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Abstract 

 

This thesis is about the problem of how to achieve real time virtual environments 
with autonomous virtual human actors, which can interact with virtual objects in order to 
achieve a given task. The focus is on interaction with day life objects having some proper 
functionality and purpose, as for example: automatic doors, general furniture, or a lift. 

The proposed approach is based on a complete definition and representation for 
interactive objects. A graphical modeler application was specifically developed in order 
to define such representation of interactive objects, which are called smart objects. This 
representation is based on the description of all interaction features: parts, movements, 
graspable sites, functionalities, etc. In particular, smart objects keep interaction plans for 
each possible actor-object interaction, detailing all primitive actions that need to be taken 
by both the object and the actor, in a synchronized way. Regarding the shape 
representation of objects, a new boundary representation data structure is introduced, 
providing low storage space requirements together with constant time access to adjacency 
relations; what is needed by many geometric algorithms. 

An agent-based simulation environment is also presented with the built-in 
capability to simulate actor-object interactions, providing an automatic actor animation 
control for interactions with smart objects. The agent common environment (ACE) 
system is extendible and controllable with interactive Python scripts, and has been used 
as a system platform for research on behavioral animation. ACE incorporates many new 
solutions regarding the control of interactive virtual environments, including the 
interaction with smart objects using virtual reality devices. 

The approach proposed in this thesis was tested in many different applications, 
and the results obtained are shown and discussed. 
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Résumé 

 

Cette thèse aborde le problème des environnements virtuels avec des acteurs 
virtuels autonomes qui peuvent interagir avec des objets virtuels pour accomplir une 
tâche donnée. On se concentre sur les interactions avec des objets courants qui ont une 
fonctionnalité et un but propres, par exemple: des portes automatiques, du mobilier, ou 
encore un ascenseur. 

L’approche proposée est basée sur une définition et une représentation complètes 
des objets interactifs. Une application de type modeleur graphique a été développée pour 
permettre de représenter complètement les objets interactifs appelés objets intelligents 
(smart objects). Cette représentation est basée sur la description de toutes les 
caractéristiques d’interaction (interaction features): les parties, les mouvements 
possibles, les endroits pour saisir, les fonctionnalités, etc. Les objets intelligents 
contiennent en particulier des schémas d’interaction avec l’acteur. Ces schémas décrivent 
en détail toutes les actions élémentaires qui doivent être exécutées de façon synchronisée 
par l’acteur et par l’objet. En ce qui concerne la représentation géométrique des objets, 
nous introduisons une nouvelle structure de données utilisant peu d’espace mémoire tout 
en donnant des relations d’adjacence en temps constant. Ces caractéristiques sont très 
utiles pour des nombreux algorithmes géométriques. 

Un environnement de simulation basé sur la conception agent a été aussi 
développé, avec la capacité de contrôler automatiquement l’animation des acteurs pour 
les faire interagir avec les objets intelligents. L’environnement commun des agents (ACE) 
est extensible et contrôlable depuis des scripts Python et est actuellement utilisé comme 
plate-forme de recherche et développement dans le domaine de l’animation 
comportementale. ACE propose plusieurs nouvelles solutions par rapport au contrôle des 
environnements interactifs, comme par exemple des interactions avec les objets 
intelligents en utilisant des dispositifs de réalité virtuelle. 

L’approche proposée dans cette thèse a été testée avec de nombreuses applications 
et les résultats obtenus sont présentés et discutés. 
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1 Introduction 

Computer graphics systems are no longer synonym of a static scene showing 3D 
objects. In most nowadays applications, objects are animated, they have deformable 
shapes and realistic physically based movements. Such objects “exist” in virtual 
environments and are being used to simulate a number of different situations. For 
instance, costs are saved whenever it is possible to simulate and predict the result of a 
product before manufacture. 

Technology has advanced, and now many standards exist in order to allow the 
creation and exchange of different kinds of data used in such environments. The 
increasing power of nowadays computers, associated with the lowering of costs, permits 
people to have all this technology available in their standard personal computers. 

Users of such systems are no longer passive, but they can interact with virtual 
environments. Using special hardware devices, they can even realistically feel themselves 
immersed in these environments, interacting with virtual entities, feeling and seeing as if 
they were really inside this virtual reality. 

Although many technical issues are not fully solved, a lot of attention has been 
given to a next step: lifelike behaviors. The issue is to have virtual entities existing in 
virtual environments, deciding their actions by their own, with realistic human 
appearance, animated with realistic movements, “living” in virtual environments and 
exhibiting proper and unpredictable behaviors. As a natural consequence, computer 
animation techniques today are strongly related to artificial intelligence and robotics 
techniques. 

Researchers from areas like philosophy, psychology, cognitive sciences, etc, 
discuss whether virtual creatures can behave or not as living creatures. Fundamental 
concepts around human nature and artificial intelligence are still not fully understood. As 
particle physics share properties with astronomy, high-end technological issues are facing 
concepts of life. 

The reader will not find any answers to such dilemmas in this thesis, neither the 
development of any new artificial intelligence technique. Instead, what I propose in this 
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work is a new alternate approach to exactly overcome the difficulty to model some 
specific intelligent behaviors in virtual actors. 

This thesis focuses on the topic of object interaction inside virtual environments. 
Although many different related issues are also considered, I concentrate on the problem 
of how to have virtual environments with human-like characters and objects that can 
coherently interact between them, using the bottom-up approach for artificial intelligence, 
i.e., behavioral animation. 

1.1 Motivation and Objectives 

It is still a challenge to build in computers a virtual actor that can decide its 
motions, reacting and interacting with its virtual environment, in order to achieve a 
simple task given by the animator. This virtual actor might have its own way to decide 
how to achieve the given task, and so, many different sub-problems from many areas 
arise. 

One of these sub-problems is how to give enough information to the virtual actor 
so that it is able to interact with each object of the scene. That means, how to give to an 
actor the ability of interaction with general objects, in a real-time application. This 
includes a lot of different kinds of interactions that can be considered. Some examples 
are: the action of pressing a button, opening a book, pushing a desk drawer, turning a key 
to then open a door and so on. 

More than enabling actor-object interactions in virtual environments, another 
objective here is to address different solutions to let the animator control simulations, by 
giving tasks to actors or by interacting with objects. Note also that interactive virtual 
environments need, by nature, to run in real time. In this way, all issues addressed in this 
work take into account the need to run in real time systems. 

A final challenging objective is to construct an interactive virtual environment to 
be used as a development platform for many applications, able to coordinate virtual 
actors and objects with proper behaviors, actor-object interactions, and user interaction 
with the environment. 

1.2 Approach 

In order to have virtual actors interacting with objects in the environment, there 
are many complex aspects to consider. Maybe the most difficult behavior to model is the 
actor capacity to recognize object features and to decide what actions are possible to 
perform with it. A human-like behavior would recognize a given object with vision and 
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touch, and then, based on past experiences and knowledge, the correct sequence of 
motions would be deduced and executed. Such approach is still too complex to be 
handled in a general case, and not suited for interactive systems where a real time 
execution is required. 

To avoid complex and time-consuming algorithms that try to model the virtual 
actor’s “intelligence”, my proposed approach is to use a well defined object description 
where all properties, functionality features and a description of the steps to perform each 
available interaction are added to the geometrical shape description of the object. In that 
way, part of the most difficult thing to model, the knowledge of the virtual actor, is 
avoided. Instead, the designer of the object will use his own knowledge assigning to the 
object all information that the virtual actor need to access in order to interact with the 
object.  

In order to create objects with such complete semantic and interaction description, 
a specific modeler was developed. This modeler can then define the behavioral interface 
between actors and objects based on interaction plans of primitive actions. Such interface 
is then used as an agent communication language to synchronize agent-object 
interactions. This modeler was implemented using some visual programming techniques, 
letting non-programmers to define object behaviors and actor-object interaction plans. 
Objects modeled with such behavioral information are called in this work as smart 
objects, and the smart object modeler application is called as somod. 

 This kind of approach has a parallel with the area of feature modeling, where 
specific object characteristics are included to allow design coherence, reusability, 
evolution and also automatic manufacture of the designed model. Here, the focus is on all 
the features that can help the virtual actor to interact with the object. For this purpose, I 
introduce the term interaction feature. Some examples of such features are: parts that can 
be moved, the definition of each movement, best hand positions and shapes to manipulate 
parts, etc. 

This approach was tested using a developed agent-oriented system called ACE 
(Agent Common Environment), where virtual actors can read and interpret interaction 
plans to interact with virtual objects. This system presents interesting new characteristics, 
as the fact that the semantics of the environment stay distributed in the objects, so that 
virtual actors need to explore the environment to reach the objects and decide what 
interactions to perform to achieve a given task. 
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1.3 Applications 

As a result of the growing popularity, and many technological advances, 
computers are each time more used for 3D animation and simulation in many different 
applications. 

Computer animation in general has been widely used in the advertisement field, 
both in television and the internet. As technologies advance, many of these animations 
become three-dimensional, making them much more attractive. Electronic commerce 
already uses computer-generated promotion videos, and 3D models of products. 

The film industry also uses many computer animation resources for the generation 
of special effects. However, for films, interactive virtual environments are not required, 
and normally the animation generation uses a lot of human intervention in order to 
achieve perfection in the results. 

Visualization in general is each time closer to interactive graphics. From the 
visualization of 3D numerical datasets to the visualization of 3D architectural projects, 
vehicles, engineering components, etc. Walk-through in 3D environments can be 
enhanced with animated entities. For instance, a walk-through session for a 3D 
architectural evaluation can be much more realistic if virtual actors and objects are 
animated inside the virtual environment.  

Interactive and animated 3D virtual environments are often used in modern video 
games in the market. The video game industry uses high-end techniques from computer 
graphics, and even starts to open new research directions in the field. 

Virtual environments are already widely used for training and virtual prototyping. 
As it happened with the geometric modeling area, the automotive industry is investing a 
lot in virtual reality techniques for the design, test, and evaluation of human factors in 
vehicles. The same trend can be noticed in many other sectors, as the army and aerospace 
industries. 

Virtual environments with virtual human actors simulations in specific, are 
becoming each time more popular. Nowadays many systems are available and used to 
animate virtual humans, targeting different domains, as: human factors analysis, training, 
education, virtual prototyping, simulation-based design, and entertainment. 

In summary, nearly all applications using 3D animation in virtual environments 
are concerned with object interaction issues. Even if virtual human actors are less used 
because of the animation complexity involved, the possibility to have actor-object 
interactions in the virtual environment will always enhance the results obtained. 
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1.4 Contribution 

The main contribution of this thesis is the design, implementation and test of a 
new approach to specify interactive objects, which are suitable for interactions between 
virtual human actors and virtual objects in real time virtual environments. In this ambit, 
new solutions to approach related topics are covered in this thesis, which are: 

• A new data structure for the boundary representation of objects, which is able to 
give adjacency relations in constant time, requiring low storage space. 

• A feature modeling approach to represent interaction information of objects. 
This approach is based on the definition of interaction plans, using visual programming 
techniques. Such plans define the behavioral interface of objects and their functionality, 
enabling simulators to load and animate them coherently. 

• A simple and general methodology to control the animation of virtual human 
actors for performing object interaction manipulations. The simplicity comes from the 
fact that all hand manipulations are done with only two kinds of movements, which are: 
to reach some object part, and to follow some moving object part. Such simple 
movements can then be composed to create more complex and general interactions. 

• A real time system which can be used for the development of interactive virtual 
environments for different applications, offering built-in capabilities for actor-object 
interactions, and for user simulation control, including a direct object interaction 
metaphor using virtual reality devices. 

1.5 Organization of this Thesis 

In this introductory chapter, I have already freely used many terms without a 
proper definition of their meanings, which are normally context dependent. The next 
chapter will gradually introduce the needed background and define each used term, 
creating a coherent terminology to be used along the remaining chapters. Some general 
related works are also mentioned, but specific references to each subtopic are given in 
their specific chapters. 

Chapter 3 introduces a proposed new data structure for the boundary 
representation of objects, and chapter 4 exposes how interactive objects can be modeled 
and represented with their interaction features and interaction plans. Chapter 5 explains 
how virtual actors interpret interaction plans, and the animation techniques involved for 
the animation control of actors during object interaction. 

Chapter 6 introduces a system that is able to control actor-object interactions, 
according to the modeled interaction plans. This system is agent oriented and offers many 
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tools for the simulation control, including an interaction metaphor to let users interact 
with objects using virtual reality devices, which is the specific topic of chapter 7. 

Chapter 8 presents the many results obtained with the proposed techniques, and 
finally chapter 9 concludes this thesis. In addition, an appendix section is included, 
containing information about implementation issues, scripts and used data files. 
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2 Background, Terminology and Literature 
Review 

This chapter makes an overview of the terminology, concepts and background 
notions that are used along this thesis. They are grouped among the many areas touched 
by this work, and are introduced slowly, starting with computer graphics related areas, 
and ending up with concepts from artificial intelligence domains. However, it is assumed 
that this is not the first contact that the reader has with the covered topics, so that terms 
and concepts are not exhaustively discussed. 

Along the text, this chapter also presents a general literature review of related 
areas. However, an in-depth discussion of the related works, regarding each sub-topic of 
this thesis, is presented in each specific chapter. 

At the end, already using a more precise terminology, a description of the 
software modules and libraries used in this work is done, and a more precise description 
of the work proposed in this thesis is presented. 

2.1 Modeling 

The term modeling is used by nearly all sciences, for many different purposes. In 
general, a model is an artificially constructed object that makes the observation of another 
object easier. The term solid modeling is extensively used in computer graphics, mainly 
in the areas of computer aided design (CAD) and computer aided manufacture (CAM). 
The solid modeling area gives computational representations for objects that have a 
possible physical realization. Along this thesis, I will rather use the term object modeling, 
to refer to computational representations of objects that can be coherently displayed by 
the computer, even if a physical realization is not straightforward. For example, a 
mathematical plane in the 3D space does not exist in our real world, as its thickness 
would need to have a measurable dimension; but it can be coherently displayed by 
computers. 
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There are several proposed computational representations for objects, each one 
having its advantages and drawbacks. Some popular examples are: volumetric 
representations, constructive solid geometry (CSG) trees, and boundary representations. 
For a detailed description of such representations, I refer the user to the classical book of 
[Mäntylä 1988]. 

The Boundary representation (BRep) is one popular way to represent objects. 
BRep schemes represent objects by describing their surface boundary, which can be 
composed of planar faces and curved surfaces. Geometric modeling is the area where 
mathematical representations of curves and surfaces to represent solids are studied. With 
such mathematical representations, it is possible to accurately describe curved surfaces. 
One example of a popular surface representation is the nonuniform rational B-spline 
(NURBS). Among others, a classical reference to this topic is [Farin 1992]. 

Objects in BRep are easy to display in computers, i.e., to render. This is based to 
the fact that surfaces can be always approximated, given any desired precision, by a set of 
planar 3D polygons. Most nowadays computers provide specific hardware to render 3D 
polygons efficiently. The speed factor achieved with the use of such hardware (or 
graphics cards) has largely contributed with the popularity of BRep models. As speed is 
crucial in interactive applications, only BRep of objects are used in this work, and a new 
BRep data structure to represent objects is proposed in the next chapter. 

2.1.1 Feature Modeling 

Object modeling deals with the shape representation of an object. However, in 
many applications, other properties different than shape need also to be represented. 
Feature modeling is a technique used mostly by CAD/CAM applications [Shah 1995] 
where the main concern is to represent not only the shape of the object, but also all other 
important features, in the context of the application. 

One concrete example in a CAD application is the design of a simple pen’s cap 
that has a small hole in its original design. Suppose now that a new designer working on 
this model would prefer to close that small hole just because of esthetic reasons. Then, 
during the operation, he or she would see a note from the original designer saying that the 
hole was done in order to prevent children to stop breathing if they accidentally choke 
with the pen’s cap. Such information is very important in this situation and so it is 
included in the object’s representation. 

Following these concepts, I have coined the term interaction feature to refer to all 
interesting features of an object regarding its interaction capabilities. Some examples of 
interaction features are the modeling of the objects movements and its global 
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functionality. Feature modeling and interaction features are a key issue in this thesis and 
will be extensively discussed in the next chapters. 

2.1.2 Scene Graphs and Skeletons  

Sometimes objects can be composed of many parts, like disconnected 
components (or topologically: shells [Mäntylä 1988]). Parts may also have animation 
constraints, for example to specify that a part is only allowed to rotate around a specified 
rotation axis. When such composed objects are loaded, the connectivity of their parts is 
often represented with a scene graph. 

Most commercial toolkits for the implementation of 3D computer graphics 
systems are based on scene graphs; examples are: Open Inventor, Performer, Optimizer, 
Fahrenheit, etc. More information about these toolkits can be obtained from the web 
pages of [SGI], [TGS], and [Microsoft]. Scene graphs permit to organize, animate and 
control a hierarchy of object parts. See for instance [Wernecke 1994], and the chapter 4 
of [Thalmann 1991], for some examples of scene graphs implementations. 

 

 

 

 

 

 

Figure 2.1 – A scene being displayed is commonly represented with a scene graph. 
The scene graph contains all necessary information to display each object of the 
scene. The internal hierarchy of each object’s parts is also represented as a graph that 
is the object skeleton, and can be seen as a branch in the main scene graph.  

The word skeleton is also commonly used to refer to the specific scene graph of 
some given object in the scene. A skeleton defines all the connections of all parts of a 
given object, and also eventual transformations that can be applied to any node of the 
graph. These transformation nodes are also referred to as joints. Joints can be of different 
types and they will dictate the number of degrees of freedom (DOFs) in the skeleton. See 
the chapter 4 of [Thalmann 1991] for more explanation on these terms. Typically, a scene 
being displayed by the computer is represented by a single global scene graph, where the 
objects’ skeletons are specific branches of the scene graph (figure 2.1). 

 Scene Graph 

 

Skeleton of 
an object 
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2.1.3 Actors and Objects 

Objects can be built having a human-like appearance. Human-like objects can 
then be animated as characters in a scene, and are often referred to as virtual humans, or, 
for the sake of simplicity, actors. Some times the adjectives real and virtual will be used 
in order to distinguish a real (physical) object from its counterpart virtual object 
representation. The same adjectives can also be used to distinguish a real person from a 
virtual actor in some situations. Note that virtual actors share many properties with virtual 
objects. Both need to be modeled, to have a skeleton, and then to be animated. However, 
virtual humans are, in general, much more complex than objects. 

From now on, when not contrary stated, the word object (or virtual object) will be 
used to refer to the computer representation of day life objects, like computers, tables, 
cupboards, doors, etc. The concept of what is an object is rather intuitive, and depends on 
the context. For instance, in many situations, it may not be clear if a robot model should 
be considered as an object or an actor. 

In addition, composed objects are not trivial to be identified. For example, one 
can consider a furniture with many drawers as a single object composed of many parts, so 
that a skeleton scheme can be used with joints to define the possible movements of the 
drawers. All this information should be included in the feature modeling of the furniture. 
However, one can state that the furniture is an independent object, and the same for each 
drawer. In this example, it seems to be clear the correct design decision to take, but in 
many other cases, this decision is not straightforward: should a car, with all its doors, 
engine, wheels, radio, etc, form a single object? An answer to this question is deeply 
context-dependent. In fact, even in real life situations we change the way we classify 
single and composed objects from time to time. 

2.2 Animation 

Once objects and actors models are created, they can be displayed in a computer 
screen. Computer animation introduces the dimension of time and allows the 
manipulation of these entities to create the illusion of animated movements. 

Many different techniques are used in animation: key-framing animation, 
procedural animation, dynamic simulations, etc. Deformation techniques are also used to 
produce animation. For a good overview of the many techniques used in computer 
animation, see [Vince 1992], [Watt 1989], [Watt 1992], [Thalmann 1990] and [Thalmann 
1993]. 
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2.2.1 Motion Generators  

Animation is direct related to the generation of motion. Movements that are 
applied to objects can be realistic generated using dynamics or inverse kinematics [Watt  
1992]. But for virtual humans, the implementation of realistic motion generators is 
something more complex. 

A motion generator will typically generate, for each time step of the simulation, 
new values for the joints of an actor’s skeleton. Note that a virtual human skeleton can be 
very complex, with more than a hundred of DOFs, resulting in a complex structure to 
animate. Also, realistic rendering of the actor involves the modeling of an initial shape, 
with consecutive deformation according to the movements of the underlying skeleton. 
Even simpler solutions based on rigid parts require a reasonable effort to model each 
independent body limb and to connect them coherently. For an exposition on some of the 
issues involved in this area, see, for instance [Badler 1999a], [Kalra 1998] and [Thalmann 
1991]. Figure 2.2 shows some possible representations for virtual actors. 

 

 
Figure 2.2 – Possible representations for an actor. From left to right: skeleton 
representation, body composed of rigid parts, and two models with deformable skin. 

One popular animation technique for virtual humans is based on motion capture. 
The idea is to capture the movement of real persons by using some special hardware, 
based on high-end vision systems, magnetic sensors or infrared sensors. A brief 
introduction to this and other virtual reality devices will be given later in this chapter. 
With such kind of hardware, movements are captured by recording the position and 
orientation in space of each body limb of the person using sensors, at each time step. 
Once these movements are recorded, they can be mapped to the actor’s skeleton in order 
to produce a realistic animation, very close to the original movement. This mapping is not 
straightforward and different techniques exist, as for instance [Molet 1996]. 
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The same kind of recorded movement can be synthesized with advanced 
animation software, and this general approach of using pre-defined movements (motion 
captured or manually created with a software) is called as keyframe animation. 

However, serious problems arise when one needs to adapt a pre-recorded 
movement to skeletons of different sizes, or to dynamic situations. For example, it is very 
difficult to use a pre-defined movement to realistically animate the actor’s arm to pick-up 
an object that can be put at any position close to the actor. It is not reasonable to record 
an arm movement for all positions to reach in a discrete 3D space surrounding the actor; 
thus, other solutions are required. 

Inverse kinematics is a technique that can calculate one optimal configuration of a 
skeleton from a number of given constraints. For an introductory text, see [Watt 1992], 
and as an example of some latest advances achieved with inverse kinematics techniques, 
see [Baerlocher 1998]. A typical example is to calculate the joint values of all joints of 
the actor’s arm, given a goal position and orientation to be reached by the hand. The 
drawback is that most inverse kinematics methods are based on minimization techniques, 
and thus undesirable local minima can occur. Additionally, the animation result is not 
always considered natural. A promising approach is to use combined solutions in order to 
obtain parameterized motion captured data; one step in this direction can be seen in 
[Bindiganavale 1998]. Although such efforts are promising, inverse kinematics is still the 
simplest solution adopted to overcome the adaptability difficulties of keyframe-based 
techniques. 

An actor’s important motion that receives a lot of attention is walking. The 
movement of walking is difficult to realistically reproduce. It is difficult to achieve 
dynamics algorithms taking into account all needed subtleties of natural movement. In 
another sense, motion capture techniques are hard to be efficiently parameterized to work 
on all kind of skeletons, and to work with different speeds and ways of walking. A hybrid 
approach is somehow required. As an example of proposed walk motors, see, for 
instance, [Tsutsuguchi 2000] and [Boulic 1990]. 

2.2.2 Primitive Motions and Primitive Actions 

All these motion generators may be used together to generate a wide range of 
animations. Motions obtained with these techniques are going to be called primitive 
motions. Primitive motions can be used for different purposes. For example, inverse 
kinematics can be used to make the arm of the actor reach the position of a button, before 
pressing it. This action of reaching will be considered to be a primitive action, as it is 
directly generated by a primitive motion. Similarly, primitive actions applied to objects 
will move its parts, as to open and close drawers of some furniture. 
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Suppose now that an animation system provides the possibility to apply many 
different kinds of primitive actions to actors and objects. A first concern is the problem of 
coherently mixing the output of motion generators when they are triggered in parallel. 
Although this is not a common case in objects, for the animation of actors this is an 
important issue also known as motion blending [Boulic 1997]. For example, a motion 
blending is required in order to have an actor that walks while its arm, for some other 
purpose, is controlled by an inverse kinematics motion generator with higher priority. 

Once these capabilities of motion generation and blending over actors and objects 
are possible, the problem that arises is how to define the good combination of motions in 
order to simulate or animate a higher level task. More than that, when one wants to 
animate a complex scenario, it would be desirable to be able to do it in an efficient way. 
For instance, which parameters one would need to specify in order to animate a simple 
storyboard, as an actor that enters into a laboratory and takes a diskette of a computer? A 
first problem is the excessive amount of parameters to define. And once the work is done, 
as the animation was “pre-calculated”, it would not be interactive. 

2.2.3 Behavioral Animation 

When a virtual actor can just receive key instructions, or high level tasks, to 
perform some animation, a behavioral module is needed to deduce the correct primitive 
actions to apply, in order to achieve the given tasks. Many techniques exist to define 
behavioral modules, and such topic has a lot of attention in the behavioral animation and 
agents area. 

Prior to the science of behavioral animation, researchers initially developed 
physics-based models to make movements more realistic. A main drawback was that the 
animation was always predictable, and did not take into account individualities of the 
characters. The first behavioral system was developed by [Reynolds 1987] and 
introduced the concept of flocking behavior to animate flocks of birds. In this system, an 
individual bird follows a set of rules that makes it to follow the surrounding birds, while 
avoiding colliding with them. With such individual rules, the flock of birds presents 
realistic results of group motion, which would be a time-consuming task to perform with 
traditional animation techniques. In a recent work, [Reynolds 1999] addresses many other 
types of locomotion behaviors. 

Behavioral animation [Millar 1999] [Ziemke 1998] is considered to be the 
bottom-up approach to study artificial intelligence (AI). Traditionally, AI has been based 
on the view that intelligent behavior is the result of abstract processes at the “knowledge 
level” [Newel 1982]. But since the mid-1980s, traditional AI (which can be considered to 
be the “correct approach”) has shown serious problems in dealing with complex 
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environments. An alternate approach then appeared, based on behavioral-based robotics, 
focusing on perception and action [Brooks 1986]. 

Different perception techniques have been proposed and they will direct reflect 
the way that behavioral modules are designed. The first approach introduced to simulate 
realistic virtual human perception was done by [Renault 1990] which simulated a vision-
based perception. [Tu 1994] has applied a spherical visual perception to simulate fishes 
and [Reynolds 1987] has applied to birds. [Noser 1996] has also used vision perception, 
together with memory, and the perception of sound events. To overcome the difficult task 
of dealing with a vision-based perception, [Bordeux 1999] proposed pipelines of 
perception, which are configurable with different properties in an efficient way. 

