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Abstract

This thesis is about the problem of how to achieve red time virtud environments
with autonomous virtud human actors, which can interact with virtud objects in order to
achieve a given task. The focus is on interaction with day life objects having some proper
functiondity and purpose, as for example: automatic doors, generd furniture, or alift.

The proposed approach is based on a complete definition and representation for
interactive objects. A graphicad modder agpplication was specificdly developed in order
to define such representation of interactive objects, which are caled smart objects This
representation is based on the description of dl interaction features: parts, movements,
gragpable gtes, functiondities, etc. In particular, smart objects keep interaction plans for
each possible actor-object interaction, detailing dl primitive actions that need to be taken
by both the object and the actor, in a synchronized way. Regarding the shape
representation of objects, a new boundary representation data Structure is introduced,
providing low storage space requirements together with congtant time access to adjacency
relations, what is needed by many geometric agorithms.

An agent-based sdmulaion environment is adso presented with the built-in
capability to smulate actor-object interactions, providing an automatic actor animation
control for interactions with smart objects The agent common environment (ACE)
system is extendible and controllable with interactive Python scripts, and has been used
as a sysem platform for research on behaviord animaion. ACE incorporates many new
olutions  regarding the control  of interactive virtud environments, including the
interaction with smart objects usng virtud redity devices.

The gpproach proposed in this thess was tested in many different applications,
and the results obtained are shown and discussed.
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Résumeé

Cette thése aborde le probléme des environnements virtuels avec des acteurs
virtues autonomes qui peuvent interagir avec des objets virtuds pour accomplir une
tache donnée. On se concentre sur les interactions avec des objets courants qui ont une
fonctionnalité & un but propres, par exemple des portes automatiques, du mobilier, ou
€ncore un ascenseur.

L’ approche proposee est basée sur une définition e une représentation completes
des objets interactifs. Une gpplication de type modeeur graphique a é&é développée pour
permettre de représenter completement les objets interactifs gppelés objets intelligents
(smart objects). Cette représentation et basée sur la description de toutes les
caractéristiques d’interaction (interaction features): les parties, les mouvements
posshles, les endroits pour saisr, les fonctionndités, etc. Les objets intdligents
contiennent en particulier des schémas d'interaction avec I'acteur. Ces schémas décrivent
en détal toutes les actions démentaires qui doivent étre exécutées de facon synchronisée
par I'acteur et par I'objet. En ce qui concerne la représentation géométrique des objets,
nous introduisons une nouvelle structure de données utilisant peu d espace mémoire tout
en donnant des relations d adjacence en temps congtant. Ces caractéristiques sont tres
utiles pour des nombreux agorithmes géométriques.

Un environnement de smulation base sur la conception agent a éé auss
développé, avec la capacité de contrfler automatiquement I'animation des acteurs pour
les faire interagir avec les objets intdligents. L’ environnement commun des agents (ACE)
et extensble e controlable depuis des scripts Python & et actudlement utilise comme
plate-forme de recherche e dévedoppement dans le domane de ['animation
comportementale. ACE propose plusieurs nouvelles solutions par rapport au controle des
environnements  interactifs, comme par exemple des interactions avec les objets
intelligents en utilisant des dispositifs de rédité virtudle.

L’ approche proposée dans cette these a été testée avec de nombreuses applications
et les réaultats obtenus sont présentés et discutés.
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1 Introduction

Computer graphics systems are no longer synonym of a datic scene showing 3D
objects. In most nowadays applications, objects are animated, they have deformable
shapes and redidic physcdly based movements. Such objects “exig” in virtud
environments and ae being used to Smulae a number of different gStuations. For
instance, costs are saved whenever it is possble to smulate and predict the result of a
product before manufacture.

Technology has advanced, and now many standards exist in order to dlow the
creation and exchange of different kinds of data used in such environments. The
increesing power of nowadays computers, associated with the lowering of codts, permits
people to have dl thistechnology available in their sandard persona computers.

Users of such systems are no longer passve, but they can interact with virtud
environments. Usng specid hardware devices, they can even redidicdly fed themsdves
immersed in these environments, interacting with virtud entities, feding and seeing as if
they were redly ingde thisvirtud redity.

Although many technica issues are not fully solved, a lot of attention has been
given to a next dep: lifelike behaviors. The issue is to have virtud entities exiding in
virtud environments, deciding ther actions by ther own, with redisgic human
appearance, animated with redigic movements, “living” in virtud environments and
exhibiting proper and unpredictable behaviors. As a naturd consequence, computer
animation techniques today ae drongly reaed to atificia inteligence and robotics
techniques.

Researchers from areas like philosophy, psychology, cognitive sciences, €lc,
discuss whether virtud creatures can behave or not as living creatures. Fundamenta
concepts around human nature and atificid intelligence are Hill not fully understood. As
particle physcs share properties with astronomy, high-end technologica issues are facing
concepts of life.

The reader will not find any answers to such dilemmas in this theds, nether the
devdopment of any new atificid intdligence technique. Instead, what | propose in this
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work is a new dternate approach to exactly overcome the difficulty to modd some
specific intdligent behaviorsin virtud actors.

This thess focuses on the topic of object interaction ingde virtud environments.
Although many different related issues are aso consdered, | concentrate on the problem
of how to have virtud environments with human-like characters and objects that can
coherently interact between them, using the bottom-up approach for atificid inteligence,
i.e., behaviord animetion.

1.1 Motivation and Objectives

It is 4ill a chdlenge to build in computers a virtud actor that can decide its
moations, reacting and interacting with its virtud environment, in order to achieve a
gmple task given by the animator. This virtud actor might have its own way to decide
how to achieve the given task, and 0, many different sub-problems from many aress
arise.

One of these sub-problems is how to give enough information to the virtua actor
S0 that it is able to interact with each object of the scene. That means, how to give to an
actor the ability of interaction with general objects in a red-time application. This
includes a lot of different kinds of interactions that can be consdered. Some examples
are the action of pressng a button, opening a book, pushing a desk drawer, turning a key
to then open adoor and so on.

More than enabling actor-object interactions in virtud environments, another
objective here is to address different solutions to let the animator control smulations, by
giving tasks to actors or by interacting with objects. Note dso that interactive virtud
environments need, by nature, to run in red time. In this way, dl issues addressed in this
work take into account the need to run in redl time systems.

A find chdlenging objective is to condruct an interactive virtud environment to
be used as a devdopment platform for many applications, able to coordinate virtud
actors and objects with proper behaviors, actor-object interactions, and user interaction
with the environment.

1.2 Approach

In order to have virtuad actors interacting with objects in the environment, there
are many complex aspects to congder. Maybe the most difficult behavior to modd is the
actor capacity to recognize object features and to decide what actions are possble to
peform with it. A humanlike behavior would recognize a given object with vison and
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touch, and then, based on past experiences and knowledge, the correct sequence of
motions would be deduced and executed. Such agpproach is ill too complex to be
handled in a generdl case, and not suited for interactive sysems where a red time
execution is required.

To avoid complex and time-consuming agorithms that try to modd the virtud
actor's “inteligence’, my proposed approach is to use a well defined object description
where dl properties, functiondity features and a description of the steps to perform each
available interaction are added to the geometrical shape description of the object. In that
way, pat of the mog difficult thing to modd, the knowledge of the virtud actor, is
avoided. Ingtead, the designer of the object will use his own knowledge assigning to the
object dl information that the virtud actor need to access in order to interact with the
object.

In order to create objects with such complete semantic and interaction description,
a specific modeler was developed. This modeler can then define the behavioral interface
between actors and objects based on interaction plans of primitive actions. Such interface
is then used a an agent communication language to synchronize agent-object
interactions. This modder was implemented usng some visud programming techniques,
letting nontprogrammers to define object behaviors and actor-object interaction plans.
Objects modeled with such behaviord information are cdled in this work as smart
objects and the smart object modeler gpplication is called as somod.

This kind of gpproach has a pardld with the area of festure modding, where
gpecific object characteriics are included to dlow design coherence, reusability,
evolution and aso automatic manufacture of the designed modd. Here, the focus is on dl
the features that can help the virtud actor to interact with the object. For this purpose, |
introduce the term interaction feature. Some examples of such features are: parts that can
be moved, the definition of each movement, best hand positions and shapes to manipulate
parts, etc.

This approach was tested usng a developed agent-oriented system cdled ACE
(Agent Common Environment), where virtua actors can read and interpret interaction
plans to interact with virtua objects. This system presents interesting new characterigtics,
as the fact that the semantics of the environment stay digtributed in the objects, so that
virtuad actors need to explore the environment to reach the objects and decide what
interactions to perform to achieve a given task.



1.3 Applications

As a realt of the growing popularity, and many technologica advances,
computers are each time more used for 3D animation and Smulaion in many different
goplications.

Computer animation in genera has been widdy used in the advertisement fidd,
both in tdevison and the internet. As technologies advance, many of these animations
become three-dimensond, making them much more attractive. Electronic commerce
aready uses computer-generated promotion videos, and 3D models of products.

The film industry aso uses many computer animation resources for the generation
of gpecid effects. However, for films interactive virtua environments are not required,
and normdly the animation generaion uses a lot of human intervention in order to
achieve parfection in the results.

Viaudization in generd is each time closr to interactive graphics. From the
visudization of 3D numerica datasets to the visudization of 3D architectural projects,
vehicles enginesring components, eic. Walk-through in 3D environments can be
enhanced with animated entities. For instance, a wak-through sesson for a 3D
achitectura evduation can be much more redidic if virtua actors and objects are
animated ingde the virtua environment.

Interactive and animated 3D virtua environments are often used in modern video
games in the market. The video game industry uses high-end techniques from computer
graphics, and even sarts to open new research directionsin the field.

Virtud environments are dready widdy used for training and virtud prototyping.
As it hgppened with the geometric modeling area, the automotive industry is invesing a
lot in virtud redity techniques for the design, tedt, and evdudion of human factors in
vehicles. The same trend can be noticed in many other sectors, as the amy and aerospace
industries.

Virtud environments with virtud human actors gmulations in  specific, are
becoming each time more popular. Nowadays many systems are avalable and used to
animate virtud humans targeting different domains, as. human factors andyss, training,
education, virtud prototyping, smulationbased design, and entertainment.

In summary, nearly dl goplications usng 3D animation in virtud environments
are concerned with object interaction issues. Even if virtud human actors are less used
because of the animation complexity involved, the posshbility to have actor-object
interactions in the virtud environment will dways enhance the results obtained.



