality”, Proceedings of ACM VRST, 2000.

M. Kallmann, J.-S. Monzani, A. Caicedo, and D. Thalmann, “ACE: A Platform
for the Real Time Simulation of Virtual Human Agents”, EGCAS’2000 - Eurographics
Workshop on Computer Animation and Simulation, Interlaken, 2000.

M. Kallmann, J.-S. Monzani, A. Caicedo, and D. Thalmann, “A Common
Environment for Simulating Virtual Human Agents in Real Time”, Workshop on
Achieving Human-Like Behavior in Interactive Animated Agents, Spain, 2000.

 - 154 -

N. Farenc, S. Musse, E. Schweiss, M. Kallmann, O. Aune, R. Boulic, and D.
Thalmann, “A Paradigm for Controlling Virtual Humans in Urban Environment
Simulations”, Applied Artificial Intelligence Journal 14(1), 69-91, 2000.

D. Thalmann, S. R. Musse, M. Kallmann, “From Individual Human Agents to
Crowds”, Informatik / Informatique, Number 1, 2000.

M. Kallmann, D. Thalmann, “Direct 3D Interaction with Smart Objects”,
Proceedings of ACM VRST'99, December, London, 1999.

S. R. Musse, M. Kallmann and D.Thalmann, “Levels of Autonomy for Virtual
Human Agents”, Proceedings of the European Conference on Artificial Life, ECAL'99
poster, Lausanne, Switzerland, 345-349, 1999.

M. Kallmann and D. Thalmann, “A Behavioral Interface to Simulate Agent-
Object Interactions in Real-Time”, Proc. of Computer Animation, IEEE, 138-146,
Geneva, 1999.

D. Thalmann, S. R. Musse and M. Kallmann, “Virtual Humans' Behavior:
Individuals, Groups, and Crowds”, Digital Media Futures, Bradford, UK, 1999.

M. Kallmann and D. Thalmann, “Modeling Objects for Interaction Tasks”, 9th
Eurographics Workshop on Animation and Simulation, 73-86, Lisbon, Portugal, 1998.

N. Farenc, S. R. Musse, E. Schweiss, M. Kallmann, O. Aune, R. Boulic, and D.
Thalmann, “One Step Towards Virtual Human Management for Urban Environments
Simulation”, ECAI'98 - Workshop of Intelligent Virtual Environments, 1998.

M. Kallmann and A. Oliveira, “Homeomorphisms and Metamorphosis of
Polyhedral Models Using Fields of Directions Defined on Triangulations”, Journal of
the Brazilian Computer Society, ISSN 0104-6500 vol. 3 num. 3, April, 52-64, 1997.

M. Kallmann and A. Oliveira, “Metamorphosis of Polyhedral Models Using
Fields of Directions in Tetrahedralizations”, Proceedings of the Brazilian Symposium
of Computer Graphics and Image Processing – SIBGRAPI, 1996. In Portuguese.

M. Kallmann, “Representing Spatial Subdivisions and applying the Delaunay
Triangulation”. Proceedings of the Brazilian Symposium of Computer Graphics and
Image Processing – SIBGRAPI, 1995. In Portuguese.

M. Kallmann, “A Structure to Represent Spatial Subdivisions and the Delaunay
Triangulation”, Tech. Report ES-365/96 – COPPE/UFRJ. In Portuguese.

A. Oliveira, M. Kallmann, J. Pio, L. Garcia and R. Farias, “Introductory Papers
for Problems of the kind Shape from X”, Tech. Report ES-364/95, COPPE/UFRJ. In
Portuguese.