2.3 Agents 

Behavior-based AI has then used the term agent to refer to an entity based on 
perception and action. Unfortunately, this concept is applied in many different fields so 
that the term agent is used for all sorts of systems, ranging from the most complex 
(humans, animals) to the very simple (programs, subroutines)  [Woolridge 1995] 
[Franklin 1996]. 

A common point is that an agent is always situated in an environment, and can 
interact with its environment by means of perception and action. Figure 2.3 depicts these 
main components of an autonomous agent. 

 

 

 

 

 

 

 

Figure 2.3 – Agents are based on three main modules: perception, behavior, and 
action. To act ant perceive, they need to “exist” in a virtual environment. 

2.3.1 The Virtual Environment 

Agents need to have an associated virtual environment (VE) where they can 
perceive the state of the simulation in order to decide the motions to apply. The motions 
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are then visualized in the same VE, which keeps and manages the graphical 
representation of each agent. The concept of perception is directly related with the 
existence of a coherent VE, that needs to be able to efficiently answer perception queries. 

Agents’ behavioral modules often run in an asynchronous way, using different 
computer processes, or threads (“light processes”). This is required so that, ideally, the 
process time consumed by one agent would not interfere with other agents. Thus agents 
would be able to access in parallel the needed information in the VE, exchange messages, 
etc. 

The VE needs to display the graphical representation of each agent being 
animated, and efficiently answer to perception queries. The display need to be updated 
with a sufficient and constant refresh rate to show a smooth and time-coherent animation. 
This also involves the use of parallel processes to keep a constant frame-rate. In general, 
psychologists show that a frame rate of 25Hz is sufficient for the human eye to perceive 
motion flowing smoothly. When a frame rate close to 25Hz is achieved it is common to 
say that the system runs in real time. Note that an interactive system, by nature, requires 
real time performance. However, many times it is not possible to keep a real time frame 
rate, and even with lower frame rates, depending on the application, it is common to say 
that a system still runs with interactive frame rates. 

2.3.2 Autonomous Agents 

Many terms can then be used to better specify the agent type. An agent is 
considered to be autonomous, when it is able to achieve given goals by only its own 
actions in a continuous interaction with the VE. It can be considered intelligent if it can 
solve complex goals, otherwise it is just considered reactive. Normally, intelligent 
behaviors are able to generate emergent behaviors, which are behaviors that were not 
directly programmed, and appear as a result of other simpler behaviors. [Ziemke 1998]. 
Agents that “take the initiative” while attempting to achieve a goal are called as pro-
active. They can have sociability characteristics to be able to cooperate and interact with 
other agents in the environment, using some agents language, i.e., some protocol to 
exchange data. Mobility, veracity, benevolence, rationality and adaptation are also terms 
used in the agents literature. For a good overview over the agents domain, see 
[Wooldridge 1995]. 

In the scope of this thesis, both objects and actors are considered autonomous 
agents: once their behavior are defined, they are able to act by themselves. Generally, 
objects are simpler than actors, and some times their behaviors can be seen as reactive 
rather than intelligent. For example, an automatic door is an object that can have sensors 
to detect when an actor approaches to then open itself. Actors will use sensors to detect 
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what the objects near them can offer in order to complete a given task. The adjectives 
reactive and intelligent can be used or not, depending on the context and on the 
complexity of the programmed behaviors.  

The agent concept aids the organization of things, but the problem of developing 
behavioral modules is still a major issue. As seen before, traditional AI techniques have 
not successfully provided effective behavioral modules to drive actors simulations in 
virtual environments. Actually, behavioral animation approaches the problem by direct 
implementation of the needed behaviors, without expecting that they would naturally 
emerge from a “well defined AI entity”. 

2.3.3 Programming Agents 

Many techniques have been proposed to define agent’s behavioral modules. 
However, even for each used technique in particular, different approaches are presented. 
The fact is that the implementation of behavioral modules is a highly context-dependent 
task, so that when applying standard techniques to a specific domain, some specific 
issues are differently solved. This situation leads to many specific systems being 
described in the literature, but the techniques involved do not vary significantly. 

The most popular techniques use rule-based behaviors. According to the system 
state, rules are selected producing state changes and so evolving the simulation. The LISP 
programming language is often used in such systems [Norvig 1992]. Other approaches 
use L-Systems as a procedural generation of rules [Prusinkiewicz 1990] [Noser 1997]. 

For a good exposition of the many specific methods for the behavioural control of 
actors, see [Funge 1999]. In his work, Funge considers that a higher level layer, the 
cognitive modeling layer goes beyond behavioral models, in that they govern what a 
character knows, how that knowledge is acquired, and how it can be used to plan actions. 

In this thesis, I do not enter into this cognitive modeling layer. The work herein 
presented proposes a behavioral technique to easily enable actor-object interactions. 
However, I do show that coherent cognitive models can be implemented based on the 
behavioral techniques proposed. Figure 2.4 illustrates the modern computer graphics 
pyramid proposed by [Funge 1999]. 

Another point is how to specify the parameters of the behavioral module in 
question. For example, how to enter the rules of a rule-based behavior? In order to 
achieve complex systems, many coherent rules need to be entered, what can be a 
strenuous task. Finite state machines are widely used to define different kinds of 
behaviors, as for instance, an emotional model for virtual actors [Becheiraz 1998]. 
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State machines can be represented graphically, and thus, graphical programming 
methods can be introduced to the behavioral programming task. Commonly, nodes 
represent states, and links between nodes represent transitions between states. At a first 
glance, these graphs seem to be a promising approach, but for most complex systems 
with a lot of states and transitions, they easily turn to be a difficult representation to 
construct, understand and maintain. For example, only coherently drawing graphs is a 
complex issue and is the subject of a lot of research [Battista 1999]. 

 

 

 

 

 

 

 

 

 

Figure 2.4 – Cognitive modeling is considered to be the new apex of the computer 
graphics modeling hierarchy [Funge 1999]. 

Many systems use some kind of finite state machine to define behaviors. Some 
examples are [Schoeler 2000] and [Moreau 1998]. When state machines get complex, 
hierarchical state machines can be used, as in [Motivate] and [Nemo]. Similar 
constructions are also proposed, as the parallel transitions network (PaTNets) [Granieri 
1995] [Bindiganavale 2000]. Another interesting example is the generation of realistic 
human motion introduced by [Hodgins 1995], where human athletics motions are 
simulated using dynamic models driven by simple state machines. 

Alternatively, scripts can be used to program behaviors. A classical system based 
on scripting is the New York University’s Improv (Improvisational Animation) [Perlin 
1996]. Scripting is in fact similar to writing simple programs with a simplified syntax and 
which can be interpreted in run time. Some interpreted programming languages can be 
used as scripting tools, as for instance the Python language [Lutz 1996]. 

Scripts can also be used to define plans. A plan is a scheme or program that 
determine a sequence of actions to take in order to accomplish a given goal. Actions are 
then considered units of behavior, and thus a plan can define a behavior. The term 
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scheduling is some time used for the specific problem of determining the time when each 
action should take place. 

Plans can be pre-defined, using scripting tools or state machines. Otherwise, they 
need to be generated during the simulation using some planning process. Planning 
processes are thus concerned with determining the correct ordering of actions to achieve 
a task. Planning may require reasoning modules, able to determine or conclude by logical 
“thinking”. Planning processes often need to search for solutions in a search space, and 
algorithms are very time consuming, not applicable to interactive applications. The best 
example is given by the work of [Koga 1994], which presents a planning algorithm for 
the definition of collision-free paths for several cooperating arms in order to manipulate a 
movable object between two configurations. Although realistic results are presented in 
[Koga 1994], the computational cost is prohibitive for interactive simulations, and also, 
extending the approach to general cases with different object interactions is still a 
challenge. However, in a near future, such planning algorithms may represent a 
promising approach for many cases. Researchers from the robotics field are still 
developing new algorithms, as the visibility-based probabilistic roadmap planner 
[Simeon 2000], that could run in real time in very simple conditions. A classical 
reference for the robotics motion planning domain is the book of [Latombe 1991]. 

In this thesis, I propose an approach where all needed information to perform 
actor-object interactions are available in pre-defined plans, retrieved from the feature-
based model of objects. This leaves for the actor the task of interpreting interaction plans, 
which don’t require any complex reasoning processes, what is suitable for interactive 
applications. A similar approach is proposed by [Levinson 1994b], where an object 
specific reasoner is used, based on a geometric and functional classification of objects for 
the interpretation of natural language instructions. This approach address only simple 
grasping tasks, but the main conceptual difference is where the semantics of objects is 
stored: in the herein proposed feature modeling approach, objects contain all their 
semantic and interaction information. 

The definition and control of agents’ behaviors is a large and tangled issue, and a 
common starting point of each proposed technique is to make simplifying assumptions, 
leading to highly context-dependent techniques. Classifying systems can be already a 
difficult task. A first classification is proposed by [Zeltzer 1991], where systems are 
placed in three categories: guiding, animator-level or task level. A task level system 
would need to use behavioral modules. In a more recent work, [Cavazza 1998] extended 
this classification specifically for the animation of virtual actors: participatory, guided, 
autonomous and interactive-perceptive. 
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It is important to note that even the most complex autonomous agent’s behavior is 
somehow programmed in the computer. Even with evolving methods, there is somewhere 
a known algorithm that enabled the evolution of the behaviors, so that the results are still 
predictable. The point here is to determine if a “real intelligent behavior” could be 
achieved only with a high number of complex connections of many but simple pre-
programmed behaviors. Such question is not solved and the topic is widely discussed by 
cognitive scientists. 

2.4 Virtual Reality 

Virtual Reality (VR) is related with the idea of user immersion in a synthetic 
computer-generated environment. The concept of immersion in a virtual environment 
(VE) is rather relative, depending on many factors. The VE can be seen as the virtual 
space inside the computer where virtual objects are loaded and animated, and the user 
should somehow feel immersed inside, seeing a graphical representation of him/herself, 
and even feeling and interacting with the objects in the VE. The success or failure of a 
particular VR system is not necessarily a function of how “realistic” it is. Rather, it is a 
function of the extent to which the behavioral goals of the system have been met. 

Many virtual reality devices exist in order to feed humans sensors with computer-
generated signals controlled by the VE. Such devices increase the feeling of immersion, 
however without any guarantee that the user will in fact feel immersed in the VE. Some 
people cannot even support wearing virtual reality devices, and cybersickness [Hettinger 
1997] has been detected in some users. 

Virtual reality devices open a series of different approaches of immersion and 
interaction with the virtual environment. Often, approaches are rather dependent to the 
context and to the used devices. The first problem addressed for interaction with VR 
environments using VR devices is concerned to the action of selection and displacement 
of objects. Many issues are involved, and a good overview is done by [Hand 1997]. 

It is possible to classify virtual reality devices in three main groups: Motion 
trackers, force-feedback devices, and stereographic displays. Some of these devices are 
shown in the following sub sections. 

2.4.1 Motion Trackers  

Motion trackers are devices that can capture the motion that the user is performing 
in order to allow the computer generate an exact copy of the movement, normally to 
animate the user graphical representation in the VE. This “controlled representation” is 
also called avatar. An actor is considered an avatar when it is designed not to be 
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autonomous, but to exactly follow the movements that the user of the system is 
performing and that are captured with some motion trackers. 

Many different kinds of motion trackers exist. Two types of them are widely used: 
sensors with 6 degrees of freedom, and data gloves. Sensors with 6 degrees of freedoms 
can give the position and orientation of each sensor, in relation to some reference 
position. Examples are emitter-sensor systems based on magnetic fields, infrared 
trackers, or ultrasound trackers. Figure 2.5 shows the popular [Motion Star] system, 
based on a black box that emits a magnetic field, and sensors that, based on the intensity 
of the field, can calculate the position and orientation of their location in space. 

 

 

Figure 2.5 – Motion Star system of Ascension Technologies Corporation. The black 
box on the right is the emitter of the magnetic field. Sensors can be placed anywhere 
in the surrounding space and they will capture the position and orientation in space, 
relative to the emitter. The main drawbacks of such magnetic systems are the 
interference caused by metallic objects, and the limited work volume size. 

Such a magnetic tracking system has been used by [Molet 1998] who developed 
an anatomical converter essentially based on orientation measurements, that converts the 
data captured by many sensors disposed in the user’s limbs in joint angles in real time. 
This method allows the fast and realistic generation of pre-defined motion sequences for 
later use to animate actors. 

Specifically designed to capture the movements of hand’s fingers, many types of 
data gloves exist. One example is the cyber glove model of Virtual Technologies 
[VirTech] shown in figure 2.6. 
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Figure 2.6 – The Cyber Touch glove of Virtual Technologies. This data glove uses 
fiber optics to measure fingers flexion. Tactile sensors are mounted in each finger and 
in the palm, in order to provide vibration sensations. 

2.4.2 Force Feedback 

Force feedback devices permit the user to feel and to have movements 
constrained, according to collisions in the VE. Such devices are getting very popular 
nowadays, and many new solutions are being proposed by companies and research labs. 
However, in general, they are still expensive devices, heavy, and not very practical for 
general purpose usage. Such devices were not used in this thesis. 

Many models exist for different purposes. A recent overview of such devices is 
presented by [Burdea 2000]. For example, figure 2.7 shows the newest product from 
Virtual Technologies [VirTech], which incorporates force-feedback for the fingers 
movements, and force-feedback for the hand movement. 

 

 
Figure 2.7 – The Cyber Force system from Virtual Technologies. Note that the 
external mechanical white arm, which provides the force feedback for the hand, can 
be also used to track the position and orientation of the hand. Force feedback at the 
finger level is provided by the small black exoskeleton mounted on top of the glove. 
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2.4.3 Stereographic Displays 

A stereographic display is one of the most important components in an immersive 
VR system. The idea is to have a display capable of sending a different image to each 
user’s eye, such that each image is generated from a different point of view, simulating 
the position of each user’s eye. 

Two main technologies exist. The one proposed by [Stereographics] use a normal 
screen ideally running with a frame rate of around 50Hz, where each consecutive pair of 
frames contain the images to send to each eye. Then, special glasses are used that, 
synchronized by infrared with the screen, can block the light going for one eye at a time. 
The result is that each eye will see the correct image in a refresh rate of 25Hz. These 
glasses are called as shutter glasses and are shown in figure 2.8. 

 

 
Figure 2.8 – The Shutter Glasses of Stereographics. The image shows the glasses and 
the infrared synchronizer that, when connected to the computer, synchronizes which 
lens of the glasses need to block the light, in order to let each eye see the correct 
image. The graphical software is required to generate different images for each eye in 
a sequential form. 

Stereo visualization is used not only with computer monitors, but also with 
projected images in walls, in many configurations. For instance, a CAVE is a box-like 
space where all walls show projected stereo images, so that the user has the impression to 
really be inside the 3D synthetic world. CAVEs can provide realistic environments and 
have been widely used for full-scale vehicle design. 

Another solution is based on polarized light. For this, two screens in parallel 
generate images, one generating images for the right eye, and the other for the left eye. 
These two images are projected using standard projectors but equipped with polarized 
lenses. The lenses are adjusted to polarize the light in different, orthogonal directions, and 
both images are projected overlapped. Then, by using very simple glasses that, in each 
eye, only light with a specific polarized orientation passes, the user will have the notion 
of a stereo vision. 
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Displays can be also head mounted. Head mounted displays (HMD) ideally 
provide the best solution for immersive visualization, as it blocks all contact that the user 
would have with the real world, and it moves together with the user. However, available 
systems are still very expensive and have many constraints, as the limited field of view, 
which in most cases is close to only 30 degrees. Because of this serious constraint, HMDs 
have not yet achieved the expected popularity as “external displays” have. 

For the future, there is research being carried on in order to achieve a new type of 
stereo display that would not require the use of any special glasses. 

2.4.4 VRML 

An important aspect in virtual reality systems (and also in all type of systems) is 
the need of standards. A first standard being widely used today is VRML (Virtual Reality 
Modeling Language). 

VRML [Carey 1997] [VRML], is a language that can specify complex animated 
scenes, defining scene graphs, together with BRep models, and many other features, as 
animation nodes, sensors, connection with script languages, etc. VRML files can be as 
complex as the source code of a computer program, but an advantage is that they can be 
interpreted and displayed by most available web browsers. 

VRML has also been used as the standard language to specify a standard virtual 
human’s skeleton format [HANIM]. 

2.4.5 VR Systems  

Many VR applications have been implemented in the last years. Such systems 
encompass several domains as surgery training, flight simulators, networked shared 
environments for teleconferencing, human factors analysis, training, education, virtual 
prototyping, simulation-based design and entertainment. A good overview of the many 
techniques used to implement VR and VE software, as well as an extensive list of their 
applications, is stressed by [Kalawsky 1993] and [Burdea 1993]. 

Virtual reality systems are widely used in medical-related areas, specifically in 
surgical training applications. An interesting VR training application permitting the 
palpation of tumors is presented by [Dinsmore 1995]. In this application, the user 
interacts with the virtual organs by using a pair of data gloves. 

One example of an interactive exercising training application is presented by 
[Davis 1998]. In this application, the computer is able to detect whether the user is not 
correctly repeating the showed exercises, and in these cases, the computer tries to give 
incentive to the user. Other training domains have also been explored, as is the case of a 
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system proposed to train equipment usage in a populated virtual environment [Johnson 
1997], where a virtual human is used to show the correct usage of the equipment before 
the user takes the first contact with it. Another training application is proposed by [Tate 
1995], to train fire fighters to find a given room inside a virtual ship. After, when 
operating in the real ship, they are able to find the rooms much faster than those that did 
not had the VR training session. 

In this thesis a simple classical combination of VR devices to test interactions 
between objects and the user of the system is used. This combination is based on the 
following devices: shutter glasses for stereo visualization, a data glove to capture finger 
movements, and one magnetic sensor to capture the location of the hand in space. This 
interaction metaphor will be detailed in chapter 7. 

2.5 Used Software Libraries 

The computer graphics lab of EPFL, directed by Prof. Daniel Thalmann, is 
specialized on the research on all aspects in the domain of virtual human animation and 
modeling. As the result of several years of research, the lab has now various 
programming libraries for the animation and modeling of virtual humans that are used for 
various European and PhD projects. 

All the software that I developed to test, evaluate and demonstrate the proposed 
techniques in this thesis were based on various library modules of the lab. I will now 
introduce the purpose and names of the main used modules, so that in the following 
chapters, the discussed implementation issues will be clearer for the reader. 

The three main libraries used are called as SceneLib, BodyLib, and AgentLib. 
SceneLib is a library to manage scene-graphs, and is used all the time in order to 
represent and animate objects in the scene. SceneLib uses also the concept of joints, to 
define the type of movement that a node in the scene graph can undertake; see the chapter 
4 of [Thalmann 1991] for a description of some SceneLib concepts. 

BodyLib is based on SceneLib, and manages skeletons of actors. As explained 
before, skeletons are kept as branches of the scene graph. BodyLib coherently models the 
correct movement and constraints of each human articulation with joints, and provides 
methods and functions to access and modify the values of the joints. Different body 
templates files can be read to allow the animation of skeletons with different limb 
lengths, in order to simulate different people. 

AgentLib provides a set of implemented primitive actions that can be applied to 
the skeleton of an actor, together with a motion blending module that coherently manages 
the execution of parallel actions. For a description of the AgentLib capabilities, see 
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[Boulic 1997]. AgentLib was recently extended to manage a virtual environment able to 
answer to perception queries, resulting in a new version called as AgentLib++. In this 
thesis, all software that I developed is based on AgentLib++, but from now on, I will 
refer only to AgentLib, as the capabilities of both versions are currently being integrated. 
For a description of the capabilities available for the perception modules, see [Bordeux 
1999]. 

AgentLib provides also access to many primitive actions for the animation of an 
actor’s skeleton: The used actions from AgentLib are called in this thesis as : 

• Walk, which animates the actors skeleton with a walking motor [Boulic 1990]. 
The walking motor can be controlled in three different levels: the lowest level is 
controlled by specifying angular and linear velocities and accelerations. A midlevel lets 
the user to give feed point locations where the actor should walk to. The higher level 
control requires only a goal position and orientation to walk to, and a smooth path is 
automatically generated, allowing the actor to smoothly walk from its current position 
and orientation to the desired goal position and orientation. The core of the walking 
motor is kept in another library called WalkLib. In this thesis, the higher level of walking 
control is always used. 

• Reach: permits to animate the actors skeleton in order to have the actors hand 
reaching some desired position and orientation. The reach action uses an inverse 
kinematics library that will be called here as InvKinLib. This library has achieved many 
enhancements and is the subject of the PhD thesis of P. Baerloch [Baerlocher 1998]. 
However, the reach action has some limitations due to the fact that not all the actor’s 
skeleton is animated, leading to a small reach ability space. I have developed the action 
push, that offers a lot more possibilities and that will be explained later (chapter 5). 

• Look: This action simply permits to define a direction for which the head of the 
actor should look at. This action is often used, as a coherent position of the head is very 
significant in order to achieve natural and convincing movements. 

• Keyframe playing: This action simply applies a pre-defined motion to the actors 
skeleton. Such motions are mainly obtained from Motion Capture sessions. Although a 
wide repertory of keyframes is available in the lab with realistic movements, these 
movements are not parameterized, and thus cannot be adapted, for example, to be 
synchronized with object movements. Keyframes often generate the most natural looking 
animation, but precise control and modification of the movements is not always possible. 

For an overview of these actions and many other actions from AgentLib, see 
[Emering 1999]. AgentLib also uses a specific library to display a skin representation of 
the actor’s skeleton, with real time skin deformation. This library is called DodyLib, and 
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the techniques involved are described in [Thalmann 1996]. Faces are not deformed from 
skeleton postures, and a special module FaceLib [Kalra 1992] is available specifically to 
perform facial animation. Figure 2.9 presents a simplified diagram with the main 
dependencies among the described libraries. 

 

 

 

 

 

 

 

 

 

Figure 2.9 – The modules/libraries used to develop the applications proposed in this 
thesis. The arrows represent the main dependences between the modules. 

2.6 A More Precise Overview of This Thesis 

As already exposed, simulation in virtual environments is a very powerful 
approach that can save money, time, and lead to enhancements in the simulated subjects. 
Although many issues are still to be solved, existing technologies are already successfully 
used for many applications.  

In this thesis, I address the specific issue of actor-object interaction in virtual 
environments, and propose : 

• An optimized data structure called star-vertex, for the representation of BRep 
models, specifically designed to offer adjacency relations in constant time with a low 
storage space requirement. This is the topic of the next chapter. At a first glance, it may 
appear that this proposed structure is out of the theme of this thesis. However, besides the 
interesting characteristics of the structure, it should be remembered that geometric 
description of objects is the sustaining layer of computer graphics systems (see figure 
2.4). 

• A feature modeling approach to include pre-defined interaction plans within the 
object representation. Objects modeled with this approach are called smart objects, and 
the modeler somod (from: smart object modeler) was developed in order to model smart 
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objects using graphical programming techniques. The concepts involved and the 
implementation issues of somod are exposed in chapter 4. 

• Specific solutions to animate an actor in order to interpret interaction plans. 
These solutions involve the control of the primitive actions of AgentLib, and also the 
development of the specific primitive action push based on inverse kinematics. Such 
issues, among others, are discussed in chapter 5. 

• The agent-based simulation environment ACE (from: Agents Common 
Environment), with the built-in capability of easy control of actor-object interactions. In 
ACE, actors and objects are considered as agents, and interaction plans are their 
communication language. ACE is described in chapter 6, and the built-in approach for 
direct user interaction with smart objects using virtual reality devices is the topic of 
chapter 7. 

All the proposed issues are introduced from the computer graphics point of view, 
and they are proposed as behavioral animation techniques for interactive virtual reality 
systems. 

This thesis does not propose any new AI algorithms for reasoning or planning, 
any new motion algorithm for the animation of virtual humans, neither any new 
algorithm for low level manipulation of objects using VR devices. Instead, I mainly 
propose new high level techniques and approaches to integrate existing algorithms, in 
order to enable interactive simulation environments to have more capabilities for object 
animation and interaction. 

2.7 Chapter Conclusion 

This chapter introduced the needed background and terminology used along this 
thesis, and a general overview of the related work among the various touched areas. At 
the end of the chapter, a description of the used programming modules was given, and a 
precise description of the work proposed by this thesis was done. 

This chapter clearly exposes the proposed work in this thesis, and the organization 
of the material presented in the following chapters. 
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3 Star-Vertex Data Structure 

This chapter introduces a data structure for describing the geometry of objects, 
more specifically, planar meshes. This structure is optimized to offer adjacency relations 
of mesh elements in constant time, what is needed by many geometric algorithms. 

This structure regards the geometry representation of objects, and can be 
associated or not with the smart object behavioral description. 

3.1 Introduction 

Polyhedral objects, surfaces, or planar meshes, are largely used to describe the 
boundary of solids for visualization purposes, virtual reality applications, smart object 
interactions, and for many types of calculations, also using finite elements methods. 

This chapter introduces a new scalable data structure for describing planar meshes 
which, in some specific situations, uses less storage space than others, while still giving 
adjacency information in constant time. This data structure is vertex-based and so a 
generic traverse element is also described which mimics the common used behavior of an 
oriented edge in order to easily access the stored adjacency information. 

3.2 Related Work 

 There are many data structures proposed in the literature for describing planar 
meshes. Among them, those providing adjacency relations in constant time are mainly 
edge-based structures. 

 The winged-edge structure [Baumgart 1975] pioneered with the concept of storing 
adjacency information. Later, traverse operators were introduced, as well as construction 
operators, in order to keep the structure always coherent during manipulation. The half-
edge structure [Mäntylä 1988] is an example of a structure that provides such operators. 
It is based on lists of all topological elements with many redundant data in order to 
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provide direct access to all adjacent elements. A consequence is that the storage space 
required and the complexity of the implementation is largely increased. 

 Other structures are more compact and rely on properties on the ordering of the 
elements of the subdivision [Brisson 1989]. The introduction of the quad-edge data 
structure for the two dimensional case [Guibas 1985] opened a series of edge-based 
structures featuring a minimal set of construction and traverse operators. 

 However, a general-purpose implementation of such structures will still use a lot 
of storage space and complex memory managements. If one needs to design and 
implement a data structure optimized for some specific usage, many aspects must be 
considered. Some elements of the structure may need to reference application-specific 
data, as colors in faces of a model or spring parameters in edges of a spring mesh. Often, 
for many algorithms, a fast retrieval of the adjacency information is required, as for 
instance for mesh simplification and surface subdivision [Zorin 2000]. Note that fast 
doesn’t necessarily mean designing a highly redundant structure that provides direct 
pointers to all adjacent elements: such structures use a lot of storage space, what can lead 
the computer to swap the memory to disk, and thus decreasing drastically algorithms 
performance, specially in large virtual environments. Another point to analyze is the 
tradeoff between block memory arrays versus dynamically linked lists that are especially 
important when the topology of the structure may change dynamically. 