1.4 Contribution

The man contribution of this thess is the desgn, implementation and test of a
new gpproach to specify interactive objects, which are suitable for interactions between
virtud human actors and virtud objects in red time virtud environments. In this ambit,
new solutions to approach related topics are covered in this thesis, which are:

- A new data gtructure for the boundary representation of objects, which is able to
give adjacency relations in congtant time, requiring low storage space.

- A feature modding gpproach to represent interaction information of objects.
This gpproach is based on the definition of interaction plans, usng visud programming
techniques. Such plans define the behaviord interface of objects and their functiondity,
enabling smulators to load and animate them coherently.

- A gmple and generd methodology to control the animation of virtua human
actors for performing object interaction manipulations. The smplicity comes from the
fact that dl hand manipulations are done with only two kinds of movements, which are
to reach some object pat, and to follow some moving object pat. Such smple
movements can then be composed to create more complex and generd interactions.

- A red time sysem which can be used for the development of interactive virtud
environments for different gpplications, offering  built-in  cgpabilities for  actor-object
interactions, and for user Sdmulation control, incduding a direct object interaction
metgphor using virtud redity devices.

1.5 Organization of thisThesis

In this introductory chapter, | have dready fredy used many terms without a
proper definition of ther meanings, which are normdly context dependent. The next
chapter will gradudly introduce the needed background and define each used term,
cregting a coherent terminology to be used dong the remaining chepters. Some generd
related works are also mentioned, but specific references to each subtopic are given in
their gpecific chapters.

Chapter 3 introduces a proposed new data dructure for the boundary
representation of objects, and chapter 4 exposes how interactive objects can be modeed
and represented with their interaction festures and interaction plans. Chapter 5 explains
how virtud actors interpret interaction plans, and the animation techniques involved for
the animation control of actors during object interaction.

Chapter 6 introduces a system that is able to control actor-object interactions,
according to the modeled interaction plans. This sysem is agent oriented and offers many
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tools for the smulation control, including an interaction metgphor to let users interact
with objects using virtud redlity devices, which is the specific topic of chapter 7.

Chapter 8 presents the many results obtained with the proposed techniques, and
findly chapter 9 concludes this thess In addition, an gppendix section is included,
containing information about implementation issues, scripts and used datafiles.
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2 Background, Terminology and Literature
Review

This chapter makes an overview of the terminology, concepts and background
notions that are used dong this thess. They are grouped among the many areas touched
by this work, and are introduced dowly, sarting with computer graphics related aress,
and ending up with concepts from atificid intelligence domains. However, it is assumed
that this is not the first contact that the reader has with the covered topics, so that terms
and concepts are not exhaudtively discussed.

Along the text, this chapter dso presents a generd literature review of relaed
areas. However, an in-depth discussion of the related works, regarding each sub-topic of
thisthes's, is presented in each specific chapter.

At the end, dready using a more precise teminology, a description of the
software modules and libraries used in this work is done, and a more precise description
of the work proposed in thisthesisis presented.

2.1 Modeing

The term modeling is used by nearly dl sciences, for many different purposes. In
generd, a moddl is an atificialy condructed object that makes the observation of another
object easer. The term solid modeling is extensvely used in computer graphics, manly
in the areas of computer aided desgn (CAD) and computer aded manufacture (CAM).
The solid modding area gives computationa representations for objects that have a
posshle physica redization. Along this thess | will rather use the term object modeling,
to refer to computationa representations of objects that can be coherently displayed by
the computer, even if a physcad redization is not draghtforward. For example, a
mathematical plane in the 3D space does not exis in our red world, as its thickness
would need to have a measurdble dimenson; but it can be coherently displayed by
computers.
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There are severd proposed computationa representations for objects, each one
having its advantages and drawbacks. Some popular examples ae  volumetric
representations, condructive solid geometry (CSG) trees, and boundary representations.
For a detailed description of such representations, | refer the user to the classcal book of
[Mantyl& 1988].

The Boundary representation (BRep) is one popular way to represent objects.
BRep schemes represent objects by describing their surface boundary, which can be
composed of planar faces and curved surfaces. Geometric modeling is the area where
mathematica representations of curves and surfaces to represent solids are studied. With
such mathematical representations, it is possble to accurately describe curved surfaces.
One example of a popular surface representation is the nonuniform rational B-spline
(NURBYS). Among others, aclassical reference to thistopic is[Farin 1992].

Objects in BRep are easy to display in computers, i.e, to render. This is based to
the fact that surfaces can be aways approximated, given any desired precision, by a set of
planar 3D polygons. Most nowadays computers provide specific hardware to render 3D
polygons efficiently. The speed factor achieved with the use of such hardware (or
graphics cards) has largdy contributed with the popularity of BRep models. As speed is
crucid in interactive applications, only BRep of objects are used in this work, and a new
BRep data structure to represent objectsis proposed in the next chapter.

211 FeatureModding

Object modeling deds with the shape representation of an object. However, in
many applications, other properties different than shape need dso to be represented.
Feature modeling is a technique used mostly by CAD/CAM applications [Shah 1995
where the main concern is to represent not only the shape of the object, but adso dl other
important festures, in the context of the gpplication.

One concrete example in a CAD application is the design of a smple pen’s cap
that has a smdl hole in its origind design. Suppose now that a new designer working on
this modd would prefer to close that smdl hole just because of esthetic reasons. Then,
during the operation, he or she would see a note from the origind designer saying that the
hole was done in order to prevent children to stop breathing if they accidentaly choke
with the pen's cgp. Such information is very important in this dtuaion and 0 it is
included in the object’ s representation.

Following these concepts, | have coined the term interaction feature to refer to dl
interesting features of an object regarding its interaction capabilities. Some examples of
interaction festures are the modeing of the objects movements and its globd
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functiondlity. Feature modeling and interaction features are a key issue in this thess and
will be extensvely discussed in the next chapters.

2.1.2 Scene Graphsand Skeletons

Sometimes objects can be composed of many parts like disconnected
components (or topologicdly: shells [Mantyla 1988]). Pats may dso have animation
condraints, for example to specify that a part is only adlowed to rotate around a specified
rotation axis. When such composed objects are loaded, the connectivity of their parts is
often represented with a scene graph.

Most commercid toolkits for the implementation of 3D computer graphics
systems are based on scene graphs, examples are: Open Inventor, Performer, Optimizer,
Fahrenheit, etc. More information about these toolkits can be obtained from the web
pages of [SGI], [TGY], and [Microsoft]. Scene graphs permit to organize, animate and
control a hierarchy of object parts. See for instance [Wernecke 1994], and the chapter 4
of [Thamann 1991], for some examples of scene graphs implementations.

Scene Graph

Figure 2.1 — A scene being displayed is commonly represented with a scene graph.
The scene graph contains all necessary information to display each object of the
scene. Theinternal hierarchy of each object’s partsis also represented as a graph that
isthe object skeleton, and can be seen as a branch in the main scene graph.

The word skeleton is dso commonly used to refer to the specific scene graph of
some given object in the scene. A skdeton defines al the connections of al parts of a
given object, and dso eventud transformations that can be gpplied to any node of the
graph. These transformation nodes are aso referred to as joints Joints can be of different
types and they will dictate the number of degrees of freedom (DOFsS) in the skeleton. See
the chapter 4 of [Thdmann 1991] for more explanation on these terms. Typicdly, a scene
being displayed by the computer is represented by a single globa scene graph, where the
objects skeletons are specific branches of the scene graph (figure 2.1).
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2.1.3 Actorsand Objects

Objects can be built having a humanlike appearance. Humantlike objects can
then be animated as characters in a scene, and are often referred to as virtual humans, or,
for the sake of amplicity, actors. Some times the adjectives real and virtual will be used
in order to didinguish a red (physicd) object from its counterpart virtua object
representation. The same adjectives can dso be used to distinguish a red person from a
virtud actor in some gStuations. Note that virtud actors share nany properties with virtua
objects. Both need to be modeled, to have a skeleton, and then to be animated. However,
virtud humans are, in genera, much more complex than objects.

From now on, when not contrary stated, the word object (or virtual object) will be
used to refer to the computer representation of day life objects, like computers, tables,
cupboards, doors, etc. The concept of what is an object is rather intuitive, and depends on
the context. For ingdance, in many dtuations, it may not be clear if a robot modd should
be considered as an object or an actor.

In addition, composed objects are not trivia to be identified. For example, one
can condder a furniture with many drawers as a single object composed of many parts, so
that a skdeton scheme can be used with joints to define the possble movements of the
drawers. All this information should be included in the feature modeing of the furniture.
However, one can date that the furniture is an independent object, and the same for each
drawer. In this example, it seems to be clear the correct design decison to take, but in
many other cases, this decison is not draightforward: should a car, with dl its doors,
engine, wheds, radio, etc, form a single object? An answer to this question is deeply
context-dependent. In fact, even in red life Stuations we change the way we dassfy
single and composed objects from time to time.

2.2 Animation

Once objects and actors models are created, they can be displayed in a computer
screen. Computer  animation  introduces the dimenson of time and dlows the
manipulation of these entities to create the illuson of animated movements.

Many different techniques ae used in  animation: key-framing animation,
procedurd animation, dynamic smulations, etc. Deformation techniques are aso used to
produce animation. For a good overview of the many techniques used in computer
animation, see [Vince 1992], [Watt 1989], [Watt 1992], [Thamann 1990] and [Thamann
1993].
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2.2.1 Motion Generators

Animation is direct related to the generation of motion. Movements that are
goplied to objects can be redigic generated using dynamics or inverse kinematics [Watt
1992]. But for virtud humans, the implementation of redisic motion generators is
something more complex.

A mation generator will typicdly generate, for each time sep of the smulation,
new vaues for the joints of an actor's skeleton. Note that a virtua human skeleton can be
very complex, with more than a hundred of DOFs, resulting in a complex dructure to
animate. Also, redidic rendering of the actor involves the modding of an initid shepe
with consecutive deformation according to the movements of the underlying skeleton.
Even smpler solutions based on rigid parts require a reasonable effort to model each
independent body limb and to connect them coherently. For an expodition on some of the
issues involved in this area, see, for ingance [Badler 1999q], [Kdra 1998] and [Thamann
1991]. Figure 2.2 shows some possible representations for virtua actors.

Figure 2.2 — Possible representations for an actor. From left to right: skeleton
representation, body composed of rigid parts, and two models with deformable skin.