 Carefully taking into account these many design choices, specific data structures 
can be designed that will increase performance for their target applications. However, 
there is somehow a lack of attention in the literature about such specific data structures, 
specially regarding efficient ways (in storage and speed terms) to describe and maintain 
adjacency relations. 

 However, a recent work has exactly focused on some of these aspects proposing 
the directed-edge [Campagna 1999] structure. It was designed to describe triangle meshes 
(planar subdivisions where all faces are triangles). This assumption permits to encode all 
adjacency information efficiently, and to retrieve them in constant time. 

 In this chapter, the star-vertex data structure is proposed, that mainly differs from 
the others from the fact that it is vertex-based, and not edge-based. This implies some 
interesting properties that are mainly related to the number of edges incident to vertices, 
and not to the number of edges around a face. In the star-vertex data structure, there is no 
difference in storing triangle meshes or general meshes. The simplification of describing 
triangles (or three edges around a face) has a dual in the star-vertex data structure that is 
to describe meshes where each vertex has exactly three incident edges. 



 - 35 -

 Considering the type of the mesh being described, and some possible 
simplifications to apply, the star-vertex representation may require a surprisingly low 
storage space, while still giving adjacency relations in constant time. 

 Another aspect covered in this chapter is the introduction of a traverse element, 
which works as an interface layer to access the data stored in the structure. The traverse 
element mimics the behavior of an oriented edge, which is the most usual way to retrieve 
adjacency relations. 

3.3 Star-Vertex Data Structure 

Among the data structures already cited in the introduction, the one requiring less 
storage space and also storing adjacency information is currently the directed-edge. This 
structure is proposed in three different levels: full, medium, or small. These levels give 
different tradeoffs between explicit storage of adjacency information versus storage space 
requirements. The small directed-edge is the one that requires less storage space and, 
although adjacency information is not explicitly stored, it is retrieved in constant time 
with few elementary operations. This small version takes 32 bytes per triangle 
[Campagna 1999] to store a triangle mesh. Along this paper, when we refer to the 
directed-edge data structure, we are referring to the small one, which gives the more 
compact space representation. 

 Actually, if one needs to use a data structure with very low storage space 
requirements, the only option is to not include adjacency information. The most popular 
mesh representation scheme that doesn’t include adjacency information is based on 
arrays of vertices coordinates and vertices indices forming sequentially the faces of the 
mesh. Such kind of structure has been called the shared-vertex representation [Campagna 
1999] and a simple implementation can be done as follows: 

 struct Vertex 
  { float x, z, y;          // vertex coordinates 
  }; 
 
 struct SharedVertexMesh 
  { array<Vertex> vertices; // all vertices of the mesh 
    array<int> faces;       // vertices indices of all faces 
  }; 
 
 Usually, when applied to meshes with arbitrary faces, each time a face is 
completed in the face array, a -1 value is placed as a mark. For the specific case of 
triangle meshes, this mark is not needed and a direct access to any triangle is possible, as 
each face will have exactly three indices referencing its three vertices. 
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The Euler’s formula [Foley 1992] says that V-E+F=2 for a manifold general 
mesh, and also that F≈2V (F=2V-4) if faces are all triangles. In this case, if a triangle 
mesh is composed of n vertices and m triangles, the shared-vertex representation of a 
triangle mesh requires 3⋅4⋅n=12n bytes for the vertices coordinates, and 3⋅4⋅m=12m for 
the triangles indices, assuming four-bytes integer and float types. This results in 
12n+12m≈18m, as m≈2n. This mark of 18 bytes per triangle has been considered a lower 
limit to store triangle meshes. 

 When the shared vertex representation is used  for general meshes (not triangle 
ones) the m≈2n property is lost, and so a direct comparison only in terms of bytes per 
face is no more possible. However, if the general shared vertex structure is used to 
describe a triangle mesh, then the faces indices array will use 4⋅4⋅m bytes, in order to 
include the –1 mark after each triangle. This results in 12n+16m≈22m, that is 22 bytes per 
triangle. 

 The proposed star-vertex structure is depicted in figure 3.1. It is a vertex-based 
structure that keeps, for each vertex v of the mesh: its 3 float coordinates, pointers to all 
neighbor vertices of v, and an index that says, for each neighbor v’ of v, which is the 
neighbor pointer of v’ that points to the vertex v’’ so that v, v’, and v’’ are in the same 
face. This index is then used to retrieve in constant time all the vertices around a face. 

 

 

 

 

 

 

 

 

Figure 3.1 - Connectivity Diagram of the Star-vertex Structure. 

 Figure 3.1 depicts the used pointers and indices. The dashed arrows v0n,  v1n, and 
v2n represent the pointers that are identified by the indices. The letter n stands for the next 
vertex around the face. The usage of such indices will be clearer in the example explained 
later with figure 3.2 and table 3.1. 

There is a design choice when implementing this structure among the use of 
pointers for direct memory access, or the use of integers as indices to positions in a user- 
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maintained array. A hybrid approach was implemented and tested where the design goal 
was the simplicity of implementation and easy comparison with other structures. This 
implementation was done in the following way: 

 struct Neighbor 
  { Vertex *vtx;       // pointer to the neighbor vertex 
    int nxt;           // to find the next vertex in the face 
  }; 
 
 struct Vertex 
  { float x, y, z;     // vertex coordinates 
    int num_nb;        // number of neighbors 
    Neighbor *nb;      // pointer to the list of neighbors 
  }; 
 
 struct StarVertexMesh 
  { array<Vertex> vertices; // all vertices of the mesh 
  }; 
 

 As an example, consider the planar mesh showed in figure 3.2. This mesh is 
represented in the star-vertex structure in table 3.1. Note that in the table, vertices 
pointers were converted to indices. The third column encodes the neighborhood 
information. For example, vertex v0 has the neighborhood list { (1,3), (2,2), (5,1), (4,2) }. 
The first element of each pair of the list points to a neighbor vertex, in a 
counterclockwise ordering. In this way we have explicitly stored the ordered list of 
neighbors of v0, that is: { v1, v2, v5, v4 }. 

 To traverse the vertices around a face, one of its vertices is chosen for starting, as 
for instance, v0. Because of the implicit counterclockwise ordering, to traverse the face 
{v0,  v1,  v2} the edge to consider is {v0, v1} which has v0 as its first vertex. Since the first 
pair (1,3) of the neighborhood list of v0 is the one that points to v1, the index 3 is taken 
that tells which pair in the neighborhood of v1 is the one to continue the traverse. The pair 
with index 3 of v1 is (2,0) (note that indices start from 0). Continuing with this process, 
the next obtained pair is (0,0) of v2, which will then come back to the initial pair (1,3). In 
this way all vertices and edges around the face {v0,  v1,  v2} were identified, in an ordered 
way, by traversing sequentially the pairs: (1,3), (2,0), (0,0). Note also that the boundary 
{v0, v2, v3, v1, v4, v5} is considered to be a face but will be traversed clockwise, as it is a 
back face. 

This example shows how are encoded ordered lists of: vertices connected to a 
given vertex, and vertices around a face. With these lists, all local adjacency relations are 
retrievable in constant time, by only performing some basic operations with indices and 
pointers. In the next section, an easier way to retrieve such adjacency relations is 
presented by introducing a traverse element. 
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Figure 3.2 - A planar mesh example. 

 
(x,y,z) num_nb nb - list of neighbors 

v0 4 (1,3), (2,2), (5,1), (4,2) 
v1 4 (0,3), (4,1), (3,1), (2,0) 
v2 3 (0,0), (1,2), (3,0) 
v3 2 (1,1), (2,1) 
v4 3 (0,2), (5,0), (1,0) 
v5 2 (0,1), (4,0) 

Table 3.1 – Mesh of figure 3.2 in the star-vertex representation. 

 For the star-vertex structure, there is no difference between dealing with triangle 
meshes or general meshes. As it is vertex based, the number of edges around a face does 
not directly change the storage space of the structure. However, as a duality effect, the 
number of edges around a vertex must be considered. Let v be a vertex of the mesh, then, 
we’ll consider that the degree of v is equal to the number of edges that are incident to v. 
Let’s now define k as the mean of all vertices degrees in the mesh: k = ( ∑degree(v) ) / n. 

 It is possible to say that a mesh represented by the star-vertex structure will 
occupy 4⋅5⋅n bytes for the vertex structure, plus 4⋅2⋅k⋅n bytes for the list of neighbors. For 
comparison purposes, it is assumed that the structure is being applied to a triangle mesh, 
so that the m≈2n property can be used. The whole structure will then take (4⋅5 + 4⋅2⋅k)n ≈ 
10+4k bytes per triangle. 

 The determination of the k parameter is needed in order to compare with other 
structures. This parameter is directly related to how the mesh was created. For example, 
for meshes generated from parametric surfaces, as NURBS [Foley 1992], discretization 
algorithms commonly generate meshes composed of quadrilateral faces, giving k=4. And 
when these meshes are converted to triangulations, diagonals are created in the faces and 
the final mesh has k=6. 

 The case which gives the minimal storage space is when k=3. Such kind of 
meshes are not very popular mainly because most used structures are edge-based or face-
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based, and thus no attention is given to the generated vertex degree. However, meshes 
with k=3 have good properties, and methods exist to generate them [Delingette 94]. 

 A cube, a cylinder and a tetrahedron are examples of objects that are often 
represented with a k=3 mesh. However, for some objects it is not possible to have an 
accurate representation with k=3. One example is the polyhedral approximation of a cone 
with a polygonal base of b vertices. All vertices in the cone base have degree 3, but the 
peak will have degree b, resulting k = (3b+b)/(b+1), which tends to k=4 for large values 
of b. 

 In most common cases, models have their meshes with a k varying from 4 to 6. 
Figure 4 gives an idea of the aspect of meshes with k=3, k=4, and k=6. 

 

 

 

 

 

 

Figure 3.3 – Some Meshes with Different Vertex Degrees. 

 The star-vertex structure will occupy approximately 22, 26, 30, or 34 bytes per 
triangle when describing a triangle mesh with k equal to 3, 4, 5, or 6, respectively. This 
shows that the required storage space can be surprisingly low for a structure that still 
maintain adjacency information, and that is not constrained to triangular faces. 

 In the next section, a method to easily retrieve the adjacency information encoded 
in the structure with a traverse element is explained. Section 3.5 shows ways to encode 
even better the adjacency information for some specific cases and then gives a complete 
comparison table between the star-vertex structure, the directed-edge and the shared-
vertex. 

3.4 Traverse Element 

 Nearly all commercial graphical libraries use data structures similar to the shared-
vertex representation. A good example is the so called IndexedFaceSet node that exists in 
many scene graph implementations, as for instance OpenInventor and Cosmo3D, two 
popular libraries developed by Silicon Graphics [SGI]. Mainly because of the simplicity 
of usage, but also because the main concerns are just to display rigid objects. But then, 

k = 3 k = 4 k = 6 



 - 40 -

whenever some mesh algorithm needs adjacency relations to run efficiently, a 
representation conversion is required. 

 Unfortunately, such conversions are indeed needed. The shared-vertex 
representation is a very low storage space solution for rigid objects, which is important 
when working with large real time environments that quickly slow down performance 
when memory starts to swap to disk. 

 However, the need of objects with a changing shape is growing, to allow, for 
example, smooth resolution changing in run time, local collision detection queries, and 
deformable spring meshes. Such algorithms often require a consistent data structure able 
to give and update adjacency relations in constant time. The star-vertex structure is a 
good candidate to overcome such difficulties. But still some interface layer to safely 
access and modify the structure is needed. 

 The proposed solution is to define a traverse element, or travel, that gives a 
common interface to access adjacency relations that can be implemented, using object-
oriented techniques, to behave in the same way for any kind of data structure. 

 A travel is a structure-independent generalization of concepts from edge-based 
structures, as the edge-use [Weiler 1985], the dart [Lienhardt 1989], the half-edge 
[Mäntylä 1988], and the iterators defined in a recent C++ implementation [Kettner 1998].
 Consider the mesh described in figure 3.4. This mesh is the same as in figure 3.2, 
and so its representation is also given by the table 3.1. In figure 3.4, a travel is graphically 
represented as an oriented edge, as the travel t. Note that each travel will be always 
adjacent to one, and only one, vertex, edge and face of the mesh. For example, travel t is 
adjacent to vertex v0, to edge { v0, v1 }, and to face { v0, v1, v2 }. 

  

 

 

 

 

 

Figure 3.4 – Some traverse elements graphically represented. 

 Two operators are defined that can be applied to t: the nxt and the rot operators. 
The nxt operator, when applied to t, will return the travel that is adjacent to the next edge 
and vertex around the face that is adjacent to t. This operator permits to traverse the edges 
around a face. For example, in figure 3.4, t.nxt ≡ t1, t1.nxt ≡ t2, and t.nxt.nxt.nxt ≡ t. 
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 Similarly, the rot operator, when applied to t, will return the other travel that is 
adjacent to the next edge and face around the vertex that is adjacent to t. This operator 
gives the possibility to “rotate” around a given vertex. For example, in figure 3, we have 
that t.rot ≡ t’, and t’.rot.rot.rot ≡ t. 

 With these two operators defined the operator sym can be defined, which gives the 
symmetrical travel: t.sym ≡ t.nxt.rot ≡ s. And also their inverses: t.sym-1 ≡ t.sym, t.nxt-1 ≡ 
t.rot.sym, and t.rot-1 ≡ t.sym.nxt. 

As the traverse element behaves exactly as an oriented edge, the reader can refer 
to the half-edge structure [Mäntylä 1988] for a detailed explanation of a very similar 
scheme of traverse operators. 

Once the traverse element is equipped with operators to retrieve their current 
adjacent elements, it is possible to traverse freely through the structure, querying all 
adjacent relations. The following code indicates how to implement such a traverse 
element for the star-vertex structure, using a C++ notation: 

 
     class Travel 
       { Vertex *v;  // points the adjacent vertex of the travel 
         int     r;  // indicates the adjacent edge of the travel 
  
         // some operators and methods : 
         Travel ( Vertex *vtx, int rot ) { v=vtx; r=rot; } 
         Travel rot () { return Travel(v,(++r)%v->num_nb); } 
         Travel nxt () { return Travel(v->nb[r].vtx,v->nb[r].nxt); } 
         Travel sym () { return nxt().rot(); } 
         float *pnt () { return &(v->x); } 
         bool operator == ( Travel t ) { return v==t.v&&r==t.r; } 
       }; 

 

 The travel structure keeps a pointer to the current adjacent vertex v, and the index 
r. This index defines the pair in the neighborhood array of v which has vn, the vertex 
defining the current adjacent edge { v, vn } of the travel. Because of the implicitly stored 
counterclockwise order, the adjacent face is also defined. As an example, it is easy to 
verify that: Travel(v0,0).nxt() ≡ Travel(v1,3), and that Travel(v0,0).rot ≡ Travel(v0,1). 

One consequence of using such a vertex-based structure is that faces are not 
explicitly stored. In this way, some algorithm to retrieve the faces is needed, for example, 
to render the represented mesh using a polygon based renderer as the OpenGL library. 
Such algorithms often need some mechanism to mark the traverse elements already 
visited. The following code shows how it is possible to use the nxt index of the Neighbor 
structure to mark elements, by adding two methods to the Travel structure: 

 void Travel::mark  () { v->nb[r].nxt *= -1; } 
 bool Travel::marked () { return v->nb[r].nxt<0; } 
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 The mark is stored by setting the index to a negative value. Note however, that 
this implies to no more use the 0 index, and to pay attention to always consider the 
absolute value of the index. The following code gives an example of an algorithm that 
sends the faces of a mesh to an OpenGL renderer. It starts with any initial face, and then, 
by exploiting faces adjacency, the other faces are rendered: 

 
   render ( const StarVertexMesh& m ) 
    { 
      // initializes a stack with some travel: 
      array<Travel> stack; 
      stack.push( Travel(m.vertices[0],0) ); 
 
      while ( !stack.empty() ) 
       { Travel ti = stack.pop(); 
         if ( ti.marked() ) continue; 
         Travel t=ti; 
         glBegin ( GL_POLYGON ); 
         do { glVertex3fv ( t.pnt() ); 
              if ( !t.marked() ) t.mark(); 
              stack.push ( t.sym() ); 
              t = t.nxt(); 
            } while ( t!=ti ); 
         glEnd (); 
    } 

 

Note that all faces of the mesh are sent to the renderer. In the case of a planar 
mesh like the one showed in Figure 3.2, the border of the polygon is also sent, but it will 
not be drawn as it will be considered a back-face because of the consistent orientations. 
Note also that faces need to be convex in order to be correctly handled by OpenGL. 

Some strategies can be taken in order to avoid unmarking all previously marked 
traverse elements after each time such an algorithm is called. For example, each time an 
algorithm starts, it can determine if elements are considered marked when the used 
indices have a negative or a positive value. In this way, algorithms like the given render 
procedure can be repeatedly called, by alternating the indices markers to have positive or 
negative values. However, with this technique, it is not allowed to have an algorithm 
leaving the mesh “half-marked”. 

The fact that faces are not explicitly stored would not slow down rendering, 
because nearly all systems work with optimized display lists of the polygons to render. 
Therefore, such traversal of faces would be done to update display lists only when the 
model topology changed. Moreover, the generation of display lists can make use of the 
encoded adjacent relations, to generate optimized “connected” lists, as for example, the 
triangle or quad strip schemes of OpenGL. 
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3.5 Analysis and Comparison 

From section 3.2, the star-vertex structure takes approximately 10+4k bytes per 
triangle, considering that the mesh represented is composed of triangular faces. It is still 
possible to lower this storage space in some specific cases, and two simplifications for 
the given “general” star-vertex structure will be shown. 

A first simplification can be done when the mesh to represent has a constant 
vertex degree for all vertices of the mesh. This implies that the pointer to an array of 
variable length is no more needed, and the same for the number of neighbors per each 
vertex. Doing so, 1 integer and 1 pointer per vertex can be economized, making an 
economy of 8 bytes per vertex, or 4 bytes per triangular face. The result is 6+4k bytes per 
triangle for this “uniform” star-vertex, that can only represent meshes with constant 
vertex degree. 

Another type of simplification that reduces even more the required storage space 
can be done, but now loosing the constant time execution of the nxt operator. This 
simplification is done simply by taking out the nxt index of the Neighbor structure. This 
index is used to explicitly store the result of the nxt operator. If this index is no more 
used, then the nxt operator will take time O(dmax), where dmax is the maximum vertex 
degree encountered in the mesh being represented. This happens because a search among 
all edges incident to the neighbor vertex will be done, to find the one that correctly 
produces the result of the nxt operator. The implementation of the nxt operator would 
then look as the following : 

 
Travel Travel::nxt ()  
  { Travel t (v->nb[r].vtx,0); 
    while ( t.rot().v!=v ) t=t.rot(); 
    return t; 
  } 

 

In this compact version, the structure will occupy 4⋅5⋅n bytes for the vertex 
structure, plus 4⋅k⋅n bytes for the list of neighbors, ending up with (4⋅5 + 4⋅k)n ≈ 10+2k 
bytes per triangle. It is also possible to have the structure with both the compact and the 
uniform simplifications, leading us to (4⋅3 + 4⋅k)n bytes = 6+2k bytes per triangle. 

Note that in cases where memory usage is an issue, the compact versions of the 
structure will achieve very low storage space requirements. And the fact that O(dmax) time 
is required by the nxt operator can be acceptable if the mesh has low degree vertices. 

Finally, table 2 shows a comparison of the data structures. The time required for 
the determination of the rot and nxt operators are listed. When these two operators are 
provided in constant time, all adjacent relations can be also retrieved in constant time. 
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Note also that the shared-vertex representation can give in constant time the nxt 
operator only if the structure guarantees coherent orderings, providing that the vertices 
indices of each face are sequentially stored. However, the rot operator requires some 
global search in the structure. 

In order to be able to compare these structures, it was considered that they are 
representing triangle meshes. In this way, the m≈2n property was used to achieve the 
bytes per triangles number. However not all structures are limited to represent triangle 
meshes, as shown in the mesh type column. 

As expected, the proposed structure can achieve very low memory requirements 
when k is small, even without counting the possible uniform or compact versions. For 
meshes with k greater than 5.5, the star-vertex structure will require more memory than 
the directed-edge, however, without being restricted to triangular faces. 

 

bytes /∆  
data structure 

rot 
operator 

time 

nxt 
operator 

time 

 
mesh type 

Any k k=3 k=4 k=5 k=6 
general shared-vertex - O(1) - 22 22 22 22 22 
triangle shared-vertex - O(1) ∆ 18 18 18 18 18 

small directed-edge O(1) O(1) ∆ 32 32 32 32 32 
star-vertex O(1) O(1) - 10+4k  22 26 30 34 

uniform star-vertex O(1) O(1) deg cte 6+4k 18 22 26 30 
compact star-vertex  O(1) O(dmax) - 10+2k 16 18 20 22 
minimal star-vertex O(1) O(dmax) deg cte 6+2k 12 14 16 18 

 
Table 3.2 – Comparison of the several data structures. In the rot operator column, “-” 
indicates that its computation is not possible with only a local search in the data 
structure. In the mesh type column, “-” indicates that there are no restrictions on the 
mesh to be represented. Variables k  and dmax represent, respectively, the mean and the 
maximum vertex degree of the mesh. 

3.6 Two Examples of Applications 

The star-vertex structure is presented in this thesis like an isolated result due to 
the very interesting characteristics achieved. Currently, it is being integrated for many 
different purposes in our graphical simulation softwares, as for instance, for research on 
multi resolution of deformable bodies and on path planning. Figures 3.5 and 3.6 
exemplify some first results obtained by using a similar structure to the star-vertex, which 
I have previously developed, and which I am now porting to the star-vertex optimized 
format. 
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Figure 3.5 – An example of a deformable surface using multi-resolution techniques to 
adapt itself only around the region having the contact with the falling ball. In order to 
efficiently refine the surface, constant time access of adjacent elements plays a key 
role. The dynamical system used is based on a standard spring-mass system. 

 

 

Figure 3.6 - The image illustrates the computation of a collision-free path among 
obstacles. An exact cell decomposition method is used, based on a constrained 
Delaunay triangulation. Once we have access to all adjacency information, a free path 
is easily generated just by walking through adjacent free faces. 

3.7 Chapter Conclusion 

A new scalable data structure was presented for storing planar meshes, which has 
interesting properties that can be exploited in order to obtain very low storage space 
usage, still obtaining adjacency relations in constant time. 

The structure is not constrained to triangular faces and stores adjacency 
information in a vertex-based organization. This implies that the storage space required is 
direct proportional to the mesh vertices’ degrees (number of edges incident to vertices). 
When these degrees are small, lower memory requirements are achieved, comparing to 
other structures. Models with low vertices degree are commonly used, and algorithms can 
be designed to optimize general meshes. 
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A traverse element was also shown serving as a high level interface to retrieve the 
encoded adjacency information. Such element hides specific optimizations or 
simplifications on the structure implementation, and can be also used as a parameter to 
eventual topological operators. Such architecture can even permit some self-adaptability 
of the data structure during run time, according to the way the structure is being used. 

Such properties make the star-vertex structure a good candidate to be 
implemented as a standard node in a scene-graph library for real time virtual environment 
simulations. It allows safe access to adjacency relations without the need of 
representation conversions, while maintaining low storage space requirements. 

 

 

 

 

 

 

. 
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4 Modeling Smart Objects 

This chapter presents the feature modeling approach of interactive objects 
proposed in this dissertation and the smart object description. 

The first sections start by describing the concept of interaction features, together 
with their classification and definition. Then, the developed smart object modeler 
(somod) is presented, which is a system incorporating the proposed approach to model 
the functionality and interactivity of objects. Some examples of modeled objects are 
shown and explained. 

4.1 Introduction 

The necessity to model actor-object interactions appear in most applications of 
computer animation and simulation. Such applications encompass several domains, as for 
example: virtual autonomous agents in virtual environments, human factors analysis, 
training, education, virtual prototyping, and simulation-based design. A good overview of 
such areas is presented by [Badler 1997]. 

Commonly, simulation systems approach actor-object interactions by 
programming them specifically for each case. Such approach is simple and direct, but 
does not solve the problem for a wide range of cases. 

Another approach, not yet solved, is to use recognition, planning, reasoning and 
learning techniques in order to decide and determine the many manipulation variables 
during an actor-object interaction. The actor’s knowledge is then used to solve all 
possible interactions with an object. Moreover, this top-down AI approach should also 
address the problem of interaction with more complex machines with some internal 
functionality, in which case information regarding the object functionality must be 
provided. 

Consider the simple example of opening a door: the rotation movement of the 
door must be provided a priori. Following the top-down AI approach, all other actions 
should be planned by the agent’s knowledge: walking to reach the door, searching for the 
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knob, deciding which hand to use, moving body limbs to reach the knob, deciding which 
hand posture to use, grasping, turning the knob, and finally opening the door. This simple 
example illustrates how complex it can be to perform a simple agent-object interaction 
task. 

To overcome such difficulties, I propose a bottom-up approach that is to include 
within the object description, more useful information than only intrinsic object 
properties. Using feature modeling concepts, it is possible to identify all types of 
interaction features in a given object, and include this information as part of the object 
description. 

A graphical interface program was developed to permit the user to interactively 
specify all different features in the object, defining its functionality, its available 
interactions, etc. Objects modeled with their interaction features description, are called as 
smart objects. The developed smart object modeler application is called somod. 

The adjective smart has been widely used in different contexts. For instance, 
[Russel 1995] and [Pentland 1995] discuss interactive spaces instrumented with cameras 
and microphones to perform audio-visual interpretation of human users. This capacity of 
interpretation made them smart spaces. 

In the scope of this thesis, an object is called smart when it has the ability to 
describe in details its functionality and its possible interactions, being also able to give all 
the expected low-level manipulation actions. This can be seen as a mid term classification 
between reactive and intelligent behaviors. A smart object does have reactive behaviors, 
but more than that, it is also able to provide the expected behaviors from its “users”, so 
that this extra capability makes it to achieve the quality of smart. 

Note that the term “user of an object” is used to refer to an autonomous actor, an 
avatar, or a real person immersed in the VE with VR devices. In this last case, the user is 
performing a direct interaction with the object. Although this thesis is mainly concerned 
with actor-object interactions, some experiments about the direct interaction with smart 
objects is done (chapter 7), so that the term “user” is used to refer to any kind of users. 