One popular animation technique for virtud humans is based on motion capture.
The idea is to capture the movement of red persons by usng some specid hardware,
based on high-end vison sysems, magnetic sensors or infrared sensors. A brief
introduction to this and other virtual reality devices will be given laer in this chapter.
With such kind of hardware, movements are ceptured by recording the postion and
orientation in space of each body limb of the person usng sensors, a each time sep.
Once these movements are recorded, they can be mapped to the actor’'s skeleton in order
to produce a redigtic animation, very close to the origind movement. This mapping is not
graightforward and different techniques exist, as for instance [Molet 1996].
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The same kind of recorded movement can be syntheszed with advanced
animaion software, and this general approach of usng pre-defined movements (motion
captured or manualy created with a software) is caled as keyframe animation.

However, serious problems arise when one needs to adapt a pre-recorded
movement to skeletons of different Sizes, or to dynamic Stuaions. For example, it is very
difficult to use a pre-defined movement to redidicaly animate the actor's am to pick-up
an object that can be put a any position close to the actor. It is not reasonable to record
an am movement for al postions to reach in a discrete 3D space surrounding the actor;
thus, other solutions are required.

Inverse kinemétics is a technique that can cdculate one optimd configuration of a
skeleton from a number of given condraints. For an introductory text, see [Watt 1992],
and as an example of some latest advances achieved with inverse kinematics techniques,
see [Baerlocher 1998]. A typicd example is to cdculate the joint values of dl joints of
the actor's am, given a god pogtion and orientation to be reached by the hand. The
drawback is that most inverse kinematics methods are based on minimization techniques,
and thus undesrable locd minima can occur. Additiondly, the animaion result is not
aways congdered naturd. A promising gpproach is to use combined solutions in order to
obtain parameterized motion captured data; one step in this direction can be seen in
[Bindiganavdle 1998]. Although such efforts are promising, inverse kinematics is dill the
gmples solution adopted to overcome the adgptability difficulties of keyframe-based
techniques.

An actor's important motion that receives a lot of atention is waking. The
movement of waking is difficult to redidicdly reproduce. It is difficult to achieve
dynamics dgorithms taking into account al needed subtleties of naturd movement. In
another sense, motion capture techniques are hard to be efficiently parameterized to work
on dl kind of skdetons, and to work with different speeds and ways of waking. A hybrid
gpproach is somehow required. As an example of proposed walk motors, see, for
instance, [ Tsutsuguchi 2000] and [Boulic 1990].

2.2.2 Primitive Motions and Primitive Actions

All these motion generators may be used together to generate a wide range of
animaions. Motions obtained with these techniques are going to be cdled primitive
motions. Primitive motions can be used for different purposes. For example, inverse
kinematics can be used to make the arm of the actor reach the position of a button, before
pressng it. This action of reaching will be consdered to be a primitive action, asit is
directly generated by a primitive motion. Similarly, primitive actions gpplied to objects
will moveits parts, asto open and close drawers of some furniture.
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Suppose now that an animation system provides the posshility to goply many
different kinds of primitive actions to actors and objects. A first concern is the problem of
coherently mixing the output of motion generators when they ae triggered in pardld.
Although this is not a common case in objects, for the animation of actors this is an
important issue dso known as motion blending [Boulic 1997]. For example, a motion
blending is required in order to have an actor that waks while its am, for some other
purpose, is controlled by an inverse kinematics motion generator with higher priority.

Once these capabilities of motion generation and blending over actors and objects
are possble, the problem that arises is how to define the good combination of motions in
order to smulate or animate a higher level task. More than that, when one wants to
animate a complex scenario, it would be desrable to be able to do it in an efficient way.
For instance, which parameters one would need to specify in order to animate a smple
storyboard, as an actor that enters into a laboratory and takes a diskette of a computer? A
firg problem is the excessve amount of parameters to define. And once the work is done,
as the animation was “ pre-caculated”, it would not be interactive.

2.2.3 Behavioral Animation

When a virtud actor can just recelve key indructions, or high level tasks to
perform some animation, a behavioral module is needed to deduce the correct primitive
actions to apply, in order to achieve the given tasks. Many techniques exist to define
behaviora modules, and such topic has a lot of attention in the behavioral animation and
agents area.

Prior to the science of behaviord animation, researchers initidly developed
physics-based modds to make movements more redistic. A main drawback was that the
animation was aways predictable, and did not take into account individudities of the
characters. The first behaviora sysem was deveoped by [Reynolds 1987] and
introduced the concept of flocking behavior to animate flocks of birds. In this system, an
individua bird follows a set of rules tha makes it to follow the surrounding birds, while
avoiding colliding with them. With such individud rules, the flock of birds presents
redidic results of group motion, which would be a time-consuming task to perform with
traditiond animation techniques. In a recent work, [Reynolds 1999] addresses many other
types of locomotion behaviors.

Behaviord animation [Millar 1999] [Ziemke 1998] is consdered to be the
bottom-up approach to study artificid intdligence (Al). Traditiondly, Al has been based
on the view tha intdligent behavior is the result of abstract processes a the “knowledge
level” [Newe 1982]. But since the mid-1980s, traditiond Al (which can be considered to
be the “correct approach”) has shown serious problems in deding with complex
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environments. An dternate agpproach then appeared, based on behaviora-based robotics,
focusing on perception and action [Brooks 1986].

Different perception techniques have been proposed and they will direct reflect
the way that behaviord modules are designed. The firs approach introduced to smulate
redidic virtua human perception was done by [Renault 1990] which smulated a visorr
based perception. [Tu 1994] has applied a sphericad visua perception to smulae fishes
and [Reynolds 1987] has applied to birds. [Noser 1996] has aso used vison perception,
together with memory, and the perception of sound events. To overcome the difficult task
of deding with a visonbased perception, [Bordeux 1999] proposed pipelines of
perception, which are configurable with different propertiesin an efficient way.

2.3 Agents

Behavior-based Al has then used the term agent to refer to an entity based on
perception and action. Unfortunately, this concept is gpplied in many different fidds so0
that the term agent is used for al sorts of sysems, ranging from the most complex
(humans, animds) to the very smple (programs, subroutines)  [Woolridge 1995
[Franklin 1996].

A common point is that an agent is dways dtuated in an environment, and can

interact with its environment by means of perception and action. Figure 2.3 depicts these
main components of an autonomous agent.

Autonomous Agent
(O]
> .
o) Behaviord B
—» S —P» —»
o Module <

Virtud Environment <«

Figure 2.3 — Agents are based on three main modules: perception, behavior, and
action. To act ant perceive, they need to “exist” in avirtual environment.

2.3.1 TheVirtual Environment

Agents need to have an associated virtual environment (VE) where they can
percaive the dtate of the smulation in order to decide the motions to gpply. The mations
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are then visudized in the same VE, which keeps and manages the graphicd
representation of each agent. The concept of perception is directly relaed with the
existence of a coherent VE, that needs to be able to efficiently answer perception queries.

Agents behaviord modules often run in an asynchronous way, usng different
computer processes, or threads (“light processes’). This is required so that, idedly, the
process time consumed by one agent would not interfere with other agents. Thus agents
would be &ble to access in pardld the needed information in the VE, exchange messages,
€tc.

The VE needs to digilay the grephicd representation of each agent being
animated, and efficiently answer to perception queries. The display need to be updated
with a sufficient and congant refresh rate to show a smooth and time-coherent animation.
This dso involves the use of pardld processes to keegp a congtant frame-rate. In generd,
psychologists show that a frame rate of 25Hz is sufficient for the human eye to perceive
moation flowing smoothly. When a frame rate close to 25Hz is achieved it is common to
say that the system runs in real time Note that an interactive system, by nature, requires
red time performance. However, many times it is not possble to keep a red time frame
rate, and even with lower frame rates, depending on the gpplication, it is common to say
that a sysem dill runswith interactive frame rates.

2.3.2 Autonomous Agents

Many terms can then be used to better specify the agent type. An agent is
conddered to be autonomous, when it is ale to achieve given gods by only its own
actions in a continuous interaction with the VE. It can be consdered inteligent if it can
solve complex gods, otherwise it is just conddered reactive Normaly, inteligent
behaviors are able to generate emergent behaviors, which are behaviors that were not
directly programmed, and gppear as a result of other smpler behaviors. [Ziemke 1998].
Agents that “take the initigtive’ while attempting to achieve a god are cdled as pro-
active. They can have sociability characteristics to be able to cooperate and interact with
other agents in the environment, usng some agents language, i.e, some protocol to
exchange data. Mobility, veracity, benevolence, rationality and adaptation are dso terms
used in the agents literature. For a good overview over the agents doman, see
[Wooldridge 1995].

In the scope of this thess, both objects and actors are considered autonomous
agents. once their behavior are defined, they are able to act by themsdves. Generdly,
objects are smpler than actors, and some times their behaviors can be seen as reective
rather than intelligent. For example, an automatic door is an object that can have sensors
to detect when an actor gpproaches to then open itself. Actors will use sensors to detect
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what the objects near them can offer in order to complete a given task. The adjectives
reactive and intelligent can be used or not, depending on the context and on the
complexity of the programmed behaviors.

The agent concept ads the organization of things, but the problem of developing
behaviord modules is gill a mgor issue. As seen before, traditiond Al techniques have
not successfully provided effective behaviora modules to drive actors smulations in
virtud environments. Actudly, behaviord animation approaches the problem by direct
implementation of the needed behaviors, without expecting that they would naurdly
emerge from a“wdl defined Al entity”.

2.3.3 Programming Agents

Many techniques have been proposed to define agent's behaviord modules.
However, even for each used technique in particular, different gpproaches are presented.
The fact is tha the implementation of behaviord modules is a highly context-dependent
tak, s0 that when applying standard techniques to a specific domain, some specific
isues ae differently solved. This Stuaion leads to many specific sysems being
described in the literature, but the techniques involved do not vary sgnificantly.

The most popular techniques use rule-based behaviors. According to the system
date, rules are selected producing state changes and so evolving the smulation. The LISP
programming language is often used in such sysems [Norvig 1992]. Other approaches
use L-Systems as a procedurd generation of rules [Prusinkiewicz 1990] [Noser 1997].

For a good expostion of the many specific methods for the behaviourd control of
actors, see [Funge 1999]. In his work, Funge consders that a higher leve layer, the
cognitive modeling layer goes beyond behaviord modds, in that they govern what a
character knows, how that knowledge is acquired, and how it can be used to plan actions.

In this theds | do not enter into this cognitive modding layer. The work herein
presented proposes a behaviord technique to eadly enable actor-object interactions.
However, | do show that coherent cognitive modes can be implemented based on the
behaviord techniques proposed. Figure 24 illusrates the modern computer graphics
pyramid proposed by [Funge 1999].