Different simulation applications can then retrieve useful information from a 
smart object to accomplish desired interaction tasks. The main idea is to provide smart 
objects with a maximum of information to attend different possible applications for the 
object. A parallel with the object oriented programming paradigm can be made, in the 
sense that each object encapsulates data and provides methods for data access. There is a 
huge literature about Object Oriented Design; an introduction to the theme can be found 
in [Booch 1991]. 
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Applications using smart objects will have their own specific smart object 
reasoning module, in order to retrieve only the applicable object features for their specific 
needs. These concepts are published in two previous works [Kallmann 1998] [Kallmann 
1999a], and will be detailed in the following sections. 

4.2 Related Work 

Object interaction in virtual environments is an active topic and many approaches 
are available in the literature. However, in most cases, the concerned topic is the direct 
interaction between the user and the environment [Hand 1997]. 

Suppliers of CAD systems are starting to integrate some simulation parameters in 
their models [Berta 1999]. The knowledgeware extension of the [Catia] system can 
describe characteristics like costs, temperature, pressure, inertia, volume, wetted area, 
surface finish, formulas, link to other parameters, etc; but still no specific considerations 
are done to define objects functionality or interactivity. 

Actor-object interaction techniques were first specifically addressed in a simulator 
based on natural language instructions using an object specific reasoning (OSR) module 
[Levinson 1994a] [Levinson 1994b]. The OSR keeps a relational table informing 
geometric and functional classification of objects, in order to help the interpretation of 
natural language instructions. With such information, it is possible to interpret and 
expand given text instructions [Geib 1994a] [Geib 1994b]. 

Some interaction information is also kept by the OSR module: for each object 
graspable site, the appropriate hand shape and grasp approach direction. This set of 
information is sufficient to decide and perform grasping tasks, but no considerations are 
done for the interaction with more complex objects. In particular, [Webber 1995] identify 
the limited perception of actors as a main limitation to correctly interpret text 
instructions, resulting in a poor knowledge construction. Smart objects can overcome 
such difficulties. 

The smart object description is much more complex, based on interaction plans, 
permitting to synchronize movements of object parts with the actor’s hand, and to model 
the functionality of objects. 

Interactive plans are defined using a specific simple programming language. In 
another direction, some works have been done in order to link language to modeling 
[Paoluzzi 1995], and towards a definition of a standard and data structure-independent 
interface to model geometric objects [Bowyer 1995]. 
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A key concept in smart objects is that they contain their own semantic and 
interaction information. A recent game [TheSims] also use this object-oriented approach 
to describe interaction with objects. In this game, the user creates and coordinates a 
family of actors and their day life activities, which include some interaction with objects. 
Another “object oriented system” is proposed by [Okada 1999], where objects can be 
composed with many boxes which have input and output connectors that can be linked to 
achieve different functionalities. However, no specific considerations regarding actor-
object interactions are presented. 

A typical application for smart objects is to train complex machines usage in a 
virtual environment. Although many simulation systems are proposed in the literature 
(for instance: [Luckas 1997]), no special considerations are done regarding object 
interaction. An interesting system is proposed by [Johnson 1997], where a virtual human 
agent teaches users how to correctly operate machines in many situations in an interactive 
application. His focus is on the system description and no specific techniques to model 
actor-object interactions are presented. 

None top-down AI approaches were found specifically focusing the problem of 
solving general actor-object interactions. Most of the concerns are related to sub-
problems, as for the specific problem of grasping. For instance, from the robotics area, a 
classification of hand configurations for grasping is proposed by [Cutkosky 1989]. Also 
[Huang 1995] proposes an algorithm for the autonomous actor’s decision of manipulation 
details (as the hand shape to use) for grasping. 

From the robotics domain, planning algorithms are able to define collision-free 
paths for articulated structures [Koga 1994] [Simeon 2000]. Although realistic results can 
be obtained, the computational cost today is too high for interactive simulations. 

Such algorithms focus on specific sub-problems, and an integration of all of them 
in a single system is a challenge. However, some of them can be integrated and used in 
an animation system based on smart objects. For instance, a specific smart object 
reasoning module can refuse a proposed hand shape for a manipulation, and determine a 
more convenient one, according to its own reasoning processes. 

4.3 Feature Modeling of Interactive Objects 

Feature modeling is an expanding topic in the engineering field [Barwick 1993]. 
The word feature conjures up different ideas when presented to people from different 
backgrounds. A simple general definition, suitable for our purposes, is “a feature is a 
region of interest on the surface of a part” [Pratt 1985]. 
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The main difficulty here is that, in trying to be general enough to cover all 
reasonable possibilities for a feature, such a definition fails to clarify things sufficiently to 
give a good mental picture. 

From the engineering point of view, it is possible to classify features in three main 
areas: functional features, design features and manufacturing features [Barwick 1993]. As 
we progress from functional features through design features to manufacturing features, 
the quality of detail that must be supplied or deduced increases markedly. In the other 
hand, the utility of the feature definitions to the target application decreases. For example, 
manufacturing features of a piece may be hard to describe and have little importance 
while really using the piece. A similar compromise arises in the smart object case. This 
situation is depicted in figure 4.1 and will be explained later. 

A huge literature is available for the feature modeling technique in the scope of 
engineering. A good coverage of the theme is done by [Shah 1995]. 

4.3.1 Interaction Features 

In the smart object description, a new class of features for simulation purposes is 
proposed: interaction features. In such context, a more precise idea of a feature can be 
given as follows: all parts, movements and descriptions of an object that have some 
important role when interacting with an actor. 

For example, not only buttons, drawers and doors are considered as interaction 
features in an object, but also their movements, purposes, manipulation details, etc.  

Interaction features can be grouped in four different classes: 

• Intrinsic object properties: properties that are part of the object design, for 
example: the movement description of its moving parts, physical properties such as 
weight and center of mass, and also a text description for identifying general objects 
purpose and the design intent. 

• Interaction information: useful to aid an actor to perform each possible 
interaction with the object. For example: the identification of interaction parts (like a 
knob or a button), specific manipulation information (hand shape, approach direction), 
suitable actor positioning, description of object movements that affect the actor’s position 
(as for a lift), etc. 

• Object behavior: to describe the reaction of the object for each performed 
interaction. An object can have various different behaviors, which may or may not be 
available, depending on its state. For example, a printer object will have the “print” 
behavior available only if its internal state variable “power on” is true. Describing 
object’s behaviors is the same as defining the overall object functionality. 
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• Expected actor behavior: associated with each object behavior, it is useful to 
have a description of some expected actor behaviors in order to accomplish the 
interaction. For example, before opening a drawer, the actor is expected to be in a 
suitable position so that the drawer will not collide with the actor when opening. Such 
suitable position is then proposed to the actor during the interaction. 

This classification covers the needed interaction features to simulate common 
actor-object interactions. Still, many design choices appear when trying to specify in 
details each needed interaction feature. 

The most difficult features to specify are those relative to behaviors. Behavioral 
features are herein specified using pre-defined plans composed with primitive behavioral 
instructions. This has shown to be the most straightforward approach because then, to 
perform an interaction, the actor will only need to “know” how to interpret such 
interaction plans. 

In the smart object description, a total of 8 interaction features were identified, 
with the intention to make the most simple classification possible. These interaction 
features are described in table 4.1. 

 

Feature Class Data Contained 

Descriptions Object Property Contains text explanations about the object, organized by 
different types: semantic properties, purposes, design intent, and 
any general information. 

Parts Object Property Describes the BRep of each component part of the object, their 
hierarchy, and other information as mass, center of mass, and a 
positioning matrix in relation to the object’s skeleton root. 

Actions Object Property Actions are specially used to define movements, but also to 
define any other changes that the object may undertake, as color 
changing, texture, etc. Actions are defined independently of any 
parts. 

Commands Interaction Info. Commands are used to parameterize and associate to a specific 
part the defined actions. For example, the translation movement 
of a drawer is an intrinsic property of the object and is modeled 
as an action. The commands “open” and “close” will then permit 
to parameterize the translation according to each interaction. 

Positions Interaction Info. General positions needed to specify interactions are defined here 
relatively to the object’s skeleton root. Such positions are then 
referenced from the behavioral plans to suggest for the actors 
suitable positions to be used during interactions. 

Gestures  Interaction Info. Gestures are considered to be any movement to suggest to an 
actor. Hand shapes and locations for grasping and manipulation 
are defined here, also parameters to specify the actor to sit, or to 
apply any pre-recorded motion are defined here and later 
referenced from the behavioral plans. 
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Variables Object Behavior Variables are generally used in the behavioral plans, but specially 
used to define the state of the object. The state of an object is a 
key information in the description of the object’s functionality, 
which is done with the behavioral plans.  

Behaviors Obj./Actor Behavior Behaviors are defined with plans composed with primitive 
instructions. Such plans can check or change the states of the 
object, trigger commands and gestures, call other plans, etc; and 
specify both object behaviors and expected actors’ behaviors. 
These plans form a simple scripting language that is used for the 
actor-object communication during interactions. 

Table 4.1 – The eight types of interaction features that are used in the smart object 
description. 

4.3.2 Interpreting Interaction Features 

Once a smart object is modeled, a simulation system will be able to load it and 
animate it in the VE. For this, the simulator will need to implement a smart object 
reasoning module, that will correctly interpret the behavioral plans to perform 
interactions. For example, a VR application in which the user wears a virtual glove to 
press a button of a smart object will not make the same use of proposed hand shapes. 

There is a trade-off when choosing which features to be considered in an 
application. As shown in figure 4.1, when taking into account the full set of object 
features, less reasoning computation is needed, but less general results are obtained. As 
an example, minimum computation is needed to have an actor passing through a door 
following strictly a proposed path to walk. However, such solution would not be general 
in the sense that all agents would pass the door using exactly the same path. To achieve 
better results, external parameters should also take effect, as for example, the current 
actor emotional state. 

 

 

 

 

Figure 4.1 – The choice of which interaction features to take into account is directly 
related to many implementation issues in the simulation system. 

Note that a realistic result is a context dependent notion. For example pre-defined 
paths and hand shapes can make an actor to manipulate an object very realistically. 
However, in a context where many actors are manipulating such objects exactly in the 
same way, the overall result is not realistic. 

Interaction Info. 

Less Computation, Easier Usage - Less General, Less Adaptability 

Agent Behaviors Object BehaviorsObject Properties
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Interaction plans form the interface between stored object’s features and the 
application specific smart object reasoning. Figure 4.2 illustrates the connection between 
the modules. The simulation program requires a desired task to be performed. The 
reasoning module will then search for suitable available behaviors in the smart object. 
For any selected behavior, the reasoning module follows and executes each instruction of 
the behavior plan, retrieving the needed data from the smart object representation. 

 

 

 

Figure 4.2 - Diagram showing the connection between the modules of a typical smart 
object application. Arrows represent function calls. 

When a task to perform becomes more complex, it can be divided into smaller 
tasks. This work of dividing a task into sub-tasks can be done in the simulation program 
or in the reasoning module. In fact, the logical approach is to leave the reasoning module 
only to perform tasks that have a direct interpretation from the Smart Object behaviors. 
Then, additional layers of planning modules can be built according to the simulation 
program goal. 

Another design choice appears while modeling objects with too many potential 
interactions. This issue is related to definition of the component parts of a composed 
object. In such cases, in order to exercise a greater control over the interactions, it is 
possible to model the object as many independent smart objects, each one containing only 
basic interactions. For example, to model an actor interacting with a car, the car can be 
modeled as a combination of different smart objects: car door, radio, and the car panel. In 
this way, the simulation application can explicitly control a sequence of actions like: 
opening the car door, entering inside, turning on the radio, and starting the engine, thus 
permitting more personalized interactions. On the other hand, if the simulation program is 
concerned only with traffic simulation, the way an agent enters the car may not be 
important. In this case, a general behavior of entering the car can be encapsulated in a 
single smart object car. 

Later in this chapter the example of modeling a smart lift is given and two 
approaches are shown. In one approach, a main interaction plan “enter” is modeled which 
details all steps of taking the lift to go to the other floor. In a second approach, in order to 
accomplish the same interaction, a sequence of plans needs to be selected by the 
simulator: “press”, “go in”, “go out”, etc. 

The smart object approach introduces the following main characteristics in a 
simulation system: 

Object Reasoning 
Module 

Ask for 
some task 

Search suitable 
interaction plans 

Simulation 
Program 

Smart  
Object 
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• Decentralization of the animation control. Object interaction information is 
stored in the objects, and can be loaded as plug-ins, so that most object-specific 
computation is released from the main animation control.  

• Reusability of designed smart objects. Not only by using the same smart object 
in different applications, but also to design new objects by merging any desired feature 
from previously designed smart objects.  

• A simulation-based design is naturally achieved. The designer can take control 
of the loop: design, test and re-design. A designed smart object can be easily inserted into 
a simulation program, to get feedback for improvements in the design. 

4.3.3 Implementation Issues 

A library composed of C++ classes has been developed to interpret smart object 
plans. A main class SmartObj keeps a list of SmartObjUser classes, which knows how to 
correctly interpret each instruction in the plan. The SmartObjUser class is a base class 
that interprets all object related instructions, but the user related instructions call pure 
virtual methods, which have to be implemented for each specialized type of user. For 
instance, different kinds of users can be implemented: an actor, an avatar, interaction with 
only a pointing device, or with VR devices. 

In the scope of this thesis, three types of users were implemented, inheriting the 
SmartObjUser class: the first type simply ignores all user-related instructions, permitting 
to animate objects independently. A second type implements the virtual actor user (see 
next chapter), and a last type implements a real user wearing a data glove (see chapter 7). 

4.4 Somod Description 

The somod application was developed specifically to model smart objects. Somod 
permits to import BRep models of the component parts of an object, and then specify 
interactively all needed interaction features. All the features are defined using a graphical 
user interface. Even for the definition of the behavioral plans, a specific dialog box was 
designed that guides all possible parameters to specify for each primitive instruction. In 
addition, some graphical programming techniques are used in order to graphically specify 
plans using a finite state machine graph. 

4.4.1 Software Platform 

Somod was initially developed based on the Motif user interface library, with 
some dependency on AgentLib under SGI with the Irix system. With the evolution of the 
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software in the lab, and the tendency to move to PC platforms, somod completely 
changed to use platform-independent libraries. The actual version of somod is written in 
C++, and uses the Fast and Light Toolkit [FLTK] for the graphical user interface 
programming. The FLTK library has shown to be very easy and powerful to use and is 
available free of charge for nearly all computer platforms. 

As graphics library, OpenInventor is used. OpenInventor is the best available 
graphics library for the purpose of high level modeling. The built-in manipulators classes 
permit to easily manipulate 3D objects with a 2D mouse as input device. This library is 
available from [SGI] and [TGS] for different computer platforms, and some initiatives 
exist to propose an open source version of OpenInventor. For instance, [SGI] has released 
the source code of OpenInventor to the Linux platform for free, and the same code has 
been already adapted to the Microsoft Windows platform. 

For the definition of hand shapes in somod, an internal module of DodyLib is 
used, which provides the deformation of a hand skin envelope, based on the actual 
skeleton joints. This module was developed by Laurent Moccozet [Moccozet 1997]. 

Somod is currently used only in SGI machines, but due to the platform-
independent nature of its libraries, it can be ported to other computer systems. 

4.4.2 Defining Object Properties 

The main window of somod is shown in figure 4.3. Features are organized by 
type, and for each type, a list of features can be defined. The main window permits to 
manage these lists in a unified way. For each feature, the specific parameters can be 
edited with the corresponding specialized dialog box. In figure 4.3 the list of parts is 
shown. Windows in somod have two colors: the blue ones are those that can work in 
parallel, and the yellow ones are dialogs that block all other windows while opened. 

  

 

Figure 4.3 – The main window of somod, showing a list of interaction features of the 
selected type. When Edit is pressed, the specific dialog box to edit the parameters of 
the selected feature appears. Menus are used to access extra functionalities. 
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An object description dialog contains simple text entries where the user can type 
text descriptions. The two main fields used are to describe a semantic name for the 
object, and to describe overall object characteristics. These definitions can then be 
retrieved by simulators for any kind of processing. 

The dialog box to define the parameters for each part is shown in figure 4.4. 
Among other parameters, it is possible to specify the geometry files of the part and their 
hierarchy (i.e., the skeleton). Also, the positioning of each part can be done interactively 
using the OpenInventor manipulators. 

The same technique of using manipulators is adopted to define the movement 
actions that can be applied to the object. For example to define a translation, the user 
select an object’s part and a manipulator, being able to displace the part from its original 
position. The transformation movement from the initial position to the user selected 
position is then saved as an action. Note that actions are saved independently of parts, so 
that they can be later parameterized differently (defining commands) and applied to many 
different parts. 

 

 

Figure 4.4 – Defining the specific parameters of a drawer. The drawer is a part of the 
smart object desk, which contains many other parts. The image shows in particular the 
positioning of the drawer in relation to the whole object. 

4.4.3 Defining Interaction Information 

The definition of commands is done with the simple dialog box shown in figure 
4.5. Commands fully specify how to apply an action to a part and will be directly 
referenced from the behavioral plans whenever a part of the object is required to move. 
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Figure 4.5 – The command editor dialog box permits to parameterize actions and to 
associate an action to part.  

Positions are defined using the dialog box shown in figure 4.6. Positions can be 
used for any purpose and can specify also a direction vector. It is possible to set their 
position interactively, using the widgets in the dialog box, or directly in the 3D graphical 
window using manipulators. Each position (as each feature) is identified with a given 
name for later referencing in the interaction plans. 

Note that all features that are related to graphical parameters can be defined 
interactively, what is important in order to see their location in relation to the object. 
Positions are defined in relation to the object skeleton’s root, so that they can be 
transformed to the same reference frame of the actor whenever is needed, during the 
simulation. Note that smart objects can be loaded and positioned anywhere in the virtual 
environment.  

 

 
Figure 4.6 – Positions can be defined for any purpose. In the image, many different 
positions (and orientations) are placed to propose possible places for actors to walk 
when arriving from any of the door sides. 

Gestures are the most important interaction information. Gestures parameters are 
defined in somod and proposed to actors during an interaction. We use the term gesture to 
refer to any kind of motion that an actor is able to perform. The most used gesture is to 
move the hand towards a position in space in order to press a button (a push movement), 
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or to grasp something. The possible parameters for the gesture feature are shown in figure 
4.7. 

 

 

Figure 4.7 – Gestures parameters dialog box. Depending on the action algorithm 
chosen, some parameters may be used differently. In the image, the action algorithm 
push  is selected. 

For each gesture, a hand shape, a positioning matrix for the hand, and the desired 
action algorithm must be supplied (see figure 4.8). The action algorithm here refers to the 
actions of AgentLib. Depending on the selected algorithm, some extra parameters can be 
used or not. For example, three main actions are often used: reach, push, and sit. 

The used action algorithms depend directly on the capabilities of the animation 
system, so that they are configurable using descriptive files. When somod starts, a special 
folder is scanned where files define each supported action algorithm in the target 
animation system, and also some pre-defined hand shapes. The developed simulation 
system (ACE) is based on AgentLib, and is the subject of the chapter 6. AgentLib 
provides already the action “reach”. Additionaly, the actions “push” and “sit” where 
developed and are the subject of chapter 5. 

In short, the action reach will only animate an actor’s arm to put its hand in a 
given location. Depending on the state of extra parameters, after the hand has reached the 
defined goal, the actor can then take or put an associated part. The push action differs in 
two aspects: it is able to animate the whole actor’s body in order to achieve better 
postures, and the actor’s hand can then follow a movement of an associated part in order 
to simulate the movement of opening, pressing, pushing, etc. The sit action, will define 
the actor to sit, using a target position defined as a path to follow. All these actions use 
inverse kinematics as the motion motor. Additionally, it is also possible to define a pre-
defined motion to be played as a keyframe. 
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Figure 4.8 – The left image shows a hand shape being interactively defined. The right 
image shows all used hand shapes being interactively located with manipulators. 

4.4.4 Defining Behaviors 

As already explained, behaviors are defined using pre-defined plans formed by 
primitive instructions. It is difficult to define a closed and sufficient set of instructions to 
use. Moreover, a complex script language to describe behaviors is not the goal. The idea 
is to keep a simple format with a direct interpretation to serve as guidance for reasoning 
algorithms, and which non-programmers can create and test. 

A first feature to recognize in an interactive object is its possible states. States are 
directly related to the behaviors one wants to model for the object. For instance, a desk 
object will typically have a variable state for its drawer which can be assigned two 
values: “open”, or “close”. However, depending on the context, it may be needed to 
consider another midterm state value. Variables are used to keep the states of the object 
and can be freely defined by the user to approach many different situations. Variables are 
defined by assigning a name and an initial value, and can be used for many purposes 
from the interaction plans. 

Interaction plans are defined using a specific dialog box (figure 4.9) which guides 
the user through all possible primitive instructions to use. In addition, a help window is 
available (figure 4.10) to describe each available instruction. 

The following key concepts are used for the definition of interaction plans: 

• An interaction plan describes both the behavior of the object and the expected 
behavior of its user. Instructions that start with the word “user” are instructions that are 
proposed to the user of the object. Examples of some user instructions are: UserGoto, 
UserDoGest, UserAttachTo, etc. For a complete list of the available primitive 
instructions, see section 10.1 in the appendix. 
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• In somod, an interaction plan is also called as a behavior. Many plans (or 
behaviors) can be defined and they can call each other, as subroutines. Like 
programming, this enables building complex behaviors based on simpler behaviors. 

 

 

Figure 4.9 – The dialog box used to define interaction plans. Menu-buttons are used to 
list all possible instructions to use, and for each instruction, the possible parameters 
are listed in additional menu-buttons. Also, each instruction has a built-in help 
description that can be automatically shown in the help window (see also figure 4.10). 

 

Figure 4.10 – The help window. A description of each primitive instruction is 
available to use during the definition of the interaction plans. 

• There are three types of behaviors (or plans): private, object control, and user 
selectable. Private behaviors are kept only to be called from other behaviors. An object 
control behavior is a plan that is interpreted all the time since the object is loaded in a 
virtual environment. This enable to have objects acting like agents, for example sensing 
the environment to trigger some other behavior, or to have a continuous motion as for a 
ventilator. Object control behaviors cannot have user-related instructions. Finally, user 
selectable behaviors are those that can be selected by users, in order to perform a desired 
interaction. 

• Selectable behaviors can be available or not, depending on the state of specified 
variables. For example for a door, one can design two behaviors: to open and to close the 
door. However, only one is available at a time depending on the open state of the door. 
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The instruction CheckVar is used to control the availability of behaviors and is 
exemplified in figures 3.9 and 3.10. When the CheckVar test is false the behavior is not 
available for selection (from the simulation system) and also it makes its interpretation to 
stop. 

The behavior showed in figure 4.9 uses the state_passing variable to avoid closing 
the door while agents are still passing. Some instructions were specifically designed to 
cope with more than one actor interacting with the object at the same time. For instance, 
the UserGetClosest instruction is used to detect in which side of the door the actor is, so 
that the correct positions are then given to make it pass the door. The full file description 
of this automatic door example, coping with many actors at a same time, is shown in the 
section 10.2.1 (appendix). Figure 4.11 shows two agents passing through the door. 

 

 

Figure 4.11 – Two actors passing through an automatic door. The used interaction 
plans can correctly manage more than one actor interaction at the same time. 

 

Multi-Actor Interaction with a Same Object 

Whenever interaction plans are designed, it should be taken into account if the 
object will need to interact with many agents at a same time or not. The interaction plans 
are responsible to correctly call the available primitive instructions for synchronization. If 
synchronization is not ensured by the interaction plans, the simulator application will not 
be able to guarantee a correct result. 

Most of the time, variables are used to keep the number of agents currently 
interacting with the object, and based on that, different strategies can be taken. Note that 
it is not possible to predict a global behavior for all kind of objects when a multi agent 
interaction is required. For instance, in the automatic door example, up to three actors can 
pass the door together at a same time, however, to press the calling button of a lift only 
one actor at a time can access the button and press it. 
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As an example, the automatic door shown in figure 4.11, uses two strategies to 
synchronize up to three actors passing the door at the same time. One strategy is to count 
the number of actors actually passing through the door, in order to forbid closing the door 
if this number is not zero. Another used strategy is to define three different positions on 
both sides of the door, which are then given as walking targets in parallel for the actors, 
without generating collision of paths. 

  

Graphical State Machines 

Somod plans are very simple to use to describe simple interactions and 
functionalities. They can still cope with much more complex cases, but then plans start to 
get more complex to design. It is like trying to use a specific purpose language to solve 
any kind of problems. 

As an example, consider the case of modeling a two-stage lift where actors can 
take. Such a lift is composed of many parts: doors, calling buttons, the cabin, and the lift 
itself. These parts need to have synchronized movements, and many details need to be 
taken into account in order to correctly control actors interacting with the lift. 

To simplify modeling the behaviors of such complex objects, somod has a 
graphical dialog box to graphically design finite state machines. The proposed solution is 
to start designing basic interaction plans for each components of the lift, using the 
standard behavior editor (figure 4.9). Then, when the components have their functionality 
defined, the state machine window is used, permitting to define the states of the whole 
object lift, and the connections between the components. 

Figure 4.12 shows a first example of using this graphical window in the case of 
the lift. The user has first designed the plans for the functionality of each component part 
in particular. For example, there are behaviors to open and close each door of the lift, to 
press each calling button, to move the cabin, and so on. The description file generated 
with this lift example is available in the appendix, section 10.2.3. 

Then, the user opens the graphical state machine editor to design the functionality 
of the lift as a whole. A first simple example is considering that the lift can have only two 
states: floor_1 and floor_2. When the lift is in floor_1, the only possible interaction is 
enter_12, that will call a behavior which calls the full sequence of instructions to perform 
the full interaction: pressing the calling button, opening the door, entering inside, closing 
the door, move the cabin up, opening the other door, and going out. This simple state 
machine example is showed in figure 4.12. 
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Figure 4.12 – A state machine for a lift functionality where all interaction during the 
process of taking the lift are programmed inside plans enter_12 and enter_21. In the 
image, the double circle state is  the current state, and the rectangular boxes show the 
interaction needed to change of state. For example, to change from floor_1 to floor_2 
state, interaction enter_12 is required. 

Designed state machines are automatically translated into interaction plans so that, 
from the simulator point of view, all behaviors are treated as plans. When the smart lift is 
loaded in a simulation environment, the created available behaviors can then be selected. 
A drawback of this simple state machine is that the single interaction of entering the lift 
can be very long, giving no options to the actor in the middle. A more complex solution 
is given in Figure 4.13.  

Figure 4.13 shows a more complex state machine that models the functionality of 
the lift by taking into account possible intermediate states. In this case, the actor needs to 
select, step by step, a sequence of interactions in order to take the lift to the other floor. 
Figure 4.14 shows some snapshots of the animation sequence of an actor entering the lift. 