Another point is how to specify the parameters of the behaviord module in
question. For example, how to enter the rules of a rule-based behavior? In order to
achieve complex systems, many coherent rules need to be entered, what can be a
srenuous task. Finite state machines are widely used to define different kinds of
behaviors, asfor instance, an emotional model for virtud actors [Becheiraz 1998].
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State machines can be represented graphicaly, and thus, graphica programming
methods can be introduced to the behaviord programming task. Commonly, nodes
represent states, and links between nodes represent transitions between dtates. At a first
glance, these graphs seem to be a promisng agpproach, but for most complex systems
with a lot of daes and trangtions, they easily turn to be a difficult representation to
condruct, undertand and maintain. For example, only coherently drawing graphs is a
complex issue and is the subject of alot of research [Battista 1999].

Figure 2.4 — Cognitive modeling is considered to be the new apex of the computer
graphics modeling hierarchy [Funge 1999].

Many sysems use some kind of finite state machine to define behaviors. Some
examples are [Schodler 2000] and [Moreau 1998]. When state machines get complex,
hierarchicd date machines can be used, as in [Motivatel and [Nemo]. Smilar
congtructions are also proposed, as the parallel transitions network (PaTNets) [Granieri
1995] [Bindiganavdle 2000]. Ancther interesting example is the generation of redidic
human motion introduced by [Hodgins 1995, where human athletics motions are
smulated usng dynamic modes driven by smple state machines.

Alternatively, scripts can be used to program behaviors. A classcad system based
on scripting is the New York Universty’s Improv (Improvisationd Animetion) [Perlin
1996]. Scripting is in fact amilar to writing smple programs with a smplified syntax and
which can be interpreted in run time. Some interpreted programming languages can be
used as scripting tools, as for ingtance the Python language [Lutz 1996].

Scripts can adso be used to define plans. A plan is a scheme or program that
determine a sequence of actions to take in order to accomplish a given god. Actions are
then conddered units of behavior, and thus a plan can define a behavior. The term
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scheduling is some time used for the specific problem of determining the time when each
action should take place.

Plans can be pre-defined, usng scripting tools or state machines. Otherwise, they
need to be generated during the smulaion usng some planning process. Planning
processes are thus concerned with determining the correct ordering of actions to achieve
a task. Planning may require reasoning modules, able to determine or conclude by logica
“thinking”. Planning processes often need to search for solutions in a search space, and
dgorithms are very time consuming, not gpplicable to interactive agpplications. The best
example is given by the work of [Koga 1994], which presents a planning dgorithm for
the definition of collisonfree paths for severad cooperating ams in order to manipulate a
movable object between two configurations. Although redigtic results are presented in
[Koga 1994], the computational cogt is prohibitive for interactive smulations, and aso,
extending the approach to generd cases with different object interactions is gill a
chdlenge. However, in a near future, such planning dgorithms may represent a
promisng approach for many cases. Researchers from the robotics fidd ae dill
devdoping new dgorithms, as the vishility-based probabilistic roadmap planner
[Smeon 2000], that could run in red time in very sImple conditions. A classcd
reference for the robotics motion planning domain is the book of [Latombe 1991].

In this thess, | propose an approach where al needed informetion to perform
actor-object interactions are available in pre-defined plans, retrieved from the festure-
based modd of objects. This leaves for the actor the task of interpreting interaction plans,
which don't require any complex reasoning processes, what is suitable for interactive
goplications. A dmilar approach is proposed by [Levinson 1994b], where an object
gpecific reasoner is used, based on a geometric and functional classfication of objects for
the interpretation of naturd language indructions. This approach address only smple
grasping tasks, but the main conceptud difference is where the semantics of objects is
gored: in the herein proposed feature modding approach, objects contain dl their
semantic and interaction informeation.

The definition and control of agents behaviors is a large and tangled issue, and a
common darting point of each proposed technique is to make simplifying assumptions,
leading to highly context-dependent techniques. Classfying sysems can be dready a
dfficult task. A first classfication is proposed by [Zeltzer 1991], where systems are
placed in three categories. guiding, animator-level or task levd. A task leved system
would need to use behaviord modules. In a more recent work, [Cavazza 1998] extended
this dassfication specificdly for the animation of virtud actors participatory, guided,
autonomous and interactive-perceptive.
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It is important to note that even the most complex autonomous agent’s behavior is
somehow programmed in the computer. Even with evolving methods, there is somewhere
a known dgorithm that enabled the evolution of the behaviors, so that the results are ill
predictable. The point here is to determine if a “red intdligent behavior” could be
achieved only with a high number of complex connections of many but smple pre-
programmed behaviors. Such question is not solved and the topic is widdly discussed by
cognitive scientigts.

2.4 Virtual Reality

Virtud Redity (VR) is reated with the idea of user immersion in a synthetic
computer-generated  environment. The concept of immerson in a virtud environment
(VE) is rather rdative, depending on many factors. The VE can be seen as the virtud
goace indde the computer where virtud objects are loaded and animated, and the user
should somehow fed immersed indde, seeing a graphicd representation of him/hersdf,
and even feding and interacting with the objects in the VE. The success or falure of a
paticular VR sysem is not necessarily a function of how “redidic’ it is. Rether, it is a
function of the extent to which the behaviora gods of the system have been met.

Many virtual reality devices exist in order to feed humans sensors with computer-
generated sgnds controlled by the VE. Such devices increase the feding of immersion,
however without any guarantee that the user will in fact fed immersed in the VE. Some
people cannot even support wearing virtua redity devices, and cybersickness [Hettinger
1997] has been detected in some users.

Virtud redity devices open a series of different gpproaches of immerson and
interaction with the virtud environment. Often, gpproaches are rather dependent to the
context and to the used devices. The firs problem addressed for interaction with VR
environments usng VR devices is concerned to the action of sdlection and displacement
of objects. Many issues are involved, and agood overview is done by [Hand 1997].

It is possble to classfy virtud redity devices in three man groups Motion
trackers, force-feedback devices, and stereographic displays. Some of these devices are
shown in the following sub sections.

241 Motion Trackers

Motion trackers are devices that can capture the motion that the user is performing
in order to dlow the computer generate an exact copy of the movement, normdly to
animate the user grephicd representation in the VE. This “controlled representation” is
dso cdled avatar. An actor is consdered an avatar when it is designed not to be
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autonomous, but to exactly follow the movements that the user of the system is
performing and that are captured with some motion trackers.

Many different kinds of motion trackers exist. Two types of them are widdy used:
sensors with 6 degrees of freedom, and data gloves. Sensors with 6 degrees of freedoms
can give the podtion and orientation of each sensor, in relation to some reference
postion. Examples are emitter-sensor systems based on magnetic  fidds, infrared
trackers, or ultrasound trackers. Figure 2.5 shows the popular [Motion Star] system,
based on a black box that emits a magnetic field, and sensors that, based on the intengity
of thefidd, can cadculate the position and orientation of their location in space.

Figure 25 — Motion Star system of Ascension Technologies Corporation. The black
box on the right is the emitter of the magnetic field. Sensors can be placed anywhere
in the surrounding space and they will capture the position and orientation in space,
relative to the emitter. The main drawbacks of such magnetic systems are the
interference caused by metallic objects, and the limited work volume size.

Such a magnetic tracking system has been used by [Molet 1998] who developed
an anatomical converter essentidly based on orientation measurements, that converts the
data captured by many sensors disposed in the user’'s limbs in joint angles in red time.
This method dlows the fast and redigic generation of pre-defined motion sequences for
later use to animate actors.

Specificdly designed to capture the movements of hand’'s fingers, many types of
data gloves exid. One example is the cyber glove modd of Virtud Technologies
[VirTech] shownin figure 2.6.
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Figure 2.6 — The Cyber Touch glove of Virtual Technologies. This data glove uses
fiber optics to measure fingers flexion. Tactile sensors are mounted in each finger and
in the palm, in order to provide vibration sensations.

2.4.2 Force Feedback

Force feedback devices permit the user to fed and to have movements
condrained, according to collisons in the VE. Such devices are getting very popular
nowadays, and many new solutions are being proposed by companies and research labs.
However, in generd, they are dill expensve devices, heavy, and not very practica for
genera purpose usage. Such devices were not used in this thesis.

Many models exist for different purposes. A recent overview of such devices is
presented by [Burdea 2000]. For example, figure 2.7 shows the newest product from
Virtud Technologies [VirTech], which incorporates force-feedback for the fingers
movements, and force-feedback for the hand movement.

Figure 2.7 — The Cyber Force system from Virtual Technologies. Note that the
extemal mechanical white arm, which provides the force feedback for the hand, can
be also used to track the position and orientation of the hand. Force feedback at the
finger level is provided by the small black exoskeleton mounted on top of the glove.
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2.4.3 Stereographic Displays

A dereographic display is one of the most important components in an immersive
VR sysem. The idea is to have a disdlay capable of sending a different image to each
user’'s eye, such that each image is generated from a different point of view, smulaing
the position of each user's eye.

Two main technologies exist. The one proposed by [Stereographics] use a norma
screen idedly running with a frame rate of around 50Hz, where each consecutive par of
frames contain the images to send to each eye. Then, specid glasses are used that,
synchronized by infrared with the screen, can block the light going for one eye a a time.
The reault is tha each eye will see the correct image in a refresh rate of 25Hz. These
glasses are called as shutter glasses and are shown in figure 2.8.

Figure 2.8 — The Shutter Glasses of Stereographics. The image shows the glasses and
the infrared synchronizer that, when connected to the computer, synchronizes which
lens of the glasses need to block the light, in order to let each eye see the correct
image. The graphical software is required to generate different images for each eyein
asequential form.

Stereo visudization is used not only with computer monitors, but dso with
projected images in walls, in many configurations. For indance, a CAVE is a box-like
gpace where dl walls show projected stereo images, S0 that the user has the impression to
redly be indde the 3D synthetic world. CAVES can provide redidic environments and
have been widdly used for full-scale vehicle design.

Another solution is based on polarized light. For this, two screens in padld
generate images, one generaing images for the right eye, and the other for the left eye.
These two images are projected using standard projectors but equipped with polarized
lenses. The lenses are adjusted to polarize the light in different, orthogona directions, and
both images are projected overlapped. Then, by usng very smple glasses that, in each
eye, only light with a specific polarized orientation passes, the user will have the notion
of agtereo vison.
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Displays can be dso head mounted. Head mounted displays (HMD) idedly
provide the best solution for immersve visudization, as it blocks al contact that the user
would have with the red world, and it moves together with the user. However, available
gysdems are 4ill very expensve and have many condrants, as the limited fidd of view,
which in mogt cases is close to only 30 degrees. Because of this serious congraint, HMDs
have not yet achieved the expected popularity as“externd displays’ have.

For the future, there is research being carried on in order to achieve a new type of
Sereo display that would not require the use of any specia glasses.

244 VRML

An important aspect in virtud redity systems (and dso in dl type of sysems) is
the need of standards. A first standard being widely used today is VRML (Virtud Redity
Modding Language).

VRML [Caey 1997] [VRML], is a language that can specify complex animated
scenes, defining scene graphs, together with BRep modds, and many other features, as
animatiion nodes, sensors, connection with script languages, etc. VRML files can be as
complex as the source code of a computer program, but an advantage is that they can be
interpreted and displayed by most available web browsers.

VRML has dso been used as the standard language to specify a standard virtua
human’ s skeleton format [HANIM].

245 VR Systems

Many VR gpplications have been implemented in the last years. Such systems
encompass severd domans as surgery training, flight smulators, networked shared
environments for teleconferencing, human factors analyss training, education, virtud
prototyping, Smulation-based design and entertainment. A good overview of the many
techniques used to implement VR and VE software, as well as an extendve lig of ther
applications, is stressed by [Kaawsky 1993] and [Burdea 1993].

Virtud redity sysems are widdy used in medicd-related areas, spedficaly in
aurgicd training applications. An interesting VR traning application permitting the
papation of tumors is presented by [Dinsmore 1995]. In this gpplication, the user
interacts with the virtua organs by using apair of data gloves.

Orne example of an interactive exercisng training gpplication is presented by
[Davis 1998]. In this application, the computer is able to detect whether the user is not
correctly repesting the showed exercises, and in these cases, the computer tries to give
incentive to the user. Other training domains have aso been explored, as is the case of a
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system proposed to train equipment usage in a populated virtud environment [Johnson
1997], where a virtud human is used to show the correct usage of the equipment before
the user takes the firdt contact with it. Another training application is proposed by [Tate
1995], to tran fire fighters to find a given room ingde a virtud ship. After, when
operating in the red ship, they are able to find the rooms much faster than tose that did
not had the VR training sesson.

In this thess a dmple classca combination of VR devices to test interactions
between objects and the user of the sysem is used. This combination is based on the
following devices shutter glasses for dereo visudization, a data glove to cepture finger
movements, and one magnetic sensor to capture the location of the hand in space. This
interaction metaphor will be detailed in chapter 7.

2.5 Used SoftwareLibraries

The computer graphics lab of EPFL, directed by Prof. Danid Thdmann, is
gpecidized on the research on dl aspects in the domain of virtud human animation and
modding. As the result of severd years of research, the lab has now various
programming libraries for the animaion and modding of virtual humans that are used for
various European and PhD projects.

All the software that | developed to test, evaluate and demonstrate the proposed
techniques in this thess were based on various library modules of the lab. | will now
introduce the purpose and names of the man used modules so that in the following
chapters, the discussed implementation issues will be clearer for the reader.

The three main libraries used are cdled as Scenelib, BodyLib, and AgentLib.
Scenelib is a library to manage scene-graphs, and is used dl the time in order to
represent and animate objects in the scene. Scenelib uses aso the concept of joints to
define the type of movement that a node in the scene graph can undertake; see the chapter
4 of [Thalmann 1991] for a description of some Scenel.ib concepts.

BodyLib is based on Scenelib, and manages skeletons of actors. As explained
before, skeletons are kept as branches of the scene graph. BodyLib coherently models the
correct movement and condraints of each human aticulation with joints, and provides
methods and functions to access and modify the vaues of the joints. Different body
templates files can be read to dlow the animation of skeletons with different limb
lengths, in order to Smulate different people.

AgentLib provides a set of implemented primitive actions that can be applied to
the skeleton of an actor, together with a motion blending module that coherently manages
the execution of parale actions. For a description of the AgentLib cepabilities, see
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[Boulic 1997]. AgentLib was recently extended to manage a virtud environment gble to
answer to perception queries, resulting in a new verson cdled as AgentLib++. In this
thess, dl software that | developed is based on AgentLib++, but from now on, | will
refer only to AgentLib, as the capabilities of both versons are currently being integrated.
For a description of the capabilities available for the perception modules, see [Bordeux
1999].

AgentLib provides aso access to many primitive actions for the animation of an
actor's skeleton: The used actions from AgentLib are cdled in thisthesis as:

- Wak, which animates the actors skeeton with a waking motor [Boulic 1990].
The waking motor can be controlled in three different levels the lowest levd is
controlled by specifying angular and linear velocities and accderations. A midleve lets
the user to give feed point locations where the actor should wak to. The higher leve
control requires only a goa pogtion and orientation to wak to, and a smooth path is
automaticaly generated, dlowing the actor to smoothly wak from its current position
and orientation to the desred god postion and orientation. The core of the waking
motor is kept in another library called WakLib. In this thess, the higher levd of walking
control is aways used.

- Reach: permits to animate the actors skeleton in order to have the actors hand
reaching some desred podtion and orientation. The reach action uses an inverse
kinematics library that will be cdled here as InvKinLib. This library has achieved many
enhancements and is the subject of the PhD thess of P. Baerloch [Baerlocher 1998].
However, the reach action has some limitations due to the fact that not al the actor's
skeleton is animated, leading to a smdl reach ability space. | have developed the action
push, that offers alot more possbilities and that will be explained later (chapter 5).

- Look: This action amply permits to define a direction for which the head of the
actor should look at. This action is often used, as a coherent postion of the head is very
ggnificant in order to achieve natura and convincing movements.

- Keyframe playing: This action smply agpplies a pre-defined motion to the actors
skeleton. Such motions are mainly obtained from Motion Capture sessons. Although a
wide repertory of keyframes is avalable in the lab with redigic movements, these
movements are not parameterized, and thus cannot be adapted, for example, to be
synchronized with object movements. Keyframes often generae the most naturd looking
animation, but precise control and modification of the movementsis not aways possible.

For an overview of these actions and many other actions from AgentLib, see
[Emering 1999]. AgentLib aso uses a gspecific library to display a skin representation of
the actor's skeleton, with red time skin deformation. This library is caled DodyLib, and
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the techniques involved are described in [Thalmann 1996]. Faces are not deformed from
skeleton postures, and a specid module Facelib [Kara 1992] is avallable gecificdly to
peform facid animation. Figure 29 presents a smplified diagram with the main
dependencies among the described libraries.

FacelLib Scenelib
InvKinLib BodyLib
WalkLib DodyLib
v v v
Facia Look, Walk, Reach, etc || Perception
Expressions - - Module
Motion Blending
AgentLib

Figure 2.9 — The modules/libraries used to develop the applications proposed in this
thesis. The arrows represent the main dependences between the modul es.

2.6 A MorePrecise Overview of ThisThess

As dready exposed, smulation in virtud environments is a very powerful
goproach that can save money, time, and lead to enhancements in the smulated subjects.
Although many issues are dill to be solved, exiding technologies are adready successfully
used for many applications.

In this theds, | address the specific issue of actor-object interaction in virtud
environments, and propose :

- An optimized data dructure caled star-vertex, for the representation of BRep
models, specificaly designed to offer adjacency redions in congant time with a low
dorage space requirement. This is the topic of the next chapter. At a first glance, it may
appear that this proposed dtructure is out of the theme of this thess. However, besides the
interesting characterigtics of the dructure, it should be remembered that geometric
decription of objects is the sugtaining layer of computer grgphics sysems (see figure
2.4).

- A festure modding approach to include pre-defined interaction plans within the
object representation. Objects modeled with this approach are caled smart objects, and
the modder somod (from: smart object modeler) was developed in order to model smart
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objects usng grgphicd programming techniques. The concepts involved and the
implementation issues of somod are exposed in chapter 4.

- Specific solutions to animate an actor in order to interpret interaction plans.
These solutions involve the control of the primitive actions of AgentLib, and adso the
devdopment of the gpecific primitive action push based on inverse kinematics. Such
issues, anong others, are discussed in chapter 5.

The agent-based gmulation environment ACE (from: Agents Common
Environment), with the built-in capability of easy control of actor-object interactions. In
ACE, actors and objects are conddered as agents, and interaction plans are their
communication language. ACE is described in chepter 6, and the built-in gpproach for
direct user interaction with smart objects usng virtud redity devices is the topic of
chapter 7.

All the proposad issues are introduced from the computer graphics point of view,
and they are proposed as behaviord animation techniques for interactive virtud redity
systems.

This thess does not propose any new Al dgorithms for reasoning or planning,
ay new motion dgorithm for the animaion of vitud humans nether ay new
dgorithm for low levd manipulation of objects udng VR devices. Ingead, | mainly
propose new high levd techniques and approaches to integrate exiging agorithms, in
order to enable interactive smulation environments to have more cgpabilities for object
animation and interaction.

2.7 Chapter Conclusion

This chapter introduced the needed background and terminology used dong this
thess, and a general overview of the related work among the various touched aress. At
the end of the chapter, a description of the used programming modules was given, and a
precise description of the work proposed by this thesi's was done.

This chapter clearly exposes the proposed work in this thesis, and the organization
of the materid presented in the following chapters.
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3 Star-Vertex Data Structure

This chapter introduces a data dtructure for describing the geometry of objects,
more specificdly, planar meshes. This dructure is optimized to offer adjacency relations
of mesh dementsin congant time, what is needed by many geometric dgorithms.

This dructure regards the geometry representation of objects and can be
associated or not with the smart object behaviora description.

3.1 Introduction

Polyhedral objects, surfaces, or planar meshes, are largely used to describe the
boundary of solids for visudization purposes, virtud redity applications, smart object
interactions, and for many types of caculations, dso usng finite dements methods.

This chapter introduces a new scdable data structure for describing planar meshes
which, in some specific Stuations, uses less storage space than others, while Hill giving
adjacency information in congtant time. This daa dructure is vertex-based and so0 a
generic traverse dement is dso described which mimics the common used behavior of an
oriented edge in order to easly access the stored adjacency information.

3.2 Related Work

There are many data sructures proposed in the literature for describing planar
meshes. Among them, those providing adjacency reations in congant time are mainly
edge-based structures.