 

 
Figure 4.13 – A more complex state machine for the lift where intermediate states are 
considered. Additionally, behaviors are associated with each state to be triggered 
whenever the object enters that state. 
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Figure 4.14 – An actor entering the smart lift. 

This lift model can be much more complex in order to cope with many actors at 
the same time, entering from any floor, etc. The lift model has been extended in order to 
correctly cope with up to three actors entering from each floor at a same time. However, 
it is difficult to evaluate if the programmed behaviors can correctly solve all possible 
combination of cases. Moreover, it is possible to find examples where avoiding a 
deadlock situation would be difficult. For example, a deadlock can easily occur when 
trying to solve the classical problem of simultaneous access of resources that is called the 
dining philosophers [Andrews 1991]. 

When an actor selects an interaction plan, a new process is opened in order to 
interpret this plan. This process can be seen as the actor skill to interact with objects, and 
is part of the smart object reasoning module. The issue of correctly interpreting plans in 
parallel is discussed in chapter 5. 

4.4.5 Templates 

Another utility available in somod is to load template objects. The idea is that any 
pre-modeled smart object can serve as a template to model new smart objects. A specific 
window to load templates was designed permitting to scan directories containing smart 
objects and to choose the desired features to import (figure 4.15). 
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Figure 4.15 – The template loader dialog box. This window permits to scan a 
directory with pre-modeled objects and components, visualize their internal features, 
and import any selected set of features. 

The template loader window can import any kind of features from other smart 
objects. Many of the features have dependencies on other features, and these 
dependencies are all tracked and coherently loaded. In addition, names are automatically 
updated whenever conflicts with previously created names appear. Each time features are 
imported, the user can inspect and adapt the results, using the main window. 

The template loader window associated with the graphical state machine editor 
forms an effective way of definition and reuse of object interactivity and interaction. Sets 
of components can be maintained in proper folders in order to be easily imported and 
connected, testing different combination of components to compose a whole object. 

For example, a set of different types of door can be defined, each one having a 
different geometry or functionality, as double or single panels, center or side opening, 
translation or rotation opening, etc. These doors can then be easily imported to compose, 
for instance, the lift. 

4.5 Somod Extensions 

Somod has been used to model smart objects for different purposes. Some times 
objects have simple geometry but a lot of semantic information, and some times objects 
simply don’t offer interaction, and somod is used only, for instance, to define relative 
positions around the object for collision avoidance. 

Somod is flexible in the sense that it permits the user to define only the desired 
features, relative to the object, that can be used later for any purpose. For example, one 
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can use somod to model a complete set of hand shapes (like the one proposed by 
[Cutkosky 1989] ) to use for approaching different grasping configurations. 

When modeling more complex behaviors, the simplicity of the available set of 
primitive instructions may not be sufficient. The extension to connect with a high-level 
and complete interpreted language was integrated in somod. The used language is Python 
[Lutz 1996], so that python commands can be stored in the plans with the instruction 
PythonFunc (see appendix section 10.1). 

To make use of the Python extension, the simulator system must be able to 
interpret python scripts, and this is the case of the simulator developed, which is the topic 
of chapter 6. Python is a very powerful language, available for nearly all platforms, and 
the source code is available for free. There is even a Java module that is able to interpret 
Python, opening the possibility to interpret Python scripts in standard web browsers. 

For the sake of simplicity, somod uses a simple ascii text file format to save 
modeled smart objects (see appendix section 10.2). No special standards were used, but 
conversion to other file formats can be easily done, as for instance to a XML format.  

Smart objects can also be described using a VRML syntax. However, it is not 
possible to fully translate interaction plans into VRML nodes. Standard VRML nodes 
only provide basic sensors and movements, so that external Java scripts would need to be 
used. 

Moreover, browsers that load and animate VRML scenes don’t provide an agent 
environment with actors being animated and ready to interact with objects. Note 
however, that some efforts have been done to create virtual human animations using Java 
and VRML [Babski 2000]. A major problem of such systems is the much lower frame 
rates achieved, as Java is an interpreted language. 

A simple translator from the smart object format to an animated and interactive 
VRML scene was developed, however with several limitations. Only simple behaviors 
can be correctly translated, and interaction is done only using mouse clicks. Figure 4.16 
shows a smart object in a VRML format loaded in a web browser. In this example, 
whenever the user clicks on a drawer, the drawer will open or close. This example uses 
only standard VRML nodes. 
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Figure 4.16 – A smart object translated into a VRML file can be loaded and animated 
in a VRML browser. 

4.6 Chapter Conclusion 

In this chapter, the following topics were stressed: the feature modeling concepts 
used to model interactive objects, the smart object description, and the implementation 
issues of somod. In addition, examples of modeled objects were presented and discussed. 

The most important aspect of the smart object description is the fact that any user 
of the object can ask for a list of available interactions, which is generated in run time, 
depending on the current state of the object. This list of possible interactions is the 
communication language between actors and objects, forming a behavioral interface to 
coherently manage any kind of users interacting with objects at a same time. 

The next chapter explains the details and implementation issues related to the 
interpretation of interaction plans, and chapter 6 exposes the simulator system (ACE) that 
contains all such capabilities to simulate actor-object interactions. 
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5 Interpreting Interaction Plans 

This chapter exposes the solutions adopted to overcome two main problems that 
appear during the interpretation of interaction plans: synchronization of many plans 
interpreted in parallel, and the motion control of actors to perform manipulation 
instructions.  

The whole process from the high level interpretation of behaviors to the low level 
control of primitive actions and motions is explained. In addition, the synchronization 
rules adopted, and their limitations are also discussed. 

5.1 Introduction 

Given a set of instructions, i.e., an interaction plan, there are some strategies to 
consider in order to correctly animate the actor’s skeleton accordingly. 

A first issue is how to synchronize plans that are interpreted in parallel. Note that, 
in the scope of this thesis, interaction plans can dictate the behaviors of both actors and 
objects. One can see an interaction plan as a program that runs in an independent process, 
and that must access resources from actors and objects. 

The many synchronization problems involved have a direct relation with the 
concurrent programming area [Andrews 1991]. In this way, standard techniques can be 
used: barriers, flags, etc. A simple synchronization rule to activate and block the many 
processes interpreting plans is adopted and is discussed in section 5.3, together with the 
many related issues. 

Another key issue is the animation of the virtual actor interacting with objects, 
i.e., how to correctly animate the actor’s skeleton according to a behavioral instruction. In 
most of the animation cases, a method to define a realistic skeleton posture, given a 
desired location for the actor’s hand is required. From now on, this specific problem will 
be referred to as the reaching problem. 
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The movement control of virtual actors, and specifically the reaching problem, is 
a key issue in many areas, specifically for human factors analysis [Stanney 1998], and 
ergonomics [Wang 1998], in the scope of many different applications. 

Real time inverse kinematics is a key component of any human modeling system, 
allowing to directly approach the reaching problem. Mechanisms with more than six 
degrees of freedom (DOF) are considered redundant and thus some strategies to control 
the obtained result must be taken. In section 5.4 the adopted strategies in this work are 
explained. 

5.2 Related Work 

The parallel interpretation of plans or behaviors is an issue that appears in many 
behavioral animation systems. One specific structure to define parallel programs for 
describing behaviors is the parallel transitions network (PaTNets) [Granieri 1995] 
[Bindiganavale 2000]. PatNets can be modeled graphically, but no specific considerations 
about object interaction are done. 

Many other works address the problem of concurrency in behavioral systems, as 
for instance [Donikian 1994], but none has straight similarities with the object interaction 
synchronization issues appearing here. The approach used in this thesis is to design 
independent plans and then, to use state variables together with a simple built-in rule for 
threads (or light processes) synchronization. 

The animation of a virtual actor, and specifically the reaching problem, is an 
active topic with many techniques proposed in the literature. Techniques can be grouped 
into four categories: those based on inverse kinematics methods, those based on path 
planning, those based on adaptation of pre-recorded motions, and those based on 
interpolation of pre-recorded motions stored in a database, covering a discrete volume 
space around the actor. 

Methods based on the adaptation of pre-recorded motions are still not flexible 
enough to be used for general cases, but some interesting results have been presented 
[Bindiganavale 1998]. 

Inverse kinematics is still the most popular technique due to the fact that it is 
directly applicable to solve the reaching problem. However, realistic results are hard to 
obtain. Most works present specific implementations regarding only the movement of the 
actor’s arm [Tolani 1996] [Wang 1998]. Although interesting results are obtained, few 
considerations are done regarding full body animation for the reaching problem, towards 
more realistic postures. For instance, to determine a coherent knee flexion when the actor 
need to reach with its hand a very low position. 
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In another direction, database driven methods can easily cope with full body 
postures. The idea is to define pre-recorded (thus realistic) motions for reaching each 
position in the space inside a discrete and fixed volumetric grid around the actor. Then, 
when a specific position is to be reached the respective motion is obtained through 
interpolation of the pre-recorded motions relative to the neighboring cells. This is exactly 
the approach taken by [Wiley 1997] with good results achieved. Database methods were 
also successfully used to determine grasping postures [Aydin 1999] [Huang 1995]. 

Motion planning [Simeon 2000] represents a promising approach due to the often-
used probabilistic aspect, which allows finding solutions for complex animations, 
however increasing the required computational time. So that, motion planning methods 
can be considered not yet applicable to real time systems. 

Table 5.1 makes a comparison of these many methods.  

 
 Realism Real-Time Generality Collisions 

Motion Adaptation + + - - 
Motion Database + + - - 

Path Planning - - + + 
Inverse Kinematics - + + - 

 
Table 5.1 – Comparison of the many motion control methods, regarding: the realism 
of the generated movements, the real-time ability of computation, generality for being 
applied to different kinds of interactions, and the ability to handle and solve collisions 
with the environment. Inverse kinematics still provides the best compromise 
concerning generality and real-time computation. 

The approach adopted in this thesis is based on a reasoning of how to determine 
inverse kinematics constraints in order to achieve visually acceptable body postures for 
the reaching problem in a good range area. For this, the inverse kinematics module 
InvKinLib developed by Paolo Baerlocher [Baerlocher 1998] was extensively used in this 
thesis. 

The solutions adopted here are simple and general, so that they can be used in real 
time virtual environments with acceptable computational costs, and with good 
adaptability to general situations. The aim is to be able to simulate actor-object 
interactions in large virtual environments, so that the most important is the overall final 
animation obtained, and not the correctness of each movement detail. Section 5.4 
explains in detail the solutions adopted. 
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5.3 Interpretation of Plans 

Each time a user selects an interaction plan to perform, a specific thread is created 
to follow the instructions of the plan (figure 5.1). The state variables of the object are 
accessed from all threads and can be used to synchronize the threads. The final situation 
is a simultaneous access to a resource, i.e, the smart object. 

With this approach, it is possible to have many users (and of different types) 
accessing and interacting with the same smart object. However, the interaction plans of 
the object need to be well designed in order to cope with all possible combinations of 
simultaneous access. For example, complex situations appear in the dining philosophers 
problem [Andrews 1991]: Suppose that a round table is designed with four dishes equally 
distributed on its surface. Between each pair of dishes, there is one fork or knife, 
alternatively distributed. But then, each time someone starts to eat, both a fork and a knife 
are required. The situation is that it is impossible to have everybody eating at the same 
time, and the problem is to design strategies to share the resources. 

Although such complex cases are not automatically handled, a simple built-in 
synchronization rule between threads is used. For this, plans instructions are grouped into 
two categories: long instructions, and local instructions. Long instructions are those that 
cannot start and complete in a single time step of the simulation. For example, 
instructions that trigger movements will take several frames to be completed, depending 
on how many frames the movement needs to finish. In the current set of instructions, the 
following are considered long: UserGoTo, UserDoGest, WaitVar, DoCmd, 
WaitUserProp, and Pause (see appendix section 10.1). All other instructions are said to be 
local. 

 

 

 

 

 

 

 

 

 

Figure 5.1 - For each actor performing an interaction with an object, a thread is used 
to interpret the selected interaction plan. Each thread accesses and controls its related 
actor and object, according to the plan’s instructions. 
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Plans are interpreted instruction by instruction, and each instruction needs to be 
finished before the next one is executed. When a plan is being interpreted by some thread 
t, all other threads are suspended until a long instruction is found. In this way, t will fully 
execute sequences of local instructions, while all other threads remain locked. When a 
long instruction is reached, it is initialized, the other threads are activated, and t stays 
observing if the instruction has finished. This scheme results with the situation where all 
activated threads are in fact monitoring movements and other long instructions, and each 
time local instructions appear, they are all executed in a single time step, while other 
threads are locked. 

This approach automatically solves most common situations. For example, 
suppose that the lift has a call behavior which interaction plan consists of: “if state of 
calling button is pressed do nothing; otherwise set state of the calling button to pressed 
and press it”. Suppose now that two actors, exactly at the same time, decide to call the 
lift. The synchronization rule says that while one thread is interpreting local instructions, 
all others are locked. In this way, it is guaranteed that only one actor will actually press 
the button. Without this synchronization, both actors would press the button together at 
the same time, resulting serious inconsistent results. 

5.3.1 Instructions Reasoning 

The simulator system needs to animate the actor’s skeleton in order to achieve the 
correct animation corresponding to each user related behavioral instruction. The most 
complex instruction to perform is UserDoGest. All other user related instructions have a 
direct animation interpretation, like walking, being attached to some object part, saving a 
property, etc. 

The gesture instruction, according to its parameters defined in somod, will signify 
an action of sitting, pushing, or reaching. The used AgentLib framework (see section 2.5) 
provides already the reach action for the animation of virtual actors. The reach action 
uses inverse kinematics to specify the joint values of the actor’s arm in order to reach a 
goal location in space with the hand. This action works well in some specific cases, but it 
is not sufficient for all interaction cases, so that the specific action push was developed 
and will be the subject of the next section. Other auxiliary actions as hand and sit will be 
also presented in a later section. 

During the push action, the hand shape, i.e. the configuration of the fingers, need 
also to be changed in order to reach the specified pre-defined hand shape. In addition, 
depending on the goal hand location, different skeleton movements need to be 
undertaken, and the direction of the actor’s head should be also controlled. The correct 
connection and synchronization of these primitive motions is the result of the reasoning 
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module of the animation system. Figure 5.2 illustrates the steps from a behavioral 
instruction until the definition of primitive motions and actions to animate an actor. 

 

 

 

 

 

 

Figure 5.2 – Each interaction instruction is translated into primitive actions by a 
reasoning process, specifying the animation result to be obtained. 

5.4 Manipulation Actions 

Depending on its parameters, the instruction UserDoGest can mean different actor 
movements, but in the most common case, it is used to determine that the actor should 
perform some manipulation with the object. A manipulation movement is divided in three 
phases: reaching, middle, and final phases (figure 5.3). 

 

 

 

 

 

 

 

Figure 5.3 – Reasoning diagram for the interpretation of a manipulation instruction. 

All manipulation movements start in the reaching phase. In this phase, inverse 
kinematics is used in order to animate the actor’s skeleton to have its hand in the 
specified position. Then three cases can happen, depending on the parameters: follow, 
take, and put (see figure 4.7). Parameters follow and take are used to specify the 
attachment of objects to the actor’s hand. The follow parameter indicates that the actor’s 
hand should then follow a specified movement. This is the case for example to press 
buttons and open drawers: the specified translation movement to animate the object part 
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is followed by the actor’s hand, while inverse kinematics is used in order to adjust the 
posture of the actor’s skeleton. 

Additionally to the inverse kinematics motion controlled by the developed action 
push, two other primitive actions are used in parallel: look, and hand. The AgentLib look 
action permits to animate the head orientation to face a given point in space. This action 
is used to keep the actors head to look to the object being manipulated. However, this 
feature can be deactivated if some external behavioral module wants to control the head 
orientation during an interaction. 

The hand action developed simply interpolates the current joints of the fingers 
until they reach the pre-defined manipulation hand shape (stored in the smart object). In 
this way, hand animation for grasping is obtained through direct interpolation between 
the initial actor’s hand shape to the desired pre-defined hand shape. These two “extra” 
primitive actions run in parallel with the push action. 

5.4.1 The Inverse Kinematics Module 

The AgentLib primitive action push was developed, which directly uses the 
inverse kinematics module. In order to better explain how constraints are used, an 
introduction to the used actor skeleton and the inverse kinematics module of [Baerlocher 
1998] is given here. 

As already stated, the actor’s skeleton is composed of many joints, disposed in a 
hierarchy. The whole hierarchy can be seen in figure 10.1 (in the appendix). The 
skeleton’s root is a node between the pelvis and the column, and which separates the 
hierarchies of the legs and feet from the hierarchies of the column, head and arms. 

The motion flow root is a node in the hierarchy from whom the “motion” is 
propagated to adjacent nodes. The motion flow root does not necessarily correspond to 
the hierarchy root; it can be moved at any time, for example to constrain a foot to be 
firmly planted on the floor. In the scope of the utilization done in this thesis, for the 
manipulation of objects, the motion flow root is always kept the same as the skeleton 
root. 

The animation results obtained have a fixed motion flow root while the arms, legs 
and head are moved to reach pre-defined constraints. Many different constraints can be 
defined. The most used type of constraint is to define a position and/or orientation in 
space where a specified joint must reach. 

For example, it is possible to specify the actor’s hand to reach a position p in 
space. In this case, the inverse kinematics module will generate a suitable skeleton 
posture so that the actor’s hand reach the point p. The actor’s hand is also called as end-
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effector, and p as a task. The allowed joints of the skeleton to be animated by the inverse 
kinematics module can be specified to attend different needs. To calculate a final skeleton 
posture, the inverse kinematics module uses iterative numerical methods, so that some 
iteration steps are required to converge to the solution, with a specified precision error. 

When defining many tasks to be solved, some times it may not be possible to 
solve all tasks. For example if one task says that the actor’s head should stay in its 
original straight position while the actor’s hand should reach a very far position, it may 
not possible to satisfy both tasks. Priorities can be set for each task in order to say which 
of them have higher priority to be solved. In the example, if the hand’s task is given a 
higher priority the actor’s column will move towards the position to reach with the hand. 

When a smart object instruction requires an actor to do some manipulation with 
the object, a reasoning about the situation is done in order to coherently distribute the 
needed constraints to animate the manipulation using inverse kinematics. 

5.4.2 Constraints Distribution 

At the beginning of a manipulation (see figure 5.3), the actor’s skeleton sizes and 
the task position to reach with the hand are analyzed and different constraints are set: 

• First, the inverse kinematics module is set to only animate the joints of the arm, 
shoulder, clavicle, and the upper part of the column (see appendix 10.5.2 for a precise 
listing of the used joints). This set of joints makes larger the reach volume space, as the 
actor can reach farther positions by flexing the column. However, a side effect is that 
even for closer positions to reach, the column can move, generating weird results. To 
overcome this, two new constraints are created. A positional constraint, with a low 
priority, is used to keep the vertebra VT5 joint in its original position. In addition, a low 
priority orientation constraint is applied to the vertebra VC8 to maintain a vertical 
orientation. These two constraints ensures that the column stays straight as long as it is 
possible, while permitting the column to rotate along its vertical axis. This feature 
correctly runs in parallel with the look action that controls the head orientation. Figure 
5.4 shows some results obtained with this approach. 

• Secondly, if the goal position (the task) to reach with the hand is lower than the 
lowest position achieved with the hand in a straight rest position, a special knee flexion 
configuration is set. The joints of the hip, knee, and ankle (see appendix 10.5.2) are added 
to the allowed joints to be animated by the inverse kinematics module, and two new 
constraints, with high priorities, are added to keep each foot on its original position and 
orientation. This configuration makes the actor to flex the knees, keeping its feet fixed in 
the ground, when the actor’s skeleton root is gradually lowered. Figure 5.5 shows 
different knee flexions obtained while reaching positions of different heights. 
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Figure 5.4 – A specific constraint is used to keep the actor’s column straight as long as 
it is possible, while permitting a rotation movement of the body along its vertical axis.  

 

 
Figure 5.5 – When the position to reach with the hand is too low, additional 
constraints are used in order to obtain knee flexion. The images show, from left to 
right, the postures achieved when reaching each time lower positions. 

5.4.3 Animation Control 

After the initial phase of constraints and joints control distribution, a higher 
priority hand task is set. The hand task is set to make the hand to follow given positions p 
and orientations q. 

During the reaching phase, only the final hand position (p1) and orientation (q1) 
are given. These values are retrieved from the smart object data. The initial hand position 
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(p0) and orientation (q0) are determined from the global position of the actor’s hand at the 
beginning of the reaching phase. 

Then, the number of desired time steps (n) to accomplish the reaching phase is 
determined. This number is determined based on the distance to the goal final position. 
Experimentally, good results were obtained having 35 time steps per meter. In this way, 
considering that positions are measured in millimeters, n is determined with the following 
formula: n=dist(p0,p1)*(35.0/1000.0). In addition, a test is done to ensure that n has a 
minimum value of 5, for better results with short, detailed movements. 

During the animation loop, in the reaching phase, the hand task is set to a position 
interpolated along the straight line from p0 to p1, giving the most direct way to achieve 
the final goal. When, in the middle phase, a following movement is required, the hand 
keeps its orientation, but its position is updated to follow the movement of the object 
being manipulated. Intermediate orientations are obtained with quaternion interpolation. 
The final algorithm can be summarized as follows: 

perform_push_action_step () 
 { 
  if ( start ) { t=0.0; inc=1.0/n; } 
 
  if ( reaching_phase ) 
   { t = t + inc; 
     p = (1.0-t)*p0 + t*p1;        // position interpolation 
     q = quat_slerp ( q0, q1, t ); // quaternion interpolation 
     set_hand_constraint_to ( p, q ); 
     if ( do_knee_flexion ) lower_skeleton_root_position(); 
     converge_inverse_kinematics (); 
     if ( t==1.0 ) reaching_phase = false; 
   } 
 
  if ( doing_following_movement ) 
   { p = actual_hand_position (); 
     q = actual_hand_orientation (); 
     p = p + position_difference_of_object_being_followed (); 
     set_hand_constraint_to ( p, q ); 
     converge_inverse_kinematics (); 
   }   
 
  update_current_phase (); 
 } 

 

An example of the animation obtained during the reaching phase is given in figure 
5.6. Note that the showed animation of button pressing also has a middle phase with the 
following movement, which is needed to actually press the button and not only to touch 
it. Another example of the “following movement” is given in figure 5.7 to close a drawer 
in a difficult lower position. Note that during the following-movement the same 
constraints used for the reaching phase are kept. 
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Figure 5.6 – The reaching phase of a button press manipulation. Note that the action 
look makes the actor to look to the button, and the action hand gradually interpolates 
the initial hand shape towards the final button press shape. 

 

 

Figure 5.7 – The reaching and following movements used to close a drawer. Note that 
during the following phase (closing the drawer) the knee flexion is kept. 

5.5 Other Actions 

The instruction UserDoGest can be also used to specify other type of movements. 
A movement that is interesting to have using inverse kinematics is sitting. The animation 
of a sitting movement is normally done using pre-defined keyframe animation because of 
its complex nature. However, the main drawback is that the used motion only works for a 
specific pair chair-actor. Each time the actor or height to sit change, a new motion need to 
be created. To overcome this, the inverse kinematics action sit was also developed. 
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Figure 5.8 – The sit action. The position of the arms are controlled by other modules 
for any purpose, as for instance using the push action or a pre-defined keyframe 
motion. 

The used constraints are the same used for the knee flexion configuration, the only 
difference is that the root of the skeleton is interpolated along a straight line from its 
current position to the specified position to sit (which is retrieved from the smart object 
chair). 

The position of the arms is not changed, but additional instructions can be used to 
manipulate the arms, or to play a keyframe animation for the upper body part. Figure 5.8 
exemplifies the results obtained with such a sitting action. 

5.6 Chapter Conclusion 

This chapter explained the issues related with the interpretation of interaction 
plans. The main problems addressed were the parallel execution of plans, and the used 
constraints distribution to animate object manipulations. 

The implemented action push was explained and some results of animations 
generated were presented. An important aspect of the action push is its flexibility. It can 
be used for many manipulation cases, and in fact, it was used to generate all actor 
animations showed in the figures of this thesis. 

The next chapter introduces the ACE system that incorporates the push action to 
perform actor-object interactions. 
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6 Agent Common Environment 

This chapter describes the implemented system for virtual human agents 
simulation supporting interaction with smart objects. The system is able to coherently 
manage a virtual environment shared by agents (actors and objects), and is called “agent 
common environment” (ACE). 

The description of the system architecture is presented and discussed in this 
chapter. Most of the results obtained and showed in this thesis were generated using 
ACE. 

6.1 Introduction 

The importance of simulations with virtual humans has already been stressed in 
previous chapters. The ACE system presented here was developed to perform many kinds 
of behavioral simulations with actors, including the capability of interaction with smart 
objects. ACE can also be connected with some virtual reality devices (see section 2.4) in 
order to permit a direct interaction with smart objects: this capability is the topic of the 
next chapter. 

ACE is controllable through Python scripts [Lutz 1996], and provides the basic 
agent requirements in a virtual environment: to be able to perceive and to act in a shared, 
coherent and synchronized way. ACE is thus a system that has been used as a platform to 
the development of different kind of applications based on virtual human simulations. 

The central point of ACE is the easy connection of behavioral modules as plug-
ins, following a trend in computer animation systems [Badler 2000]. Such plug-ins can be 
defined in two ways: actor-object interactions using smart objects and a behavioral 
library composed of modular Python scripts. 
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6.2 Related Work 

Many simulation systems are described in the literature, and many of them are 
driven by scripts. The Improv system (Improvisational Animation) [Perlin 1996] is 
controlled by behavioral scripts designed to be easily translated from a given storyboard. 
Scripts have a simple syntax, close to a natural language specification of storyboards. 

Also using scripts, [Motivate] and [Nemo] systems use hierarchical finite state 
machines to define characters behaviors, targeting game development. Another recent 
successful game is [TheSims], where the user can interact with a simulation of actors 
living day-life situations. 

Game engines are more and more appearing, providing many behavioral tools that 
can be easily integrated as plug-ins to build games. Although they offer many powerful 
tools, they may not be well suitable for applications different from games. 

In another direction, the Jack software package [Badler 1999b], available from 
Transom Technologies Inc., is more oriented for human factors applications rather than 
social and behavior animation. Jack is a software package for human animation with a 
large palette of features including collision detection, balance control and dynamic 
strength considerations. Different systems have been built, developing their own 
extensions to the Jack software [Johnson 1997] [Bindiganavale 2000]. 