The winged-edge structure [Baumgart 1975] pioneered with the concept of storing
adjacency information. Later, traverse operators were introduced, as well as construction
operators, in order to keep the sSructure aways coherent during manipulation. The half-
edge dructure [Mantyla 1988] is an example of a dructure that provides such operators.
It is based on ligs of dl topologicd dements with many redundant data in order to
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provide direct access to al adjacent dements. A consequence is that the storage space
required and the complexity of the implementation islargely increased.

Other dructures are more compact and rely on properties on the ordering of the
dements of the subdivison [Brisson 1989]. The introduction of the quad-edge data
gructure for the two dimensiona case [Guibas 1985] opened a series of edge-based
structures featuring aminimal set of congtruction and traverse operators.

However, a genera-purpose implementation of such structures will gill use a lot
of dorage space and complex memory managements. If one needs to design and
implement a data Structure optimized for some specific usage, many aspects must be
consdered. Some eements of the dructure may need to reference application specific
data, as colors in faces of a model or spring parameters in edges of a spring mesh. Often,
for many agorithms, a fast retrievd of the adjacency information is required, as for
ingance for mesh smplification and surface subdivison [Zorin 2000]. Note that fast
doesn’t necessarily mean designing a highly redundant dtructure that provides direct
pointers to al adjacent lements: such structures use a lot of storage space, what can lead
the computer to swap the memory to disk, and thus decreasng dradtically agorithms
peformance, specidly in large virtud environments. Ancther point to andyze is the
tradeoff between block memory arays versus dynamicdly linked lists that are especidly
important when the topology of the structure may change dynamicaly.

Carefully teking into account these many design choices, specific data structures
can be desgned that will increese performance for their target applications. However,
there is somehow a lack of attention in the literature about such specific data structures,
specidly regarding efficient ways (in sorage and speed terms) to describe and maintain
adjacency reations.

However, a recent work has exactly focused on some of these aspects proposing
the directed-edge [Campagna 1999] structure. It was designed to describe triangle meshes
(planar subdivisons where dl faces are triangles). This assumption permits to encode dl
adjacency information efficiently, and to retrieve them in constant time,

In this chepter, the star-vertex data structure is proposed, that mainly differs from
the others from the fact that it is vertex-based, and not edge-based. This implies some
interesting properties that are mainly related to the number of edges incident to vertices,
and not to the number of edges around a face. In the Star-vertex data Structure, there is no
difference in doring triangle meshes or generd meshes. The amplification of describing
triangles (or three edges around a face) has a dud in the star-vertex data structure thet is
to describe meshes where each vertex has exactly three incident edges.



Congdering the type of the mesh being described, and some possble
amplifications to goply, the dar-vertex representation may require a surprisngly low
Sorage space, while il giving adjacency relations in congtant time.,

Another aspect covered in this chapter is the introduction of a traverse eement,
which works as an interface layer to access the data stored in the structure. The traverse
element mimics the behavior of an oriented edge, which is the most usud way to retrieve
adjacency relaions.

3.3 Star-Vertex Data Structure

Among the data structures aready cited in the introduction, the one requiring less
dorage space and dso doring adjacency information is currently the directed-edge. This
dructure is proposed in three different levels full, medium, or smdl. These leves give
different tradeoffs between explicit storage of adjacency information versus storage space
requirements. The smal directed-edge is the one that requires less storage space and,
dthough adjacency information is not explicitly dored, it is retrieved in condant time
with few elementary operations. This smal verson tekes 32 bytes per triangle
[Campagna 1999] to dtore a triangle mesh. Along this paper, when we refer to the
directed-edge data dructure, we are referring to the smdl one, which gives the more
compact space representation.

Actudly, if one needs to use a daa dructure with very low dorage Space
requirements, the only option is to not include adjacency information. The most popular
mesh representation scheme that doesn't include adjacency information is based on
arays of vertices coordinates and vertices indices forming sequentidly the faces of the
mesh. Such kind of structure has been cdled the shared-vertex representation [Campagna
1999] and a smple implementation can be done as follows:

struct Vertex
{ float x, z, v; /1 vertex coordi nates

b

struct SharedVertexMesh
{ array<Vertex> vertices; // all vertices of the nesh
array<i nt> faces; /1l vertices indices of all faces

b

Usudly, when gpplied to meshes with abitrary faces, each time a face is
completed in the face aray, a -1 vaue is placed as a mark. For the specific case of
triangle meshes, this mark is not needed and a direct access to any triangle is possble, as
each face will have exactly three indices referencing its three vertices.
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The Euler's formula [Foley 1992] says that V-E+F=2 for a manifold generd
mesh, and adso tha F»2V (F=2V-4) if faces are dl triangles. In this case, if a triangle
mesh is composed of n vertices and m triangles, the shared-vertex representation of a
triangle mesh requires 3¥x=12n bytes for the vertices coordinates, and 3xxn=12m for
the triangles indices assuming four-bytes integer and float types. This results in
12n+12m»18m, as m»2n. This mark of 18 bytes per triangle has been consdered a lower
limit to sore triangle meshes.

When the shared vertex representation is used for genera meshes (not triangle
ones) the m»2n property is lost, and so a direct comparison only in terms of bytes per
face is no more possble However, if the genera shared vertex dsructure is used to
describe a triangle mesh, then the faces indices array will use 4xxm bytes, in order to
incude the —1 mark &fter each triangle. This results in 12n+16m»22m, that is 22 bytes per
triangle.

The proposed star-vertex gtructure is depicted in figure 3.1. It is a vertex-based
sructure that keeps, for each vertex v of the mesh: its 3 float coordinates, pointers to al
neighbor vertices of v, and an index that says, for each neighbor v’ of v, which is the
neighbor pointer d v’ that points to the vertex v’ so that v, v’, and v’ ae in the same
face. Thisindex isthen used to retrieve in congtant time al the vertices around aface.

Figure 3.1 - Connectivity Diagram of the Star-vertex Structure.

Figure 3.1 depicts the used pointers and indices. The dashed arrows \on, Win, and
Von represent the pointers that are identified by the indices. The letter n stands for the next
vertex around the face. The usage of such indices will be clearer in the example explained
later with figure 3.2 and table 3.1.

There is a desdgn choice when implementing this dructure among the use of
pointers for direct memory access, or the use of integers as indices to postions in a user-
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maintained array. A hybrid goproach was implemented and tested where the design god
was the smplicity of implementation and easy comparison with other dructures. This
implementation was done in the following way:

struct Nei ghbor

{ Vertex *vtx; /1 pointer to the nei ghbor vertex
i nt nxt; /1 to find the next vertex in the face

b

struct Vertex

{ float x, vy, z; /'l vertex coordinates
i nt num nb; /'l nunber of neighbors
Nei ghbor *nb; /1l pointer to the list of neighbors

b

struct StarVertexMesh
{ array<Vertex> vertices; // all vertices of the mesh

b

As an example, condder the planar mesh showed in figure 3.2. This mesh is
represented in the dar-vertex gtructure in table 3.1. Note that in the table, vertices
pointers were converted to indices The third column encodes the neghborhood
information. For example, vertex \¢ has the neighborhood list { (1,3), (2,2), (5,1), (4,2) }.
The fird dement of each par of the lig points to a neghbor vertex, in a
counterclockwise ordering. In this way we have explicitly sored the ordered list of
neighbors of vo, that is. { vi, V2, V5, V4 }.

To traverse the vertices around a face, one of its vertices is chosen for starting, as
for instance, vp. Because of the implicit counterclockwise ordering, to traverse the face
{vo, W, W} the edge to congder is {vo, i} which has \ as its first vertex. Since the first
par (1,3) of the neighborhood list of \¢ is the one that points to v1, the index 3 is taken
that tells which pair in the neighborhood of \ is the one to continue the traverse. The pair
with index 3 of v1 is (20) (note that indices start from 0). Continuing with this process,
the next obtained pair is (0,0) of s, which will then come back to the initid pair (1,3). In
this way dl vertices and edges around the face {vo, W, W} were identified, in an ordered
way, by traversng sequentidly the pairs. (1,3), (2,0), (0,0). Note aso that the boundary
{Vo, W, W3, V1, W, W5} is consdered to be a face but will be traversed clockwise, asiit is a
back face.

This example shows how are encoded ordered lists of: vertices connected to a
given vertex, and vertices around a face. With these ligts, dl locd adjacency rdations are
retrievable in condant time, by only performing some basc operations with indices and
pointers. In the next section, an esSer way to refrieve such adjacency reédions is
presented by introducing a traverse element.
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V1 Vg

V3
Vs
Vo Vo
Figure 3.2 - A planar mesh example.

(X.y,2) num_nb | nb - list of neighbors
VO 4 (113)! (2!2)1 (511)! (4!2)
V1 4 (013)! (4!1)1 (311)! (2!0)
V2 3 (010)! (1!2)1 (310)
V3 2 (1,1, (23
Vg 3 (0,2), (5,0), (1,0)
Vs 2 (0,2), (4,0

Table 3.1 — Mesh of figure 3.2 in the star-vertex representation.

For the star-vertex dructure, there is no difference between deding with triangle
meshes or genera meshes. As it is vertex based, the number of edges around a face does
not directly change the storage space of the dructure. However, as a dudity effect, the
number of edges around a vertex must be consdered. Let v be a vertex of the mesh, then,
we |l congder that the degree of v is equa to the number of edges that are incident to v.
Let's now define k asthe mean of dl vertices degreesin the mesh: k = (‘& degreg(v) ) / n.

It is possble to say that a mesh represented by the dStar-vertex dructure will
occupy 46x bytes for the vertex structure, plus 42%:x bytes for the list of neighbors. For
comparison purposes, it is assumed that the structure is being applied to a triangle mesh,
S0 that the m»2n property can be used. The whole structure will then take (4% + 42X)n »
10+4k bytes per triangle.

The determination of the k parameter is needed in order to compare with other
dructures. This parameter is directly related to how the mesh was created. For example,
for meshes generated from parametric surfaces, as NURBS [Foley 1992], discretization
dgorithms commonly generate meshes composed of quadrilaterd faces, giving k=4. And
when these meshes are converted to triangulations, diagonads are created in the faces and
the find mesh has k=6.

The case which gives the minima dorage space is when k=3. Such kind of
meshes are not very popular mainly because most used structures are edge-based or face-
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based, and thus no attention is given to the generated vertex degree. However, meshes
with k=3 have good properties, and methods exist to generate them [Delingette 94].

A cube, a cylinder and a tetrahedron are examples of objects that are often
represented with a k=3 mesh. However, for some objects it is not possble to have an
accurate representation with k=3. One example is the polyhedra approximation of a cone
with a polygond base of b vertices. All vertices in the cone base have degree 3, but the
peek will have degree b, resulting k = (3b+b)/(b+1), which tends to k=4 for large vaues
of b.

In most common cases, modds have ther meshes with a k varying from 4 to 6.
Figure 4 gives an idea of the agpect of meshes with k=3, k=4, and k=6.

k=3 k=4 k=6
Figure 3.3 — Some Meshes with Different Vertex Degrees.

The dar-vertex dructure will occupy approximately 22, 26, 30, or 34 bytes per
triangle when describing a triangle mesh with k equa to 3, 4, 5, or 6, respectively. This
shows that the required storage space can be surprisngly low for a dructure that ill
maintain adjacency information, and that is not constrained to triangular faces.

In the next section, a method to easily retrieve the adjacency information encoded
in the dructure with a traverse dement is explained. Section 3.5 shows ways to encode
even better the adjacency information for some specific cases and then gives a complete
comparison table between the dSar-vertex dructure, the directed-edge and the shared-
vertex.

3.4 TraverseElement

Nearly dl commercid graphica libraries use data Structures smilar to the shared-
vertex representation. A good example is the so called IndexedFaceSet node that exists in
many scene graph implementations, as for ingance Openinventor and Cosmo3D, two
popular libraries developed by Slicon Graphics [SGI]. Mainly because of the smplicity
of usage, but aso because the main concerns are just to display rigid objects. But then,
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whenever some mesh dgorithm needs adjacency rdations to run efficiently, a
representation conversion is required.

Unfortunately, such conversons ae indeed needed. The shared-vertex
representation is a very low dorage space solution for rigid objects, which is important
when working with large red time environments that quickly dow down performance
when memory starts to swap to disk.

However, the need of objects with a changing shape is growing, to dlow, for
example, smooth resolution changing in run time, loca collison detection queries, and
deformable spring meshes. Such dgorithms often require a consgtent data structure able
to give and update adjacency relations in condant time. The dar-vertex dructure is a
good candidate to overcome such difficulties. But ill some interfece layer to safdy
access and modify the structure is needed.

The proposed solution is to define a traverse dement, or travel, tha gives a
common interface to access adjacency reations that can be implemented, using object-
oriented techniques, to behave in the same way for any kind of data Structure.

A travd is a dructure-independent generdization of concepts from edge-based
dructures, as the edge-use [Weler 1985], the dart [Lienhardt 1989], the half-edge
[Méntyla 1988], and the iterators defined in a recent C++ implementation [Kettner 1998].

Congder the mesh described in figure 3.4. This mesh is the same as in figure 3.2,
and S0 its representation is dso given by the table 3.1. In figure 3.4, a trave is graphicaly
represented as an oriented edge, as the travel t. Note that each travel will be dways
adjacent to one, and only one, vertex, edge and face of the mesh. For example, trave t is
adjacent to vertex Vo, to edge{ vo, v1 }, andtoface{ vo, v1, V2 }.

\41 Vg

V3

N VS

Vo -~ Vo
Figure 3.4 — Some traverse elements graphically represented.
Two operators are defined that can be applied to t: the nxt and the rot operators.
The nxt operator, when applied to t, will return the trave that is adjacent to the next edge

and vertex around the face that is adjacent to t. This operator permits to traverse the edges
around aface. For example, in figure 3.4, t.nxt © ty, t;.nxt° tp, and t.nxt.nxt.nxt © t.
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Smilarly, the rot operator, when applied to t, will return the other travel that is
adjacent to the next edge and face around the vertex that is adjacent to t. This operator
gives the posshility to “rotate’ around a given vertex. For example, in figure 3, we have
that t.rot© t', and t’.rot.rot.rot ° t.

With these two operators defined the operator sym can be defined, which gives the
symmetrical travel: t.sym © t.nxtrot © s. And dso ther inverses t.sym® © t.sym, txt?t ©
t.rot.sym, and t.rot © t.sym.nxt.

As the traverse ement behaves exactly as an oriented edge, the reader can refer
to the hdf-edge dructure [Mantyla 1988] for a detalled explanation of a very smilar
scheme of traverse operators.

Once the traverse eement is equipped with operators to retrieve their current
adjacent dements, it is posshle to traverse fredy through the sructure, querying al
adjacent relations. The following code indicates how to implement such a traverse
element for the star-vertex structure, using a C++ notation:

class Travel
{ Vertex *v; [/ points the adjacent vertex of the trave
i nt r; // indicates the adjacent edge of the trave

/'l some operators and nethods :

Travel ( Vertex *vtx, int rot ) { v=vtx; r=rot; }

Travel rot () { return Travel (v, (++r)%->numnb); }

Travel nxt () { return Travel (v->nb[r].vtx,v->nb[r].nxt); }
Travel sym () { return nxt().rot(); }

float *pnt () { return & v->x); }

bool operator == ( Travel t ) { return v==t.v&&sr==t.r; }

b

The travel structure keeps a pointer to the current adjacent vertex v, and the index
r. This index defines the par in the neighborhood aray of v which has v, the vertex
defining the current adjacent elge{ v, v, } of the trave. Because of the implicitly stored
counterclockwise order, the adjacent face is aso defined. As an example, it is easy to
verify that: Travel (vo,0).nxt() © Travel(v1,3), and that Travel (vp,0).rot © Travel(vo,1).

One consegquence of usng such a vertex-based dtructure is that faces are not
explicitly stored. In this way, some dgorithm to retrieve the faces is needed, for example,
to render the represented mesh using a polygon based renderer as the OpenGL library.
Such dgorithms often need some mechanism to mark the traverse dements aready
vidgted. The following code shows how it is possble to use the nxt index of the Neighbor
sructure to mark eements, by adding two methods to the Trave structure:

void Travel::mark () { v->nb[r].nxt *= -1; }
bool Travel::marked () { return v->nb[r].nxt<0; }
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The mark is stored by setting the index to a negative value. Note however, that
this implies to no more use the O index, and to pay attention to adways condgder the
absolute vadue of the index. The following code gives an example of an dgorithm thet
sends the faces of a mesh to an OpenGL renderer. It garts with any initid face, and then,
by exploiting faces adjacency, the other faces are rendered:

render ( const StarVertexMesh& m)

{
/[l initializes a stack with some travel:
array<Travel > stack;
st ack. push( Travel (mvertices[0],0) );

while ( !stack.empty() )
{ Travel ti = stack.pop();
if ( ti.marked() ) continue;
Travel t=ti;
gl Begin ( GL_POLYGON );
do { gl Vertex3fv ( t.pnt() );
if ( !'t.marked() ) t.mark();
stack. push ( t.sym) );
t = t.nxt();
} while ( tl=ti );
gl End ();

Note that al faces of the mesh are sent to the renderer. In the case of a planar
mesh like the one showed in Figure 3.2, the border of the polygon is dso sent, but it will
not be drawn as it will be consdered a back-face because of the consstent orientations.
Note a so that faces need to be convex in order to be correctly handled by OpenGL.

Some drategies can be taken in order to avoid unmarking dl previoudy marked
traverse dlements after each time such an dgorithm is cdled. For example, each time an
dgorithm darts, it can determine if dements are conddered marked when the used
indices have a negative or a pogtive vadue. In this way, dgorithms like the given render
procedure can be repestedly cdled, by dternating the indices markers to have postive or
negative vaues. However, with this technique, it is not dlowed to have an dgorithm
leaving the mesh “ hdf-marked”.

The fact that faces are not explicitly stored would not dow down rendering,
because nearly dl sysems work with optimized display lists of the polygons to render.
Therefore, such traversal of faces would be done to update display lists only when the
mode topology changed. Moreover, the generation of display lists can make use of the
encoded adjacent relations, to generate optimized “connected” lists, as for example, the
triangle or quad strip schemes of OpenGL.
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3.5 Analysisand Comparison

From section 3.2, the star-vertex structure takes approximately 10+4k bytes per
triangle, consdering that the mesh represented is composed of triangular faces. It is il
possible to lower this storage space in some pecific cases, and two smplifications for
the given “generd” dar-vertex structure will be shown.

A firg amplification can be done when the mesh to represent has a condant
vertex degree for dl vertices of the mesh. This implies that the pointer to an aray of
varidble length is no more needed, and the same for the number of neighbors per each
vertex. Doing s0, 1 integer and 1 pointer per vertex can be economized, making an
economy of 8 bytes per vertex, or 4 bytes per triangular face. The result is 6+4k bytes per
triangle for this “uniform” dar-vertex, that can only represent meshes with constant
vertex degree.

Another type of amplification that reduces even more the required Storage space
can be done, but now loosng the congtant time execution of the nxt operator. This
amplification is done smply by taking out the nxt index of the Neighbor structure. This
index is used to explicitly gtore the result of the nxt operator. If this index is no more
used, then the nxt operator will teke time O(Omax), Where dmax is the maximum vertex
degree encountered in the mesh being represented. This happens because a search among
dl edges incident to the neighbor vertex will be done, to find the one tha correctly
produces the result of the nxt operator. The implementation of the nxt operator would
then look asthefollowing :

Travel Travel::nxt ()
{ Travel t (v->nb[r].vtx, 0);
while ( t.rot().vl=v ) t=t.rot();
return t;

}

In this compact version, the dructure will occupy 4%x bytes for the vertex
gructure, plus 4%x bytes for the list of neighbors, ending up with (4% + 4k)n » 10+2k
bytes per triangle. It is dso possible to have the structure with both the compact and the
uniform smplifications, leading usto (48 + 4Xk)n bytes = 6+2k bytes per triangle.

Note that in cases where memory usage is an issue, the compact versons of the
gructure will achieve very low storage space requirements. And the fact that O(dmax) time
is required by the nxt operator can be acceptable if the mesh has low degree vertices.

Finaly, table 2 shows a comparison of the data structures. The time required for
the determination of the rot and nxt operators are listed. When these two operators are
provided in constant time, all adjacent relations can be aso retrieved in congtant time.
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Note aso that the shared-vertex representation can give in condant time the nxt
operator only if the dStructure guarantees coherent orderings, providing that the vertices
indices of each face are sequentially stored. However, the rot operator requires some
globa search in the structure.

In order to be able to compare these dtructures, it was considered that they are
representing triangle meshes. In this way, the m»2n property was used to achieve the
bytes per triangles number. However not al dructures are limited to represent triangle
meshes, as shown in the mesh type column.