[Blumberg 1995] built autonomous animated creatures for interactive virtual 
environments, which are also capable of being directed at multiple levels: motivational, 
task level, and motor level. 

The main difference between these systems and ACE is that they don’t exhibit 
any specific approach to model actor-object interaction. They’re more concentrated in the 
behavioral modeling of the actors alone. For instance, ACE can be used to implement the 
many different approaches for actors behavior definition. 

The only system that shows some actor-object interactions is the game [TheSims]. 
It was not possible to know much about their approach, but some texts about the game 
reveal that they associate somehow interaction information with objects, thus having 
some similarities with the approach herein presented. 

6.3 ACE System 

6.3.1 Software Platform 

ACE is a system implemented on top of AgentLib (see section 2.5), integrating 
nearly all libraries available in the lab for virtual human agents animation. For the 
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graphics visualization, the Performer library from [SGI] is used, and thus the system runs 
in SGI machines. 

 For the graphical user interface [FLTK] is used, and for the scripting capabilities, 
[Python] is used. Apart the Performer library, the other libraries are platform-
independent. 

6.3.2 ACE Functionality 

The core of the ACE system understands a set of commands in Python to control a 
simulation. For a complete list of the currently available Python functions executed in 
ACE, see appendix section 10.3. Among other features, these commands can:  

• Create and place different virtual humans, objects, and smart objects. Actors 
information (size, appearance, clothes, etc) is defined in a specific .inf file which is 
loaded by DodyLib. Objects in general can be declared only by giving a geometry file to 
display them, and smart objects are loaded from their .so description file. The smart 
object loader is able to share the geometry representation between many instances of 
smart objects. 

• Apply a primitive action to a virtual human. Examples of such actions are: key-
frame animations, walking, facial expressions, etc. These motion motors can be triggered 
in parallel and are correctly blended by AgentLib [Boulic 1997]. 

• Trigger a smart object interaction with a virtual human actor. 

• Ask for a collision-free path among previously defined 2d obstacles (figure 6.1). 
The implemented algorithm is based on an exact cell decomposition of a 2d environment, 
using a similar (less optimized) structure to the star-vertex (chapter 3), which I have also 
developed. 

• Query pipelines of perception [Bordeux 1999] for a given virtual human. Such 
pipelines, integrated in AgentLib, can be configured in order to simulate, for instance, a 
synthetic vision. In this case, the perception query will return a list with all objects 
perceived inside the specified range and field of view. As an example, figure 6.2 shows a 
map constructed from the results of the perception information received by an actor. 

All previously described features are available through simple Python scripts. 
When ACE starts, two windows appear. One window shows the virtual environment 
being simulated. The other one is the main window, which contains the interactive 
Python shell (figure 6.3). 

The main window contains also menus to access other available dialog boxes to 
control and monitor the ongoing simulation. Such dialogs can interactively place actors 
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and objects in the scene, set lights, control camera parameters and behavior (as automatic 
perception and attachment to actors), control actor-object interactions, inspect the 
perception of actors, send natural language orders, etc. Some of these controls will be 
exposed in section 6.6. 

 

 

Figure 6.1 – The image illustrates the use of a 2d path planner in ACE: once obstacles 
are declared as polygonal approximations, an exact cell decomposition process is 
used, based on a constrained Delaunay triangulation. Free paths are then computed by 
just exploiting free cells adjacency, using any known graph search algorithm. 

 

 
Figure 6.2 – Perception map of the lowest actor in the image. In this example, a range 
of 2.6 meters and a field of view of 180° are used. The darker points in the map 
represent the positions of each perceived actors and objects. The lighter point 
represents the position of the perceiver. 
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Figure 6.3 – The ACE system with the graphical output window and its main window, 
witch contains the interactive Python shell. 

6.3.3 A Script Example 

In the interactive Python shell it is possible to load or type scripts to control the 
simulation. An example of a valid Python script is as simple as the following: 

 
# Create a virtual human and a smart object: 
bob = vhnew ( “bob”, “sports-man” ) 
computer = sonew ( “computer”, “linux-cdrom” ) 
 
# Query a 3 meters perception with a 170 degress field of view: 
perception = vhperceive ( bob, 3000, 170 ) 
 
# If the computer was perceived, perform two interactions with it: 
if computer in perception : 
   sointeract ( computer, bob, “eject_cd” ) 
   sowait ( computer ) 
   sointeract ( computer, bob, “push_cd” ) 
 
 
Figure 6.4 shows a snapshot of the animation generated from this script. The 

created agent is performing the “push_cd” interaction (note that in the image other 
objects that were previously created are also shown). Other example scripts are showed in 
the appendix section 10.4. 
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Figure 6.4 – An actor-object interaction being performed. 

The smart object “computer” loaded in this example (figure 6.4) was defined with 
somod (chapter 4), where all low-level 3D parameters were defined, as shown in figure 
6.5. 

 
Figure 6.5 – Modeling phase of the smart object computer using somod. 

In this way, the low-level motion control is performed internally in ACE by 
following the interaction plans defined inside each smart object description. All the issues 
discussed in chapter 5 regarding the interpretation of such plans are implemented inside 
ACE. Python scripts can then easily instruct an actor to interact with a smart object 
without the need of any additional information. After an interaction, the state of the smart 
object is updated, and the virtual human actor will wait for another Python order. 
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6.4 Multi Actor Simulations 

In order to coherently control a multi actor simulation in ACE, each actor runs in 
a separate thread, handled by a common agents controller module. This module is 
responsible for transporting messages between the threads by providing a shared area of 
memory for communication (figure 6.6). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 – ACE system architecture. 

Usually, each time an actor is created, a new thread starts in order to control it. 
This is directly implemented at the Python layer. The display update is handled by the 
controller, which also provides synchronization facilities between threads. Keeping the 
display update into the controller ensures that no conflicts arise (this could be the case if 
concurrent processes update the display at a same time). 

Concurrent actions (motions or facial expressions) are already handled internally 
in ACE with AgentLib. However, in some cases it may be interesting to have specific 
concurrent modules controlling the evolution of specific primitive actions. For such 
cases, new threads can be created within the agent thread, as depicted in figure 6.6. 
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Inside an actor’s thread, the user of the system can ask actor-object interactions to 
be performed, and also initialize any primitive action directly. Note that an actor-object 
interaction may trigger many primitive motions sequentially or in parallel, so that all 
current motions being applied to a virtual human agent need to be correctly blended, what 
is guaranteed by AgentLib. 

Whenever an object interaction is asked, a special Object Interaction Thread 
(figure 6.7) is created to monitor the execution of the needed motions until completion. 
This module implements the smart object reasoning issues, and is implemented internally 
in ACE (not in the Python layer). It can be seen as the actor capability to interpret object 
interaction instructions; like reading the user’s manual of a new object to interact. The 
object interaction thread does not use any system-related libraries for thread creation; it is 
programmed (and simulated) inside ACE, in the same executable program. 

 

 

 

 

 

 

 

 

Figure 6.7 – Motion blending permits other control mo dules to run in parallel with an 
object interaction, for example, to control body parts that are not used during the 
interaction. 

In this way, at the Python layer, an object interaction is seen as any other 
primitive action. Motion blended is supported in all cases, but the user is responsible to 
coherently start the motions and object interactions. For instance, when an object 
interaction to push a button with the right hand is requested, the object interaction thread 
will be active until the interaction finishes. If, at the same time, another module is 
controlling the right arm towards a different position, a deadlock may happen. 

Although object interactions are defined with pre-defined plans, many issues still 
need to be solved during run time as minimal information inside the plans is kept. In this 
way, there is space for the agent’s autonomy when generating motions for interactions. 
This is exactly the role of the smart object reasoning module, and the developed primitive 
action push (see section 5.3 and 5.4). For example, for a simple interaction like opening a 
drawer, the related interaction plan defines a position to stand near the drawer, a position 
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for the hand end-effector and a suitable hand shape to use. But where to look and if it is 
needed to flexion the knees or not are decisions taken by the actor during run time (see 
figures 5.5 and 5.7 of the previous chapter). 

6.5 User Control of the Animation 

ACE has several capabilities to permit the user to control and inspect the ongoing 
simulation. A first way to interact with the simulation is by using the interactive Python 
shell (figure 6.3). During a simulation, new Python commands can be typed in order to 
send orders to actors, for example, to command them to walk, play animation keyframes 
or interact with objects. 

Concerning actor-object interaction, a special dialog box was designed (figure 
6.8). This window permits to visualize, for each smart object loaded in the VE, its current 
available interactions. In this way, the user can quickly select an actor, an object and an 
interaction available, and the actor will promptly perform the animation. 

It is also possible to select an object interaction without selecting an actor to 
perform it: in this case, all actor-related instructions of the interaction plan are simply 
ignored, and the object appears to move by itself. This feature is important in several 
cases. One example is a modeled room that has an interaction of turning off lights. Then, 
each time an actor perform this interaction, it is no more possible to see the simulation as 
the VE becomes dark. In such a case, the ability to turn on the lights is used, without 
having to ask some actor to do it, what would interfere the simulation. 

 

 

Figure 6.8 – Object interaction window. When a smart object is selected, the list of its 
current available interactions appears for selection. In this way, the user can easily 
command actors to perform object interactions. 

Each available interaction with a smart object is identified by a text description, 
which should reflect the meaning of the interaction. ACE has another built-in interactive 
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shell for controlling the simulation, which is based on natural language. This shell 
translates simple natural language instructions into Python scripts. 

The use of natural language to create, animate and control a simulation is an area 
of active research, with many proposed systems [Strassmann 1991] [Bindiganavale 
2000]. In ACE, the natural language interpreter was built to command actors in the 
virtual environment, specifically to command object interaction. 

The interpreter was mainly developed to test the connection with semantic 
information contained in smart objects. As expected, a simple implementation was 
possible as it was not necessary to have any previous table associating possible actions to 
perform with existing objects, as it is normally done. The interpreter is able look inside 
each smart object of the scene, which are the actions (or interactions) that the object is 
capable of doing. For this, coherent semantic information must exist in objects. 

The natural language interpreter was tested with an environment that is a 
computer lab with many smart objects such as computers, printers, tables, cup boards, etc 
(figure 6.11). The interpreter can then be used to easily command actors inside this 
environment. After receiving an instruction, the interpreter analyses it, and translates the 
instruction into a Python script that is then interpreted by ACE. Figure 6.9 shows the 
result of an instruction accessing the actor’s perception and information inside the 
perceived smart objects. 

 

 
Figure 6.9 – Interactive natural language shell. When the instruction “What can you 
do, Bob?” is entered, the interpreter generates a Python script that lists all available 
interactions of the smart objects perceived by the actor. The Python script is executed 
by ACE, and the result is written in the shell window. 

The interpreter saves information about the current context of the “dialog”, so that 
if an actor or object name is missing in the written sentence, the previously referenced 
subjects are used. Actions to perform are those provided by AgentLib (walk, look, etc), 
otherwise they’re searched inside the list of available behaviors of the smart object in 
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question, and if no match is found, they’re looked inside all smart objects perceivable by 
the actor. Figure 6.10 exemplifies a case where only an action verb is entered and the 
missing subjects are automatically found. 

 

 
Figure 6.10 – When an action is entered, it is searched in the last referenced object, or 
in all smart objects perceivable by the actor. If an interaction matching the requested 
action is found, the previous actor referenced is used to perform the interaction. 

Building an effective natural language interpreter that works in all contexts is still 
a challenge. Normally, results are obtained only after some time of use, when the user 
starts to get used how to write sentences in a way that they’re correctly interpreted. At the 
end, is like having an interactive shell that works with key sentences and key words. No 
much time was invested in building an effective natural language interpreter, as the main 
purpose was only to test the communication with smart objects; and this was easily 
achieved. 

Other auxiliary ways of controlling the simulation are available in ACE. For 
instance, it is possible to graphically set positions for placing agents and objects, and also 
to define locations for the actors to walk. 

Another important type of user interaction investigated in ACE is the direct 
interaction (using VR devices) with smart objects. This kind of interaction will be 
specifically exposed in the next chapter. 

6.6 Extension Through Python Scripts 

Python scripts can be organized in modules, which are dynamically loaded from 
other scripts. Many available modules exist for different purposes, as graphical user 
interface generation, image processing, mathematical computation, threads creation, 
TCP/IP connection, etc. The Python interpreter, together with such modules, is available 
for most computer platforms, including Unix systems and PC Windows. Moreover, if 
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required, new modules can be implemented in Python that might also dynamically access 
methods in C/C++ to achieve better performance. 

As shown in the previous section, threads creation is a key issue to obtain agents 
running their own behavioral modules in an asynchronous environment. The use of 
behavioral Python modules is straightforward: the animator chooses one module from a 
library of pre-programmed modules and runs it inside its actor thread. However, such 
modules need to be carefully designed in order to avoid conflicts and to guarantee a 
correct synchronization between them. 

As an example, a virtual computer lab was created with around 90 smart objects 
(many of them repeated), each one containing up to four simple interactions. Then, inside 
the actor’s Python thread, a simple behavior of random walk or random interaction was 
easily implemented in Python, and a dialog box was created showing the actor’s status 
and enabling to change the current actor behavior. This example shows how new 
applications can be built on top of ACE. A snapshot of this example simulation is shown 
in figure 6.11. 

 

 

Figure 6.11 – A virtual lab being animated by ACE. Each small dialog box at the left 
was created in Python and are used to individually control each actor in the 
simulation. 

ACE has been currently used by many people in the lab as a platform for 
development of many applications. Virtual humans behavioral research has been done on 
top of ACE, as for example, in the topic of sound propagation for communication 
between human agents [Monzani 2000], and an agent-based decision-making system 
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written in Lisp (and later Java) [Caicedo 1999]. In this last case, the Python module for 
TCP/IP connections is extensive used to send Lisp orders to ACE. Some results obtained 
with these applications are showed in chapter 8. For a better overview about the 
connection with Lisp, see [Kallmann 2000a]. 

Most of the features available in ACE are being integrated with the previously 
developed system VHD (virtual human director) [Sannier 1999]. This integration will 
merge the capabilities of both systems, resulting on a new simulation system platform. 

6.7 Chapter Conclusion 

This chapter detailed the ACE system, which has built-in capabilities to control 
actor-object interactions. ACE was used to generate most of the example images shown 
in this thesis. The important characteristic of being connected with a high-level and 
object oriented script language (Python), makes ACE an extendible system, which can be 
used in the development of many other applications. 

The next chapter shows the specific feature of ACE to perform direct interaction 
with smart objects using VR devices, and chapter 8 shows the main results achieved with 
ACE. 
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7 Direct Interaction with Smart Objects 

This chapter introduces a high-level direct interaction metaphor based on smart 
objects. The user, i.e. a real person, wearing virtual reality devices to immerse in the 
virtual environment, can trigger the behaviors stored in smart objects. During the 
interaction, smart objects help the user by means of visual clues. 

The concepts and implementation issues involved are discussed, and an example 
of an interaction session is presented. 

7.1 Introduction 

Virtual Reality (VR) technology has been employed on various different 
applications. A common point to all applications is the fact that the user wears VR 
devices, immerses in the virtual environment (VE), and interacts with the virtual world in 
order to accomplish some specific task. In many cases, such a task involves direct 
manipulation of virtual objects. 

Direct manipulation of objects in virtual environments is often awkward and 
inconvenient, because of mainly two factors: the use of simplified physical models due to 
computation time constraints, and limitations of the current VR devices. A simple task of 
grabbing and moving a virtual object may be a frustrating experience because of the lack 
of a tactile feedback, weightlessness of virtual objects, positioning tracker noise, and poor 
design of interaction techniques, among other factors. 

For direct manipulation, the most common used device is a data glove (see figure 
2.6). This device has known many enhancements during the last years [Sturman 1994]. 
However, limitations as the lack of force-feedback, are still hard to solve. 

Although direct manipulation intends to be similar to manipulation in real world, 
there are significant differences, which have to be fully understood in order to exploit the 
full potential of VR technology. 

If virtual systems are to be effective and well received by their users, considerable 
human factors issues must be taken into account [Stanney 1998]. Will the user get sick? 
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Which are the important tasks to perform? Will the user perceive system limitations (e.g., 
flicker)? What type of design metaphors will enhance the user’s performance in VE? The 
main challenge concerns defining an efficient, simple and natural interaction paradigm, in 
order to overcome the VR limitations. 

Using smart objects it is possible to define an architecture where the virtual object 
aids the user on how to accomplish a desired interaction task by giving visual clues. The 
framework herein presented focuses on high-level interactions, instead of a direct 
manipulation based on selection and displacement. The concerns are about interactions 
with objects having some functionality governing its moving parts, but that cannot be 
directly displaced by the user. Instead, the user can trigger the movements of the object, 
according to its functionality. Such issues were already published in the previous work 
[Kallmann 1999b]. 

The framework proposed is not meant to solve all limitations involving direct 
interaction with VEs, but illustrates a technique that can be combined with other existing 
techniques in order to achieve easier and higher level object interactions. 

7.2 Related Work 

7.2.1 Interaction with Body Postures 

There are many systems being proposed in the literature where the user is 
interacting with a virtual environment. Many of them focus on interaction based on 
recognizing the full body postures of the user. 

In the ALIVE system (Artificial Life Interactive Video Environment) [Maes 
1995], the user interacts, in an augmented virtual environment, with a reactive virtual 
dog. [Davis 1998] introduces a virtual personal aerobics trainer (PAT), that, based on 
optical motion capture system, monitors if the user is correctly repeating some showed 
exercises. 

Face-to-face communications either between synthetic actors [Cassell 1994] or 
between the user and a synthetic character [Cassell 1999] have already been addressed. 
Also, [Emering 1999] proposes a system where the user, wearing magnetic sensors, can 
fight with a virtual actor. 

7.2.2 Manipulation and Navigation 

Most interaction techniques being proposed in the literature target manipulation 
and navigation in VEs. For instance, [Mine 1995] shows many examples of such 
techniques, including a VR metaphor for menu selection. In a more recent work [Mine 
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1997], the concept of proprioception is exploited in order to enhance the direct 
manipulation of objects. An overview of techniques for object manipulation, navigation 
and application control in VEs is presented by [Hand 1997]. 

In order to implement a complex VR application, it is possible to identify three 
main distinct layers, which have to be correctly designed and put together: 

• The low-level physical simulation model, which should give a physically based 
visual feedback to the user when an object is touched, deformed, or moved, correctly 
managing all possible intersections.  

• The direct manipulation metaphor, responsible to define how the user, wearing 
VR devices (as a data glove), can interact with the virtual objects in order to touch, move 
and displace them. This metaphor is directly linked to the adopted physical model. 

• The direct high-level interaction metaphor. This layer will permit the user to 
achieve other tasks that are not feasible only by means of direct manipulation, needing 
also to take into account other interaction rules and also user gestures. 

7.2.3 Physical Models 

Many physical models have been proposed in the literature. For instance, [Sauer 
1998] describes a rigid body method for the simulation of unilateral contacts, filling the 
gap of impulse-based and constraint-based simulations, including a friction model. An 
approach to model a haptic glove force transference was proposed by [Popescu 1999]. 

Another interesting approach has been proposed to deal with collision and 
interference in VR systems, making some use of the graphics rendering hardware in order 
to minimize time computation during a virtual hand grasping application [Baciu 1998]. 
Many related topics as collision detection, optimized rendering, real-time deformations, 
etc, are in constant development and are employed in VR applications. 

7.2.4 Manipulation Metaphors  

Many manipulation metaphors have been also proposed. For instance, [Poupyrev 
1997] presents a manipulation metaphor based on three main steps: Selection, 
Positioning, and Orientation. [Boulic 1996] presents an approach where each finger of the 
virtual hand has spherical sensors for detecting collision with the virtual object. These 
sensors are used for deciding when the virtual object is grasped or when the virtual hand 
needs a posture correction. 

The work presented by [Okada 1999] introduces intelligent boxes, which are 
modules having basic specific functionality and that can be inter-connected and 
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connected to VR devices data input. However, no specific manipulation metaphors are 
proposed. 

As commonly stated, object manipulation needs to be optimized [Poupyrev 1997] 
in order to let the immersed participant to concentrate on high-level tasks rather than on 
low-level motor activities. Some solutions to this matter start to be proposed [Kitamura 
1998]. 

7.2.5 High Level Metaphors  

Unfortunately, less attention has been given to exploit implementations of high-
level interaction metaphors. Existing works remain in the theoretical level [Gibson 1977], 
or mainly concern hand gesture recognition, as for instance, a dynamic two-handed 
gesture recognition system for object modelling [Nishino 1997]. 

Aiming to fulfill this gap in the VR research, a framework to perform high-level 
interactions with virtual objects modeled as smart objects is herein proposed. The smart 
object framework can be integrated as a top layer of interactive VR systems, providing 
higher-level capabilities of interaction. 

 

 

Figure 7.1. - Modeling the behaviors of a smart desk for interaction. The hand shapes 
and positions, used as end-effectors for actor-object interactions, are used as hand 
clues for direct user interactions. 

Plan to open First Drawer 

Hand Clues 
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7.3 Smart Object Interaction Metaphor 

Once smart objects are modeled, they can be loaded into the virtual environment. 
The interaction information contained in each smart object is used in order to facilitate 
the user interaction (see figure 7.1). This approach frees the user many difficult low-level 
motor activities. 

The user is considered to be immersed in the virtual environment using a data 
glove and a six degrees of freedom tracker placed on the glove (see figure 7.5). In this 
way, the user can freely move its hand in the virtual environment (however in a restricted 
space). The position of the user in the VE is considered to be the position of its virtual 
hand representation, captured by the positional tracker. 

Two main modules control our interaction metaphor: The smart object controller, 
and the interaction manager. The interaction manager is responsible to aid the user to 
select available smart object’s behaviors, while the controller interprets the selected 
behavioral instructions. 

7.3.1 Interaction Manager 

The interaction manager monitors the user position in relation to each object 
reference position. When the user reaches a certain distance from the object reference 
position, we say that the user is inside the interaction range of the object. In this way, a 
dynamic list of all objects inside the interaction range of the user is maintained updated. 

For each smart object in range, all available interactions are checked in order to 
determine those that are closest to the current user’s hand position. This is done by 
measuring the distance of the user’s hand position to the clue hand that each behavioral 
plan specifies as a parameter of its first UserDoGest instruction. A specific plan 
instruction VrClue can be also used for the same purpose, when it is desirable to define 
different hand positions for actor interaction and user interaction. 

All available behaviors in range have an associated hand clue. All hand clues that 
are within a certain distance (in relation to the user position) are displayed in the virtual 
environment, and are kept in another dynamic list. This list keeps a link to all available 
behaviors that are currently in range. Figure 7.2 depicts this architecture. 

The interaction manager monitors the position of the smart objects and the user’s 
hand, in order to display only the hand clues corresponding to closer available behaviors 
in range. Once the user actually places its hand near the same position and orientation 
given by a hand clue, the corresponding smart object behavior is selected and interpreted 
by the controller. 



 - 100 -

 

 

 

 

 

 

 

 

 

 

Figure 7.2 – The interaction manager module keeps updated a list of smart objects in 
range and a list of their available behaviors that are closest to the user. A visibility 
distance parameter defines the range to consider. 

Note that when the user selects a behavior, other behaviors may change their 
availability state, what will cause the interaction manager to dynamically update the 
displayed hand clues. 

 

 
Figure 7.3 – To close the book or the drawer of the smart desk, the user selects the 
corresponding object behavior by placing the hand closer to the desired hand clue. 

Figure 7.3 shows the case where the user’s hand position is in the range of two 
available behaviors of the smart desk: to close a book on it, and to close its first drawer. 
To trigger one of these two behaviors, the user sees the two related hand clues, so that by 
just putting its hand near a hand clue, the associated smart object behavior will be 
triggered. 

Figure 7.4 shows another smart object that is a dossier containing six drawers. 
The behaviors definitions are similar to the desk drawer, so that the object has a total of 
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six pairs of behaviors, each pair being related to each drawer (open and close). In this 
way, only six interactions (or behaviors) are available at a same time. Figure 7.4 shows 
two moments of the interaction of opening a drawer. 

 

 
Figure 7.4 – The image on the left shows three hand clues indicating that there are 
three available interactions in range to open the drawers. The image on the right 
shows the final state of the drawer after the middle one is chosen. 

7.3.2 The Smart Object Controller 

When a hand clue is selected, the smart object controller starts to directly interpret 
each instruction of the related behavioral plan, animating the object and updating its 
internal state variables, i.e. performing the interaction. 

As the first UserDoGest instruction found in the selected behavior serves as the 
behavior hand clue, this one is directly skipped. But, in the case where another 
UserDoGest instruction is found, the controller will wait the user to place its virtual hand 
near to the associated hand clue to then skip to the next instruction. In this case, all hand 
clues displayed by the interaction manager are turned off. Only the hand clue related to 
the current UserDoGest being interpreted is displayed. 

Similarly, if a UserGotoPosition instruction is found, all other clues are turned 
off, just displaying the goal position clue that the user must reach in order to let the 
following instructions be executed. 

The scenario is simple: the user can navigate in the VE with its virtual hand 
seeing many clues being turned on and off on the screen. The understanding of which 
interaction is related to a clue is obvious. For example, by seeing a hand clue positioned 
in the handle of a closed drawer, there are no doubts that the available interaction is to 
open the drawer. 

In this way, all interactions are triggered by means of comparing distances, 
minimizing the needed low-level motor activities of the user. Only when two hand clues 
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are too close to each other that the hand posture of the user will be used in order to decide 
which interaction to select. 

7.4 An Interaction Example 

When started with the option of direct user interaction, ACE uses one Ascension 
Flock of Birds (FOB) magnetic 3d positional tracker [Motion Star], attached to a Cyber 
Touch data glove from Virtual Technologies [VirTech]. To give a 3D visual feedback, 
the Stereo Glasses from [Stereographics] is used, attached to a [SGI] machine. 

The number of used VR devices is minimized in order to reduce discomfort 
during usage, and also simplify the system setup. For the example showed here, it is 
sufficient that the user wears only one data glove. Figure 7.5 illustrates a user wearing the 
needed VR devices. 

 

 

Figure 7.5 – A picture of the user with the needed VR devices, ready to use the 
system. 

Figure 7.6 shows a simulated scene. It is composed of two smart objects with 
many possibilities of interactions. The user stays in front of the computer screen, and can 
see its virtual hand being displaced accordingly to its real hand position. Depending on 
the position of the virtual hand, some hand clues are displayed, indicating that 
interactions can be selected. 

The Cyber Touch data glove contains small special devices on the palm and on 
each finger, which can generate a variable vibration sensation. This gives a total of six 
vibration devices. Such vibrations can be used to give two different kinds of feedback to 
the user: To indicate how many hand clues are displayed, by activating a different 
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number of vibration devices. And to indicate that an interaction was selected, it is 
possible to send, for a short period of time, a stronger vibration on all activated vibration 
devices. 

The use of the vibration devices gives an interesting feedback to the user in cases 
where many close interactions exist. Many different uses can be also designed, but, in the 
other hand, sometimes the excessive feeling of vibrations is uncomfortable. 

 

 
Figure 7.6 –The interaction behavior depends on two parameters: the visibility and the 
activation distance. The visibility distance controls the range for showing hand clues, 
and the activation distance specifies the minimum distance to consider the user’s hand 
triggering a selected hand clue. In the image, three hand clues are displayed. 

7.5 Analysis 

In this application example, no metaphor for navigating in large virtual 
environments was designed. Just the natural tracked hand position is used, what limits the 
interaction space to a rather small VE. 

Also, in order to select a desired interaction, only distances measured between the 
user’s hand and the clue hands are used. The shape of the user’s virtual hand could also 
be used to distinguish between two hand clues that are too close one to another. This 
situation does not occur with the showed example. 

The objects used in this application have a simple functionality to open and close 
some of their parts, but more complex smart objects behaviors can also be used. For 
example, manufacturers could provide a smart object description of their products 
together with the user’s guide. In this way, the user could see all possible actions to 
perform with the equipment, virtually seeing what happens when, for instance, some 
button is pressed. 



 - 104 -

One important aspect of this approach is that smart objects are modeled in a 
general way that is independent of the application. This introduces a way to have 
standard interactive object descriptions that can be used to describe many different types 
of objects. The key idea is that each object contains a complete description of its possible 
interactions; then its up to the application to interpret this description accordingly to its 
needs. For example, inside ACE smart objects can be manipulated simultaneously by 
virtual actors and users (see figure 8.9 in next chapter). 

Users that have experienced the system showed that the interaction process is 
straightforward to learn and understand. However, the action of getting close to a hand 
clue was sometimes not so easy to perform without activating surrounding clues. This 
factor is strongly related to the specific objects used in the application. In summary, the 
facility to activate the clues can be an advantage in some cases, but not in all cases, what 
suggests the use of variable thresholds. 

7.6 Chapter Conclusion 

This chapter presented a high-level interaction metaphor using smart objects. 
Because of the architecture simplicity, the system easily achieves interactive frame rates. 

This prototype system permits an interesting analysis of the designed furniture 
regarding human factor aspects. Another direct application for this framework is training 
the use of complex equipments, by experiencing with them. 

Other techniques still need to be integrated in order to have a complete 
operational system for direct interaction. For instance, a low-level physical model would 
enhance the correctness of the VE, and a navigation metaphor would be essential to free 
the user from the real world space constraints. 
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8 Achievements and Results 

This chapter presents the many results achieved with the proposed smart object 
approach. Sections are divided by type of results, showing and explaining the results 
obtained in each different topic, application or integration with other works. 

8.1 Modeled Smart Objects 

Many different smart objects were modeled for many different purposes. Figure 
8.1 shows some objects modeled for simulations with the virtual lab room. Figure 8.2 
shows another room with some interactive furniture. 

Figure 8.3 shows two actors entering the smart lift. This lift has one of the most 
complex functionality modeled with the interaction plans. It was tested to fully handle 
three actors entering at a same time in a same floor. For this, many variable states are 
used to determine all the possible configurations of access. However, it is not possible to 
state that the modeled functionality can handle all combination of cases. 

Figure 8.4 shows a table modeled with a single interaction that is to propose 
actors a fruit on the table to be grasped. Again, state variables are used to control which 
are the current free fruits to be grasped. 

Regarding the actor animation control, all actor manipulations in these examples 
are handled with the implemented action push (section 5.4), showing that a single 
strategy can serve to many kinds of interactions. 

However, one main drawback of this generalization is that the resultant actor 
movements are not specifically designed for a given situation. The point is that it would 
not be possible to obtain complex, and large, interactive environments without 
approaching the problem with a simple solution. Moreover, experience showed that 
people working on behavioral animation that needed to use smart objects, were not 
looking for a highly parameterized interaction with realistic low-level motor activities, 
and simple, specially fast, solutions were always preferred. 
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Figure 8.1 – Four images showing different smart objects interactions. Such objects 
are part of the virtual lab simulated in ACE, with many different interactive objects. 

 

 
Figure 8.2 – Interactive furniture. The desk model has many possibilities of 
interaction, including opening the book and moving the lamp. 
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Figure 8.3 – Two actors entering the smart lift. 

 

 
Figure 8.4 – An interactive table that always proposes free fruits to be grasped. 

8.2 Urban Environment Simulations 

A smart object reasoning and animation library was specifically developed for 
integration with a system for simulation of urban environments. This system is the result 
of an integration of many different modules: a module managing environmental data, a 
module for crowd behavioral control, a rule-based system that generates sub-tasks from a 
high-level given goal, and smart objects. These modules are interconnected using a 
message protocol passing through a central controller. For the detailed description of this 
system, see [Farenc 2000]. Figure 8.5 shows a snapshot of a simulation obtained with this 
system. 
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Figure 8.5 – A snapshot of an urban simulation application. The image shows a crowd 
of people inside a train station. Actors of the crowd can interact with automatic doors, 
escalators, and the lift shown. 

 

 
Figure 8.6  - Example smart objects that can interact with many actors at a same time. 

Figure 8.6 shows some snapshots of a simulation involving crowds [Musse 1997], 
which virtual actors can interact with smart objects. Smart objects are considered an 
action point for the behavioral model of the crowd. Then, each time an individual actor 
reaches an interaction point, the actor’s control is released from the crowd behavioral 
model, and the smart object interaction plan is interpreted. When the interaction is 
finished, the actor is back under the control of its crowd behaviors. 

8.3 Behavioral Animation 

ACE has shown to have a good flexibility to be used for many different 
applications, in particular regarding behavioral animation research. A virtual computer 
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lab with around 90 smart objects, each one containing up to four simple interactions, was 
modeled and can be animated in ACE. 

In this environment, actors were created inside ACE Python threads, controlling 
navigation, gestures played as key-frame sequences, smart object interactions, and other 
behavioral modules written in Python. One example of a Python module is an idle state 
thread developed in the scope of the work of [Monzani 2000]. Whenever the actor is 
detected to stop acting, the idle thread is activated, sending specific key-frames and facial 
expressions to the actor, according to the actor’s emotional state, simulating a human-like 
idle state (see figure 8.7). 

 

 

Figure 8.7 – The idle thread in action: different facial expressions and head 
movements are controlled in order to achieve a more human-like behavior. 

The Lisp agent-oriented behavioral model IntelMod [Caicedo 1999] was 
connected with the ACE Python threads by means of a TCP/IP connection. This 
connection allows Lisp rules to send orders to the actors in ACE. A simple test 
storyboard was then written in Lisp: a woman that has access to the virtual lab comes in a 
day-off to steal some information. So she enters into the room, turns on the lights, read in 
a book where is the diskette she would like to steal, then she takes the diskette, turns off 
the lights and go out of the room. During all the simulation, the woman is nervous about 
being discovered by someone, and so the idle state module was set to synchronize many 
head movements and some small specific facial expressions to demonstrate this state. 
Figure 8.8 shows some snapshots taken from this simulation. 
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Figure 8.8 – Some snapshots of a simulation with ACE inside the virtual lab. Lisp 
plans are used to follow a simple storyboard, and orders from the Lisp behavioral 
module are sent through TCP/IP to control the actor in ACE. In parallel with the Lisp 
control, a Python thread runs to control the actor’s idle state. 

8.4 Virtual Life Simulations 

A motivational model for the action selection problem was implemented in 
Python specifically for virtual human actors [Sevin 2001]. This model is composed of a 
free flow hierarchy [Tyrrel 1993], associated to a hierarchical classifier system [Donnart 
1996]. Such a model permits to take into account different types of motivations, and also 
information coming from the environment perception. 

The main used motivations are to eat, drink, rest and to use the toilet. Each time 
one of these motivations becomes “urgent”, there is a relative object interaction to be 
selected that will “satisfy” the motivation, lowering its urgency level. When no 
motivations are urgent, then the actor will go to work. Figure 8.9 shows a snapshot of the 
scenario simulated with ACE. 
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Figure 8.9 – A snapshot of a virtual life simulation achieved with ACE. The curves on 
the left (implemented in Python) show the variation of the internal motivational 
parameters of the virtual human, at different levels in the action selection model. 

All object interactions performed in the simulation are done using smart object 
capabilities, using the low level motions generated by the walking motor, and the inverse 
kinematics module. The scenario contains a sofa where the actor sits to rest, a cup of 
coffee and a hamburger that the actor is able to grasp and bring them to its mouth, 
satisfying the eat and drink motivations. The actor can also sit at the toilet, and work with 
a computer. The interaction to work with the computer involves sitting on a chair, turning 
on the computer, putting the hands on the keyboard and also moving the mouse. Figure 
8.10 shows a snapshot of the actor working with the computer. The details of such smart 
objects are discussed in a recent workshop publication [Kallmann 2000b]. 

 

 
Figure 8.10 – Testing object interactions relative to the work motivation. 



 - 112 -

 

8.5 Direct Interaction 

Chapter 7 introduced the approach used to let real users, wearing VR devices, to 
interact with smart objects. As a result of the smart object architecture, it is straight 
forward to have in ACE different kinds of users immersed in the same virtual 
environment and interacting with objects. 

Figure 8.11 shows, in the same scenario exposed in chapter 7, a virtual actor 
interacting with objects together with the user wearing its data glove. 

 

 
Figure 8.11 – Smart objects allow simultaneous interaction with many kinds of users. 
The image shows a virtual actor opening a drawer, and a “flying hand”, which is the 
graphical representation of the real user’s data glove. 

8.6 Augmented Reality Applications 

A part of the smart object framework was integrated with VHD system [Sannier 
1999] for the analysis of human factors related to object design and prototyping. VHD is 
a client-server system where the server maintains an augmented reality environment, and 
clients can connect to the environment to control simulations. A Python based client was 
implemented which can read smart object files (translated to python). This Python client 
can thus send to the server the needed interaction information to control interactions. 

This framework was tested to evaluate modifications in the design of existing 
objects. As example, a SGI computer was modeled with the interaction information to 
open the CD player drawer. Then, with Python scripts, different positions for the CD 
drawer could be specified giving different actor interaction results. To enhance the 
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reality, the entire background scene is taken from a real input video. Just the new CD 
drawer and the virtual actor are virtual entities. This framework was presented in a recent 
publication [Balcisoy 2000], and an image showing an obtained result is shown in figure 
8.12. For other augmented reality applications, see [Balcisoy 1998]. 

 

 

Figure 8.12 – An actor interacting with a smart object in an augmented reality 
environment. The computer and the background scenario are real. A virtual CD 
drawer was put in a lower position, to be tested as a design change in the computer. 
The virtual actor can interact with the added virtual part, giving a feedback for the 
design change. Such framework focuses simulation-based design of objects. 
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9 Conclusions 

This final chapter presents the main conclusions about the proposed smart object 
approach. Each previous chapter of this thesis already exposed some conclusions related 
to each specific sub-topic, so that a more global view of the work is done here. In 
addition, limitations and future work directions are discussed. 

9.1 Main Conclusions 

The smart object approach presented in this thesis provides a consistent definition 
of how objects are animated, and how actors can interact with them. The approach was 
successfully tested in the ACE simulator for different applications, and many related 
topics were examined. 

The main conclusion obtained from this work is that, in order to achieve complex 
simulated environments, an extendible module organization, with coherent inter 
communication protocols need to be defined. This is exactly the approach used in this 
thesis: object interaction is defined in smart objects, which users can access interpreting 
pre-defined interaction plans. 

The main point is where to put the separation line between modules. How far 
actors should decide what to do by their own, and how far they should follow pre-defined 
interaction instructions. Similar issues, regarding pre-defined data from motion capture 
versus calculated data, appear also when animating actors for object manipulation. For 
instance, the used inverse kinematics procedures cover a wide range of manipulation 
configurations, but pre-recorded keyframe motions would give a much more realistic 
movement. This gap between motion-capture animation and simulation/procedural 
animation has been recognized as a major problem in computer graphics [Foley 2000]. 

In this thesis, animations were achieved using all pre-defined information of the 
interaction plans and using standard animation techniques to control actors. Such design 
decisions lead to easier control of simulations. In general, the smart object approach 
introduces the following characteristics in a simulation system: 
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• Decentralization of the animation control. By following object and actor 
behaviors stored in smart objects, many object-specific computation is released from the 
main animation control module. 

• Reusability of designed smart objects. A smart object can be modeled for some 
specific application, and used in many others. Moreover, it can be easily updated if 
needed to achieve the requirements of a new application. 

• A simulation-based design is naturally achieved. The designer can take control 
of the loop: design, test and re-design of objects. A designed smart object can be easily 
inserted into a simulation program, which gives feedback for improvements in the design. 

• Easy connection with higher-level behavioral modules. Interactions are 
identified with meaningful text tags and smart objects can contain any kind of semantic 
information. An example is the easy connection of the interactive natural language shell 
of ACE. 

• Smart objects can be loaded in simulators as behavioral plug-ins. In this way, 
objects can be easily selected and loaded to form a new interactive scenario. This feature 
was successfully achieved with ACE. Behavioral plug-ins have been identified to be a 
current trend in animation systems [Badler 2000]. 

• Having the low-level object interaction issues solved in the simulation system, 
simulators can concentrate on animating the behavior of actors and achieving simulations 
with higher complexity. ACE capabilities have shown to be suitable for many types of 
applications, so that the system has been used as a simulation development platform for 
other internal projects in the lab. 

9.2 Limitations 

Many details can still be adjusted in the developed software to better attend other 
applications. For example, the command to trigger an object interaction could receive 
more parameters, like to permit actors to choose only to open 50% of a drawer. Other 
extensions would be to have both hands of an actor manipulating a same object, or to 
better define smart objects containing other smart objects, for instance to better simulate 
putting things inside cupboards or drawers. Many other possible extensions could be 
listed, but they are more related to implementation extensions regarding the intended 
simulation context than real limitations of the proposed architecture. 

However, three main limitations with the proposed approach have been identified: 

• The quality of the actors movements is directly related to the pre-defined 
geometric parameters stored in smart objects. For instance: if positions to reach with the 
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hand are not close enough, weird postures are generated. Also, actors can happen to 
collide with object parts during manipulation, depending on the defined positions to walk 
and hand locations to reach. No collision detection techniques were used in this thesis. 

• The proposed actor animation control does not update the position of the actor  
during an interaction. This limitation is noticed with manipulations where the actor’s 
hand needs to follow some object part during long distances. For instance, it is not simple 
in real life to grab a door’s handle and open it, without walking at the same time. Similar 
limitations regard more complex issues, like being able to take some object without 
needing to stop walking, etc. In fact, these limitations come from the organization of the 
used animation tools, which target different kinds of actor motions. One direction to 
overcome this limitation would be to simplify robot motion planning techniques in order 
to allow real time control of the full articulated actor body. 

• Each defined interaction runs without intervention until completion. This is a 
direct consequence of the main design choice of easy controlling actor-object 
interactions: when an interaction is selected, all needed information to complete it is 
already defined. For instance, if the complete interaction of taking the lift is selected, the 
actor will not be able to change of mind when it is inside the lift cabin. The actor will 
need to wait until the end of the interaction to then choose another one. To minimize this 
effect, long interactions can be divided into smaller ones. However, it is always needed to 
well define what is considered to be a “primitive interaction” in the context. 

9.3 Future work 

Some of the main research directions to extend the proposed smart object 
framework are listed here. 

• Data structures are the basis of all computer systems. Many important geometric 
algorithms for multi-resolution changing, deformable models, morphing, subdivision, 
collision detection, motion planning, etc, need specific and efficient data structures. To 
integrate all such algorithms in a single and coherent interactive virtual environment, a 
data structure representation suitable for all cases and with acceptable memory 
requirements is needed. The proposed star-vertex structure already addresses some of the 
issues involved, but research still have to be done in order to integrate each algorithm 
with a common data structure, and make them to work together. This would enable to 
have, for instance, an actor’s skin envelope to be deformable, displayed in multi-
resolution, with possible morphing effects and also able to efficiently answer to collision 
detection queries. Related to this issue, there is also the problem of data structure 
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conversion, specifically from standard formats like VRML, which uses a large set of 
possible descriptions with no guarantees concerning the model validity. 

• Modeling object functionality and behaviors in general is a complex issue. The 
smart object representation uses a simple script language organized in interaction plans to 
describe the object functionality. State machines and graphical programming are also 
used. However, a general, intuitive and simple way to define functionalities and 
behaviors is still a topic of intense research. Another issue is to investigate possible 
standards and protocols for connection and communication of entities containing 
functionality. Such issues, and other related topics, are mainly addressed in the agents 
field. 

• Fill the gap between motion-capture animation and simulation/procedural 
animation. Some ideas are to mix pre-recorded motion (database driven or not), corrected 
with simple interpolation or inverse kinematics methods. The goal is to reach realistic 
human-like movements, parameterized for a wide range of object manipulation. 

• Algorithms for planning low-level manipulation procedures. Rather then always 
using pre-defined geometric parameters for general manipulations, robust algorithms still 
need to be developed in order to generate realistic human motions, taking into account 
collision detection with the manipulation space, and automatic decision and dynamic 
update of hand configurations and placements. For instance, the actor’s hand 
configuration should change during the movement of opening a drawer, and the same for 
the whole skeleton configuration. Opening a door realistically would also involve a 
combination of walking and hand manipulation. One possible approach for future 
investigations is to adapt human constraints to robotics planning algorithms, as the one 
introduced by [Simeon 2000]. 

• Integrate low-level and high-level virtual reality interaction metaphors. Physical 
models exist that can be used to drive realistic object interactions, and methods have been 
proposed for the low level displacement of objects. However, it is still a challenge to 
obtain realistic virtual environments where the user can really feel immersed inside, 
touch, feel and manipulate complex objects, walk and perform tasks together with 
autonomous actors, etc, and all of this in an intuitive way. 
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10 Appendix 

10.1 Primitive Plans Instructions 

This section lists the current available set of behavioral instructions that can be 
used to form smart object interaction plans: 

UserAddProp <text> : Gives any text property to the smart object user. The text is 
converted to lower case on all property operations. 

UserDelProp <text> : Removes a property from the smart object user. The text is 
converted to lower case on all property operations. 

UserNumProp <var> <text> : Put in var the number of smart object user properties 
<text> found. 

UserGoTo <pos> : Move the smart object user to pos. For a virtual human user, walking 
action should be used. If there is more than one position with the same name and if there 
is already some user associated with this position, the position having the same name, but 
with less users associated is chosen. This is useful for interactions with many users at the 
same time. 

UserGetClosest <pos> <var> <poslist> : Compares all positions in poslist to the smart 
object user current position, saving in pos the closest one. Also, the index of the selected 
position in the list is saved in var (1,2,...,n). Note that pos and var are not affected by the 
UseIndex instruction as they are return values. Also, if different positions with a same 
name exist, only the first one is considered. 

UserDoGest <gest> <hand> : Will make the smart object user move to a close enough 
position (if necessary) and will perform the gesture with the hand specified. The hand 
parameter is just not considered when it is not applicable. 

UserAttachTo <part> : Attach the smart object user to follow the movements of some 
smart object part. 

UserDetach : Detach the smart object user from any previously attached smart object 
part. 

WaitVar <var1> <var2> : Will make the user or the controller to stop interpreting its plan 
until the variable var1 becomes equal to var2. 
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DoCmd <cmd> : Will make the smart object execute the command cmd. 

SetPos <pos1> <pos2> : Makes pos1=po2, i.e., put the value of pos2 in pos1. 

SetVar <var1> <var2> : Changes the state variable var1 to var2, i.e. var1=var2. 

InitVar <var> <value> : Changes the state variable var to value. 

CheckVar <var1> <var2> : Checks if var1==var2 and stops the behavior execution in 
case of false result, returning to the caller behavior, if any. If it is used in a behavior that 
is not Object Control neither Private it also determines the availability of the behavior to 
the smart object user. In this case, just the first CheckVar instruction found is considered. 

AddVar <var1> <var2> : Adds var2 to the variable var, i.e. var1+=var2. 

IncVar <var> <value> : Adds value to the variable var, i.e. var1+=value. 

WaitUserProp <text> : Makes the current smart object control module to wait its plan 
interpretation until all smart object users have the property text. 

Private : Indicates that the current behavior will not be user selectable. Can be put 
anywhere in the behavior, but better as the first instruction. 

ObjectControl : Indicates that the current behavior will be executed all the time by the 
smart object. This is expensive to use, and cannot contain user-related instructions. If 
more then one exists, they run in parallel. Can be anywhere in the behavior, but better as 
the first instruction. 

UseIndex <var> : Index the parameters of only the next affect able instruction if var>1. If 
the indexed parameter name do not exist, the normal name is used. For example, if we 
have “UseIndex ind” where ind is a variable containing value 2, the instruction 
“UserGoTo pos” will be translated to “UserGoTo pos_2”. Instructions affected are: 
UserGoTo, UserGetClosest, UserDoGest, UserWaitVar, UserAttachTo, DoCmd, SetPos, 
SetVar, CheckVar, AddVar, DoBh, If and ElseIf. 

DoBh <bh> : Executes the behavior bh. Works as calling a subroutine. 

If <var1> <var2> : Start a conditional block, see also: ElseIf, Else and EndIf. 

ElseIf <var1> <var2> : Continues a conditional block, see also: If, Else and EndIf. 

Else : Continues a conditional block, see also: If, ElseIf and EndIf. 

EndIf : Ends a conditional block, see also: If, ElseIf and Else. 

Pause : Forces the simulator to leave the interpretation of this plan, an so to update the 
display and other application modules. This is sometimes an important keyword to 
guarantee synchronization of many plans being interpreted in parallel. 

VrClue : Defines a gesture to be the virtual reality interaction clue. These clues are used 
in the beginning of each behavior, defining the position of the virtual hand to trigger the 
behavior. 

PythonFunc : Defines a call to an external defined python function. The function call is 
stored as a text string and it is up to the simulator to interpret it when needed. 
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10.2 Example of Smart Object Description Files 

This section shows the smart object description file generated by somod to three 
smart objects showed in section 3: an automatic door, a desk, and a lift. 

10.2.1 autodoor.so 

SMART OBJECT DESCRIPTION 
 
PARTS 
# name          filename              | mass masscenter 
all             autodoor_main.iv 
part1           autodoor_p1.iv 
part2           autodoor_p2.iv 
END # of parts 
 
HIERARCHY 
# parent        sun 
ROOT            all 
ROOT            part1 
ROOT            part2 
END # of hierarchy 
 
ACTIONS 
# name          type and data (matrix, rot:cent/axis/ang) 
trans1          matrix 
1.00 0.00 0.00 0.00 
0.00 1.00 0.00 0.00 
0.00 0.00 1.00 0.00 
0.00 0.00 -826.997253 1.00 
 
trans2          matrix 
1.00 0.00 0.00 0.00 
0.00 1.00 0.00 0.00 
0.00 0.00 1.00 0.00 
0.00 0.00 -1651.752319 1.00 
END # of actions 
 
POSITIONS 
# name          position / orientation 
pos_in          -645.00 0.00 150.00 1.00 0.00 0.00 
pos_in          -645.00 0.00 600.00 1.00 0.00 0.00 
pos_in          -960.00 0.00 260.00 1.00 0.00 0.00 
pos_in          -940.00 0.00 730.00 1.00 0.00 0.00 
pos_out         450.00 0.00 150.00 1.00 0.00 0.00 
pos_out         450.00 0.00 600.00 1.00 0.00 0.00 
pos_out         670.00 0.00 260.00 1.00 0.00 0.00 
pos_out         720.00 0.00 730.00 1.00 0.00 0.00 
pos_in_2        450.00 0.00 150.00 -1.00 0.00 0.00 
pos_in_2        450.00 0.00 600.00 -1.00 0.00 0.00 
pos_in_2        660.00 0.00 270.00 -1.00 0.00 0.00 
pos_in_2        720.00 0.00 740.00 -1.00 0.00 0.00 
pos_out_2       -645.00 0.00 150.00 -1.00 0.00 0.00 
pos_out_2       -645.00 0.00 600.00 -1.00 0.00 0.00 
pos_out_2       -970.00 0.00 270.00 -1.00 0.00 0.00 
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pos_out_2       -930.00 0.00 720.00 -1.00 0.00 0.00 
pos             0.00 0.00 0.00 0.00 0.00 0.00 
END # OF POSITIONS 
 
COMMANDS 
# name        action       part       ini    end    inc 
opendoor      trans1       part1      0.00   1.00   0.0500 
opendoor      trans2       part2      0.00   1.00   0.0500 
closedoor     trans1       part1      1.00   0.00   0.0500 
closedoor     trans2       part2      1.00   0.00   0.0500 
END # of commands 
 
VARIABLES 
  state_open      0.00 
  state_passing   0.00 
  tmp             0.00 
  true            1.00 
  false           0.00 
  one             1.00 
END # of variables 
 
# BEHAVIORS : 
BEHAVIOR open 
  Private        
  IncVar         state_passing 1.00 
  CheckVar       state_open false 
  SetVar         state_open true 
  DoCmd          opendoor 
END # of behavior 
 
BEHAVIOR close 
  Private        
  IncVar         state_passing -1.00 
  CheckVar       state_open true 
  CheckVar       state_passing false 
  SetVar         state_open false 
  DoCmd          closedoor 
END # of behavior 
 
BEHAVIOR go_1_2 
  Private        
  UserGoTo       pos_in 
  DoBh           open 
  UserGoTo       pos_out 
  DoBh           close 
END # of behavior 
 
BEHAVIOR go_2_1 
  Private        
  UserGoTo       pos_in_2 
  DoBh           open 
  UserGoTo       pos_out_2 
  DoBh           close 
END # of behavior 
 
BEHAVIOR enter 
  UserGetClosest pos tmp pos_in,pos_in_2 
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  If             tmp one 
  DoBh           go_1_2 
  Else           
  DoBh           go_2_1 
  EndIf          
END # of behavior 
 
# END OF BEHAVIORS 
 
END # of file 
 

10.2.2 desk.so 

SMART OBJECT DESCRIPTION 
 
INFO 
# name           
desk_with_drawers 
END # of info 
 
PARTS 
# name          filename              | mass masscenter 
desk            desk_main.iv 
drawer1         desk_drawer1.iv 
drawer2         desk_drawer2.iv 
door            desk_door.iv 
lamp            desk_lamp.iv 
book            desk_book.iv 
bookcover       desk_book_cover.iv 
END # of parts 
 
ACTIONS 
# name          type and data (matrix, rot:cent/axis/ang) 
translate       matrix 
1.00 0.00 0.00 0.00 
0.00 1.00 0.00 0.00 
0.00 0.00 1.00 0.00 
0.00 0.00 200.00 1.00 
 
open_book       rotation 
-91.257004 983.854980 -0.001039 0.00 0.06 1.00 1.800000 
 
move_lamp       rotation 
-624.843018 764.047974 14.526200 0.00 1.00 0.00 0.500000 
 
open_door       rotation 
801.242004 956.505981 376.069000 0.00 1.00 0.00 0.800000 
END # of actions 
 
GESTURES 
# name          filename        actionfile      part            follow 
gest1           DrawerPull      ActionDefault   drawer1         true   
false  false  0.080000 
-0.360000 -0.110000 -0.930000 0.00 
-0.060000 0.990000 -0.100000 0.00 
0.930000 0.020000 -0.360000 0.00 
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-500.00 893.711975 565.882996 1.00 
RightHandGeom: false 
 
gest2           DrawerPull      PartialSpine    drawer2         true   
false  false  0.080000 
-0.437588 -0.356673 -0.825409 0.00 
-0.296295 0.923888 -0.242147 0.00 
0.848953 0.138604 -0.509963 0.00 
-464.392761 721.660645 557.591492 1.00 
RightHandGeom: false 
 
gest3           DrawerPull      ActionDefault   door            true   
false  false  0.080000 
0.592971 -0.190616 -0.782336 0.00 
0.059617 0.979299 -0.193418 0.00 
0.803014 0.068050 0.592061 0.00 
337.719543 894.270264 577.408081 1.00 
RightHandGeom: true 
 
gest3close      DrawerPull      ActionDefault   door            true   
false  false  0.080000 
0.350000 -0.890000 -0.300000 0.00 
0.430000 -0.130000 0.890000 0.00 
-0.830000 -0.440000 0.340000 0.00 
395.154999 955.836975 541.934021 1.00 
RightHandGeom: true 
 
gestlamp        DrawerPull      ActionDefault   lamp            true   
false  false  0.080000 
0.310000 -0.370000 -0.880000 0.00 
-0.950000 -0.070000 -0.310000 0.00 
0.050000 0.930000 -0.370000 0.00 
-450.933990 1283.089966 383.074005 1.00 
RightHandGeom: false 
 
gestbook        DrawerPull      ActionDefault   bookcover       true   
false  false  0.080000 
-0.040000 0.040000 -1.00 0.00 
-0.040000 1.00 0.040000 0.00 
1.00 0.040000 -0.040000 0.00 
91.553673 1048.533203 385.387939 1.00 
RightHandGeom: false 
END # of gestures 
 
POSITIONS 
# name          position / orientation 
pos_desk        0.00 0.00 750.00 -0.050367 -0.001221 -0.998730 
pos1            0.00 0.00 750.00 -0.050367 -0.001221 -0.998730 
pos2            0.00 0.00 750.00 -0.050367 -0.001221 -0.998730 
pos3            0.00 0.00 750.00 -0.050367 -0.002317 -0.998728 
END # OF POSITIONS 
 
COMMANDS 
# name          action       part         ini    end    inc 
open_1          translate    drawer1      0.00   1.00   0.0500  
close_1         translate    drawer1      1.00   0.00   0.0500 
open_2          translate    drawer2      0.00   1.00   0.0500  
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close_2         translate    drawer2      1.00   0.00   0.0500  
open_3          open_door    door         0.00   1.00   0.0500  
close_3         open_door    door         1.00   0.00   0.0500  
move_lamp       move_lamp    lamp         0.00   1.00   0.0500  
move_lamp_back  move_lamp    lamp         1.00   0.00   0.0500  
open_book       open_book    bookcover    0.00   1.00   0.0600  
close_book      open_book    bookcover    1.00   0.00   0.0600  
END # of commands 
 
VARIABLES 
  open_1          0.00 
  open_2          0.00 
  open_3          0.00 
  open_book       0.00 
  lampmoved       0.00 
  true            1.00 
  false           0.00 
END # of variables 
 
# BEHAVIORS : 
BEHAVIOR move_lamp 
  CheckVar       lampmoved false 
  VrClue         gestlamp 
  UserGoTo       pos1 
  UserDoGest     gestlamp LeftHand 
  SetVar         lampmoved true 
  DoCmd          move_lamp 
END # of behavior 
 
BEHAVIOR move_lamp_back 
  CheckVar       lampmoved true 
  VrClue         gestlamp 
  UserGoTo       pos1 
  UserDoGest     gestlamp LeftHand 
  SetVar         lampmoved false 
  DoCmd          move_lamp_back 
END # of behavior 
 
BEHAVIOR open_book 
  CheckVar       open_book false 
  VrClue         gestbook 
  UserGoTo       pos1 
  UserDoGest     gestbook LeftHand 
  SetVar         open_book true 
  DoCmd          open_book 
END # of behavior 
 
BEHAVIOR close_book 
  CheckVar       open_book true 
  VrClue         gestbook 
  UserGoTo       pos1 
  UserDoGest     gestbook LeftHand 
  SetVar         open_book false 
  DoCmd          close_book 
END # of behavior 
 
BEHAVIOR open_1 
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  CheckVar       open_1 false 
  VrClue         gest1 
  UserGoTo       pos1 
  UserDoGest     gest1 LeftHand 
  SetVar         open_1 true 
  DoCmd          open_1 
END # of behavior 
 
BEHAVIOR close_1 
  CheckVar       open_1 true 
  VrClue         gest1 
  UserGoTo       pos1 
  UserDoGest     gest1 LeftHand 
  DoCmd          close_1 
  SetVar         open_1 false 
END # of behavior 
 
BEHAVIOR open_2 
  CheckVar       open_2 false 
  VrClue         gest2 
  UserGoTo       pos2 
  UserDoGest     gest2 LeftHand 
  SetVar         open_2 true 
  DoCmd          open_2 
END # of behavior 
 
BEHAVIOR close_2 
  CheckVar       open_2 true 
  VrClue         gest2 
  UserGoTo       pos2 
  UserDoGest     gest2 LeftHand 
  DoCmd          close_2 
  SetVar         open_2 false 
END # of behavior 
 
BEHAVIOR open_3 
  CheckVar       open_3 false 
  VrClue         gest3 
  UserGoTo       pos3 
  UserDoGest     gest3 RightHand 
  DoCmd          open_3 
  SetVar         open_3 true 
END # of behavior 
 
BEHAVIOR close_3 
  CheckVar       open_3 true 
  VrClue         gest3 
  UserGoTo       pos3 
  UserDoGest     gest3close RightHand 
  DoCmd          close_3 
  SetVar         open_3 false 
END # of behavior 
 
# END OF BEHAVIORS 
 
INTENT 
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Desk with many interaction capabilities: two drawers, one door, a book 
and a lamp. Contain interaction information for data gloves (vrclue). 
END # of intent 
 
END # of file 
 

10.2.3 lift.so 

SMART OBJECT DESCRIPTION 
 
PARTS 
# name          filename              | mass masscenter 
lift            lift_main.iv 
door1l          lift_door1l.iv 
door1r          lift_door1r.iv 
door2r          lift_door2r.iv 
door2l          lift_door2l.iv 
cabine          lift_cabine.iv 
button1         lift_button.iv 
button2         lift_button.iv 
END # of parts 
 
MATRICES 
# name          type and matrix data 
button1 
0.163373 0.00 0.00 0.00 
0.00 0.163373 0.00 0.00 
0.00 0.00 0.183531 0.00 
2260.166992 1192.737793 1525.454346 1.00 
 
button2 
0.197661 0.00 0.00 0.00 
0.00 0.197661 0.00 0.00 
0.00 0.00 0.246796 0.00 
737.667236 6565.471680 -1533.418945 1.00 
END # of matrices 
 
ACTIONS 
# name          type and data (matrix, rot:cent/axis/ang) 
ac_up           matrix 
1.00 0.00 0.00 0.00 
0.00 1.00 0.00 0.00 
0.00 0.00 1.00 0.00 
0.00 5400.00 0.00 1.00 
 
ac_openr        matrix 
1.00 0.00 0.00 0.00 
0.00 1.00 0.00 0.00 
0.00 0.00 1.00 0.00 
550.00 0.00 0.00 1.00 
 
ac_openl        matrix 
1.00 0.00 0.00 0.00 
0.00 1.00 0.00 0.00 
0.00 0.00 1.00 0.00 
-550.00 0.00 0.00 1.00 
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ac_press1       matrix 
1.00 0.00 0.00 0.00 
0.00 1.00 0.00 0.00 
0.00 0.00 1.00 0.00 
0.00 0.00 -50.00 1.00 
 
ac_press2       matrix 
1.00 0.00 0.00 0.00 
0.00 1.00 0.00 0.00 
0.00 0.00 1.00 0.00 
0.00 0.00 50.00 1.00 
END # of actions 
 
GESTURES 
# name          filename        actionfile      part            follow 
press           ButtonPress     ActionDefault   button1         true   
false  false  0.080000 
0.311908 0.083569 -0.946429 0.00 
-0.053292 0.996094 0.070391 0.00 
0.948613 0.028482 0.315144 0.00 
2192.496094 1231.207886 1716.597168 1.00 
RightHandGeom: false 
 
press_2         ButtonPress     ActionDefault   button2         true   
false  false  0.080000 
-0.193824 -0.102024 0.975717 0.00 
0.116514 0.985143 0.126156 0.00 
-0.974093 0.138137 -0.179056 0.00 
759.944946 6623.169434 -1735.859863 1.00 
RightHandGeom: false 
END # of gestures 
 
POSITIONS 
# name          position / orientation 
pos_press       1850.00 0.00 1935.00 0.347226 -0.001221 -0.937781 
pos_enter       1290.00 0.00 2300.00 -0.050367 -0.003516 -0.998725 
pos_enter       1800.00 0.00 2600.00 -0.151799 -0.003516 -0.988405 
pos_goout       1290.00 0.00 2500.00 -0.050183 -0.001221 0.998739 
pos_goout       1613.00 0.00 2000.00 -0.050183 -0.001221 0.998739 
pos_goout       1290.00 0.00 1700.00 -0.050183 -0.001221 0.998739 
pos_press_2     1100.00 5400.00 -2100.00 -0.250528 -0.054506 0.966574 
pos_enter_2     1400.00 5400.00 -2300.00 0.050774 -0.001221 0.998709 
pos_enter_2     1100.00 5400.00 -2581.00 0.050774 -0.001221 0.998709 
pos_goout_2     1935.00 5400.00 -2600.00 0.050574 -0.024041 -0.998431 
pos_goout_2     1613.00 5400.00 -2258.00 0.250901 -0.000185 -0.968013 
pos_goout_2     1935.00 5400.00 -1835.00 0.050574 -0.024041 -0.998431 
pos_cabine      1613.00 0.00 -550.00 0.151031 -0.000185 -0.988529 
pos_cabine      1290.00 0.00 -123.00 0.151031 -0.000185 -0.988529 
pos_cabine      1800.00 0.00 445.00 0.151031 -0.000185 -0.988529 
pos_cabine_2    1613.00 5400.00 323.00 0.050774 -0.001221 0.998709 
pos_cabine_2    1450.00 5400.00 -323.00 0.050774 -0.001221 0.998709 
pos_cabine_2    1750.00 5400.00 -645.00 0.050774 -0.001221 0.998709 
pos             0.00 0.00 0.00 0.00 0.00 0.00 
END # OF POSITIONS 
 
COMMANDS 
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# name          action       part       ini    end    inc 
cmd_cabto       ac_up        cabine     1.00   0.00   0.025000   
cmd_cabto_2     ac_up        cabine     0.00   1.00   0.025000   
cmd_open        ac_openr     door1r     0.00   1.00   0.050000   
cmd_open        ac_openl     door1l     0.00   1.00   0.050000   
cmd_close       ac_openr     door1r     1.00   0.00   0.050000   
cmd_close       ac_openl     door1l     1.00   0.00   0.050000   
cmd_open_2      ac_openl     door2r     0.00   1.00   0.050000   
cmd_open_2      ac_openr     door2l     0.00   1.00   0.050000   
cmd_close_2     ac_openl     door2r     1.00   0.00   0.050000   
cmd_close_2     ac_openr     door2l     1.00   0.00   0.050000   
cmd_press       ac_press1    button1    0.00   1.00   0.050000   
cmd_press_2     ac_press2    button2    0.00   1.00   0.050000   
cmd_unpress     ac_press1    button1    1.00   0.00   0.050000   
cmd_unpress_2   ac_press2    button2    1.00   0.00   0.050000   
END # of commands 
 
VARIABLES 
  open            0.00 
  open_2          0.00 
  floor           1.00 
  false           0.00 
  one             1.00 
  two             2.00 
  true            1.00 
  tmp             0.00 
END # of variables 
 
# BEHAVIORS : 
BEHAVIOR open 
  CheckVar       open false 
  SetVar         open true 
  DoCmd          cmd_open 
END # of behavior 
 
BEHAVIOR open_2 
  CheckVar       open_2 false 
  SetVar         open_2 true 
  DoCmd          cmd_open_2 
END # of behavior 
 
BEHAVIOR close 
  CheckVar       open true 
  SetVar         open false 
  DoCmd          cmd_close 
END # of behavior 
 
BEHAVIOR close_2 
  CheckVar       open_2 true 
  SetVar         open_2 false 
  DoCmd          cmd_close_2 
END # of behavior 
 
BEHAVIOR press 
  UserGoTo       pos_press 
  UserDoGest     press RightHand 
  DoCmd          cmd_press 
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  DoCmd          cmd_unpress 
END # of behavior 
 
BEHAVIOR press_2 
  UserGoTo       pos_press_2 
  UserDoGest     press_2 RightHand 
  DoCmd          cmd_press_2 
  DoCmd          cmd_unpress_2 
END # of behavior 
 
BEHAVIOR moveto_2 
  CheckVar       floor one 
  SetVar         floor two 
  DoCmd          cmd_cabto_2 
END # of behavior 
 
BEHAVIOR moveto 
  CheckVar       floor two 
  SetVar         floor one 
  DoCmd          cmd_cabto 
END # of behavior 
 
BEHAVIOR move_cabine 
  If             floor one 
  SetVar         floor two 
  DoCmd          cmd_cabto_2 
  Else           
  SetVar         floor one 
  DoCmd          cmd_cabto 
  EndIf          
END # of behavior 
 
BEHAVIOR enter_12 
  DoBh           press 
  DoBh           moveto 
  DoBh           open 
  UserGoTo       pos_cabine 
  DoBh           close 
  UserAttachTo   cabine 
  DoBh           move_cabine 
  UserDetach     
  DoBh           open_2 
  UserGoTo       pos_goout_2 
  DoBh           close_2 
END # of behavior 
 
BEHAVIOR enter_21 
  DoBh           press_2 
  DoBh           moveto_2 
  DoBh           open_2 
  UserGoTo       pos_cabine_2 
  DoBh           close_2 
  UserAttachTo   cabine 
  DoBh           move_cabine 
  UserDetach     
  DoBh           open 
  UserGoTo       pos_goout 
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  DoBh           close 
END # of behavior 
 
BEHAVIOR enter 
  UserGetClosest pos tmp pos_press,pos_press_2 
  If             tmp one 
  DoBh           enter_12 
  Else           
  DoBh           enter_21 
  EndIf          
END # of behavior 
 
BEHAVIOR goin 
  UserGoTo       pos_cabine 
END # of behavior 
 
BEHAVIOR goin_2 
  UserGoTo       pos_cabine_2 
END # of behavior 
 
BEHAVIOR goout 
  UserGoTo       pos_goout 
END # of behavior 
 
BEHAVIOR goout_2 
  UserGoTo       pos_goout_2 
END # of behavior 
# END OF BEHAVIORS 
 
END # of file 

 

10.3 ACE Python Interface Description 

s = cmdline () : Returns a string with the arguments passed to ACE in the command line. 
Arguments that ACE understands are not included in the string.  

viewfloor ( onoff )  : Turns on if 1 is the argument, off otherwise.  

viewaxis ( onoff ) : Turns on if 1 is the argument, off otherwise.  

setcamera ( vx, vy, vz, fx, fy, fz, [roll, fovx, fovy] ) : Sets camera parameters view point, 
focus point, roll, and fovs. Defaults are roll=0, fovx=45, fovy=-1. 

setlight ( id, x, y, z, r, g, b ) : Sets light id. By default only ids 0 or 1 are ok. (x,y,z) 
defines the light direction, and (r,g,b) the color in the range [0,1] for each component. 

update ( [n] ) : Makes the screen and the simulation to be updated. n specifies how many 
times to update, default==1. 

f = lastframe () : Returns the last frame number updated. 

setcury ( y ) : Sets the current y position.  

y = getcury () : Gets the current y position.  
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loadfile ( filename ) : Loads an iv/wrl file and displays it.  

avoidwalkcol ( onoff, [range, fov, gap, freq, sleep] ) : Turns on/off a simple collision 
avoidance during walk. Default is off, default parameters: range=1400, fov=10, gap=700, 
freq=3, sleep=5.  

n = numvos () : Return the number of virtual objects. All ids created are inside the 
interval 0<=id. 

vo = vonew ( name, filename, [px, pz, ox, oy, oz, color, d1, d2, d3] ) : Creates a virtual 
object solid or from a iv/wrl file at position (px,cury,pz) and orientation (ox,oy,oz). If 
filename == 'CUBE', (d1,d2,d3) = (length,height,width). If filename == 'CYLINDER', 
(d1,d2) = (radius,height). If filename == 'SPHERE', (d1) =(radius). String color can be: 
black, red, darkred, green, darkgreen blue, darkblue, yellow, darkyellow, magenta, 
darkmagenta cyan, darkcyan, gray, darkgray, white, skin. 

vosetdata ( vo, data ) : Associates with vo any data for user usage. 

data = vogetdata ( vo, [keep] ) : Retrieves the previously associated data. By default, 
keep==1, what means that the vobject keeps referencing the data. If keep==0, the data is 
dereferenced and thus destroyed automatically if the ref counter becomes 0.  

bool = voisvh ( vo ) : Returns 1 if vo is the id of a virtual human, and false otherwise. 

bool = voisso ( vo ) : Returns 1 if vo is the id of a smart object, and false otherwise. 

vo = vofind ( name ) : Returns the id of the virtual object with the given name. -1 is 
returned if the name is not found. 

name = voname ( vo ) : Returns the name of the virtual object vo. 

vosetpos ( vo, x, z, [ox, oz, y, oy] ) : Puts vo in position (x,y,z) with orientation (ox,oy,oz) 
if y is not given, the current y is used. 

voseeable ( vo, state ) : Sets vo to be perceivable or not from a vhuman. By default, all 
objects are seeable. 

p = vogetpos ( vo ) : Gets the current position and orientation of vo. p is a list containing 
(x,z,ox,oz,y,oy). This order is to simplify most applications that work with 2d 
coordinates. 

vodisplay ( vo, onoff ) : Will display or hide a vo.(not working...). 

matrix = vogetlocalmat ( vo, [jointid] ) : Will get the matrix relative to the parent node. 
JointId can be specified for a vhuman and can be any of BODY_N3D* numbers in the 
file body_def.h. 

vosetlocalmat ( vo, matrix, [jointid] ) : Will set the matrix relative to the parent node. 
JointId can be specified for a vhuman and can be any of BODY_N3D* numbers in the 
file body_def.h. 

matrix = vogetglobalmat ( vo, [jointid] ) : Will get the matrix relative to the root scene 
node. JointId can be specified for a vhuman and can be any of BODY_N3D* numbers in 
the file body_def.h. 
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vr = vrusernew ( [onoff=1] ) : Creates a virtual hand connected to the fob and cyber 
glove. Only smart objects created before this command will be considered. If onoff is 0, 
FOB and Glove are not used. 

vh = vhnew ( [name, inffile, px, pz, ox, oz] ) : Creates a new virtual human using the 
default virtual human path and the current y position. If inffile=="SOLID", a solid-type 
agent is created.  

ok = vhstop ( vh, action_name, [face_decay] ) : Stops an action. action_name is a string 
containing the name of the saction. For example 'walk', 'look', etc. For actions that have a 
specific id, this id is to be used, like for 'keyframe'. 1 is returned if the action was found. 

ok = vhactivate ( vh, action_name, [face_duration, face_weight, face_intensity] ) : 
Activates an action. action_name is a string containing the name of the saction. For 
example 'walk', 'look', etc. For actions that have a specific id, this id is be used, like for 
'keyframe'. 1 is returned if the action was found.  

vhbreathe ( vh, time, intensity ) : Changes the parameters of sa_breathe, default: 0.4, 1.5. 

ok = vhtransitions ( vh, action_name, initial, final ) : Changes the transitions durations 
(in secs) of an action. 

ok = vhloadface ( vh, face_name, filename ) : Loads a face expression file.  

vhwalkspeed ( vh, lin, [ang] ) : Sets the linear and angular speed during walk. If a value 
is 0, it is not modified. By default, ang is 0.  

vhwalk ( vh, px, pz, [ox, oz] ) : Makes the current virtual human to walk to the given 
location. The current y position is used. 

bool = vhwalking ( vh ) : Returns 1 if the virtual human vh is walking, otherwise returns 
0.  

vhlook ( vh, x, z, [y] ) : Makes the virtual human to look to the given point. By default, y 
is equal to 1600.  

vhloadkf ( vh, keyframe_name, trk_file ) : Load a keyframe and associate it to 
keyframe_name. 

vhplay ( vh, keyframe_name ) : Play a previous loaded keyframe.  

bool = vhplaying ( vh, keyframe_name ) : Returns 1 if the virtual human vh is playing 
the, keyframe with given name, otherwise returns 0. 

l = vhperceive ( vh, [range, fov] ) : Returns list of perceived vo ids. By default, range and 
fov are -1, what makes the perception to work with the last value set for vh. Initially, the 
values are: range==10000mm, and fov==120 degrees. 

sopath ( path ) : Changes the current path to search for smart objects.  

so = sonew ( name, sofile, [px, pz, ox, oz] ) : Creates a new smart object. The default 
smart object path and the current y position are used. 

sointeract ( so, vh, [bhname, bhindex] ) : Start interaction bhname. If a second integer 
argument indicating the index of the interaction is given, the index is used and the name 
is not considered.  
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bool = sointeracting ( so, [vh] ) : Returns 1 if the virtual human vh is interacting with the 
smart object so.  

sowait ( so ) : Waits until all interactions are done. 

soexec ( so, [bhindex, bhname] ) : Execute a smart object behavior with index bhindex. 
If bhindex is not given, the first interaction is used. To specify the interaction by a name, 
call with bhindex==-1 and bhname with the interaction name.  

so = sogetcur () : Returns the last smart object that called a python callback.  

n = sonumbhs ( so ) : Returns the number of available behaviors in the smart object. 

s = sobhname ( so, bhid ) : Returns the name of the bhid behavior of the smart object. 

n = sonumvars ( so ) : Return the number of state variables in the smart object. 

s = sovarname ( so, varid ) : Returns the name of the varid state var of the smart object. 

f = sogetvar ( so, varid, [varname] ) : Returns the state var value. If varid<0, varname is 
used.  

souselook ( yes_or_no ) : Enable or not the use of sa_look during an object interaction. 

10.4 ACE Example Python Scripts 

The Python function extension used by ACE are defined as the module aglib, so 
that scripts must import this module. Some simple example Python scripts are shown 
here, the following one creates one actor, and inside a loop makes it walk in circles: 

 
from math  import * 
from aglib import * 
 
vh1 = vhnew("bob") 
 
radius = 2000 
ang = 0 
 
while ang<=6.4: 
 if vhwalking(vh1)==0: 
  ang = ang+0.5 
  vhwalk ( vh1, radius*sin(ang), radius*cos(ang) ) 
 update() 
 
 

The next script just creates 2 actors, an automatic door smart object, and 
commands the actors to interact with the door. Note that many default parameters are 
assumed, like when asking for the actor-object interaction, if no extra parameters are 
defined, the first available interaction of the smart object is used. 
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from aglib import * 
 
vh1 = vhnew ( "", "", 1000, 0 ) 
vh2 = vhnew ( "", "", 1200, 0 ) 
so1 = sonew ( "", "newso/autodoor.so" ) 
 
sointeract ( so1, vh1 ) 
sointeract ( so1, vh2 ) 

 

The next script loads an actor and a smart object computer and then calls a 
sequence of different actions and interactions, controlling a short animation sequence to 
take and put back the computer’s diskette. 

 
from aglib import * 
 
setcamera ( 2578, 1354, 194, -2805, 497, 3242, 0, 45, -1 ) 
 
vh1 = vhnew ( "vh1" ) 
vo = sonew ( "computer", "test/computer.so" ) 
vosetpos ( vo, 1500, 1500, -1, 0 ); 
 
sointeract ( vo, vh1, "eject_floppy" ) 
sowait ( vo ) 
sointeract ( vo, vh1, "take_floppy" ) 
sowait ( vo ) 
vhwalk ( vh1, 0, 0 ) 
update ( 50 ) 
sointeract ( vo, vh1, "put_floppy" ) 
sowait ( vo ) 
sointeract ( vo, vh1, "push_floppy" ) 
sowait ( vo ) 
 

10.5 Actor Skeleton Joints 

10.5.1 Skeleton Hierarchy 

Figure 10.1 shows the skeleton joint hierarchy used to represent actors in 
BodyLib. For an explanation of the related libraries, see section 2.5. 
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Figure 10.1 – BodyLib skeleton Hierarchy. 
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10.5.2 Joints Used by Action Push 

The following joints are animated by the implemented push action, using the 
inverse kinematics module, to perform actor-object manipulations. Note that some of the 
listed joint names exist both for right and left limbs, so that they’re used according if the 
manipulation is being done with the right or left hand. 

VL1_TILT, VL2_TILT, VL2_ROLL, VL3_TILT, VL3_ROLL, VT4_TILT, VT4_ROLL, 
VT4_TORSION, VT5_ROLL, VT5_TORSION, CLAV_ABDUCT, CLAV_ROTATE, 
SHOULDER_FLEXION, SHOULDER_ABDUCT, SHOULDER_TWISTING, ELBOW_FLEXION, 
ELBOW_TWISTING, WRIST_FLEXION, WRIST_PIVOT. 
 

The following joints are used only when the knee flexion configuration is used. 
Here, both the left and right joints relative to the following listed names are used. See 
section 5.4 for details. 

HIP_FLEXION, KNEE_FLEXION, ANKLE_FLEXION. 
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