As expected, the proposed dtructure can achieve very low memory requirements
when k is andl, even without counting the possble uniform or compact versons. For
meshes with k greater than 5.5, the star-vertex dructure will require more memory than
the directed-edge, however, without being restricted to triangular faces.

rot nxt

bytes/D
datastructure | operator | operator | meshtype

time time Anyk | k=3 | k= k=5 | k=6
general shared-vertex - 01 - 22 22 22 22 22
triangle shared-vertex - 0(1) D 18 18 18 18 18
small directed-edge 0(1) 0(1) D 32 2| R 32 32
star-vertex o1 0(1) - 10+4k 22 26 30 4
uniform star-vertex o1 0(1) deg cte 6+4k 18 22 26 30
compact star-vertex o1 O(diax) - 10+2k 16 18 20 22
minimal star-vertex o1 O(diax) deg cte 6+2k 12 14 16 18

Table 3.2 — Comparison of the several data structures. In the rot operator column, “-”
indicates that its computation is not possible with only a local search in the data
structure. In the mesh type column, “-” indicates that there are no restrictions on the
mesh to be represented. Variablesk and dn.x represent, respectively, the mean and the
maximum vertex degree of the mesh.

3.6 Two Examplesof Applications

The dar-vertex dructure is presented in this thess like an isolated result due to
the very interesting characterigtics achieved. Currently, it is being integrated for many
different purposes in our graphica smulation softwares, as for ingance, for research on
multi resolution of deformable bodies and on path planning. Figures 35 and 3.6
exemplify some fird results obtained by usng a smilar sructure to the dar-vertex, which
| have previoudy developed, and which | am now porting to the dtar-vertex optimized
format.



Figure 3.5 — An example of a deformable surface using multi-resolution techniques to
adapt itself only around the region having the contact with the falling ball. In order to
efficiently refine the surface, constant time access of adjacent elements plays a key
role. The dynamical system used is based on a standard spring-mass system.

Il SymEdge Triangulation - M. Kallmann 2000 5 [ =] 3
File Mesh Constraints Draw Operators  Traverse

Figure 3.6 - The image illustrates the computation of a collision-free path among
obstacles. An exact cell decomposition method is used, based on a constrained
Delaunay triangulation. Once we have access to all adjacency information, afree path
iseasily generated just by walking through adjacent free faces.

3.7 Chapter Conclusion

A new scdable data structure was presented for storing planar meshes, which has
interesting properties that can be exploited in order to obtain very low Storage space
usage, il obtaining adjacency rdaionsin congant time.

The dructure is not condrained to triangular faces and dtores adjacency
information in a vertex-based organization. This implies that the storage space required is
direct proportiond to the mesh vertices degrees (number of edges incident to vertices).
When these degrees are smdl, lower memory requirements are achieved, comparing to
other structures. Modds with low vertices degree are commonly used, and agorithms can
be designed to optimize generd meshes.

- 45-



A traverse dement was dso shown serving as a high leve interface to retrieve the
encoded adjacency information. Such €ement hides gpecific  optimizations or
amplifications on the sructure implementation, and can be aso used as a parameter to
eventual topological operators. Such architecture can even permit some self-adaptability
of the data structure during run time, according to the way the structure is being used.

Such properties make the dar-vertex dructure a good candidate to be
implemented as a standard node in a scene-graph library for red time virtud environment
gmulations. It dlows safe access to adjacency rdations without the need of
representation conversons, while maintaining low storage space requirements.
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4 Modeling Smart Objects

This chepter presents the feature modding approach of interactive objects
proposed in this dissertation and the smart object description.

The firs sections sart by describing the concept of interaction features, together
with their classfication and definition. Then, the developed smat object modeer
(somod) is presented, which is a system incorporating the proposed approach to mode
the functiondity and interactivity of objects Some examples of modded objects are
shown and explained.

4.1 Introduction

The necessty to mode actor-object interactions gppear in most gpplications of
computer animation and smulation. Such applications encompass severa domains, as for
example virtud autonomous agents in virtud environments, human factors andyss,
training, education, virtud prototyping, and smulation-based design. A good overview of
such areasis presented by [Badler 1997].

Commonly, dmulation sysems agpproach  actor-object interactions by
programming them spedificaly for each case. Such approach is smple and direct, but
does not solve the problem for awide range of cases.

Another agpproach, not yet solved, is to use recognition, planning, reasoning and
learning techniques in order to decide and determine the many manipulation variables
during an actor-object interaction. The actor's knowledge is then used to solve dl
possble interactions with an object. Moreover, this top-down Al approach should dso
address the problem of interaction with more complex machines with some internd
functiondity, in which case informaion regarding the object functiondity must be
provided.

Congder the smple example of opening a door: the rotation movement of the
door must be provided a priori. Following the top-down Al approach, dl other actions
should be planned by the agent’s knowledge: waking to reach the door, searching for the
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knob, deciding which hand to use, moving body limbs to reach the knob, deciding which
hand posture to use, grasping, turning the knob, and findly opening the door. This smple
example illusrates how complex it can be to peform a smple agent-object interaction
task.

To overcome such difficulties, | propose a bottom-up approach that is to include
within the object description, more useful informaion than orly intringc  object
properties. Usng feature modeding concepts, it is possble to identify dl types of
interaction features in a given object, and include this information as pat of the object
description.

A graphicd interface program was developed to permit the user to interactively
oecify dl different features in the object, defining its functiondity, its available
interactions, etc. Objects modeled with ther interaction features description, are caled as
smart objects The developed smart object modeler gpplication is caled somod.

The adjective smart has been widdy used in different contexts. For ingance,
[Russdl 1995] and [Pentland 1995] discuss interactive spaces instrumented with cameras
and microphones to perform audio-visud interpretation of human users. This capecity of
interpretation made them smart spaces.

In the scope of this thess, an object is cdled smart when it has the ability to
describe in detals its functiondity and its possible interactions, being dso adle to give dl
the expected low-level manipulation actions. This can be seen as a mid term cdlassfication
between reactive and intdligent behaviors. A smart object does have reactive behaviors,
but more than that, it is dso able to provide the expected behaviors from its “users’, so
that this extra cgpability makes it to achieve the quaity of smart.

Note that the term “user of an object” is used to refer to an autonomous actor, an
avatar, or a red person immersed in the VE with VR devices. In this last case, the user is
performing a direct interaction with the object. Although this thesis is mainly concerned
with actor-object interactions, some experiments about the direct interaction with smart
objectsis done (chapter 7), so that the term “user” is used to refer to any kind of users.

Different dmulaion applications can then retrieve useful information from a
smart object to accomplish desired interaction tasks. The main idea is to provide smart
objects with a maximum of information to attend different possble applications for the
object. A padld with the object oriented programming paradigm can be made, in the
sense that each object encapsulates data and provides methods for data access. There is a
huge literature about Object Oriented Design; an introduction to the theme can be found
in [Booch 1991].
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Applications usng smat objects will have ther own gpecific smart object
reasoning module, in order to retrieve only the gpplicable object features for their specific
needs. These concepts are published in two previous works [Kalmann 1998] [Kalmann
19994, and will be detailed in the following sections.

4.2 Related Work

Object interaction in virtud environments is an active topic and many approaches
are avalable in the literature. However, in most cases, the concerned topic is the direct
interaction between the user and the environment [Hand 1997].

Suppliers of CAD sysems are dating to integrate some smulation parameters in
their models [Beta 1999]. The knowledgeware extenson of the [Catigl system can
describe characterigtics like costs, temperature, pressure, inertia, volume, wetted area,
aurface finish, formulas, link to other parameters, etc;, but ill no specific congderations
are done to define objects functiondity or interactivity.

Actor-object interaction techniques were firg specificdly addressed in a smulator
based on naturd language indructions usng an object specific reasoning (OSR) module
[Levinson 1994a] [Levinson 1994b]. The OSR keeps a reationa table informing
geometric and functiond classfication of objects, in order to help the interpretation of
naturd language indructions. With such information, it is possble to interpret and
expand given text ingtructions [Geib 1994a] [Geib 1994b).

Some interaction information is dso kept by the OSR module: for each object
graspable dte, the appropriate hand shape and grasp approach direction. This set of
information is sufficient to decide and perform grasping tasks, but no consderations are
done for the interaction with more complex objects. In @rticular, [Webber 1995] identify
the limited perception of actors as a man limitation to correctly interpret text
ingructions, resulting in a poor knowledge condruction. Smart objects can overcome
such difficulties

The smart object description is much more complex, based on interaction plans,
permitting to synchronize movements of object parts with the actor's hand, and to modd
the functiondity of objects.

Interactive plans are defined usng a specific smple programming language. In
another direction, some works have been done in order to link language to modeing

[Paoluzzi 1995], and towards a definition of a standard and data Structure-independent
interface to model geometric objects [Bowyer 1995].
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A key concept in smart objects is that they contain ther own semantic and
interaction information. A recent game [TheSims] dso use this object-oriented approach
to describe interaction with objects. In this game, the user creates and coordinates a
family of actors and their day life activities, which include some interaction with objects.
Another “object oriented system” is proposed by [Okada 1999], where objects can be
composed with many boxes which have input and output connectors that can be linked to
achieve different functiondities. However, no gspecific consderdtions regarding actor-
object interactions are presented.

A typicd gpplication for smart objects is to tran complex machines usage in a
virtud environment. Although many smulation sysems ae proposed in the literature
(for ingance [Luckas 1997]), no specid condderaions are done regarding object
interaction. An interesting system is proposed by [Johnson 1997], where a virtud human
agent teaches usars how to correctly operate machines in many gStuations in an interactive
goplication. His focus is on the sysem description and no specific techniques to mode
actor-object interactions are presented.

None top-down Al gpproaches were found specificdly focusing the problem of
solving generd actor-object interactions. Most of the concerns ae related to sub-
problems, as for the specific problem of grasping. For ingtance, from the robotics area, a
classfication of hand configurations for grasping is proposed by [Cutkosky 1989]. Also
[Huang 1995] proposes an dgorithm for the autonomous actor’'s decison of manipulation
detals (as the hand shape to use) for grasping.

From the robotics domain, planning dgorithms are able to define collison-free
paths for articulated structures [Koga 1994] [Simeon 2000]. Although redligtic results can
be obtained, the computationd cost today is too high for interactive smulations.

Such dgorithms focus on specific sub-problems, and an integration of dl of them
in a dngle sysem is a chdlenge. However, some of them can be integrated and used in
an animation system based on smat objects. For ingstance, a specific smart object
reasoning module can refuse a proposed hand shape for a manipulation, and determine a
more convenient one, according to its own reasoning processes.

4.3 Feature Modeling of Interactive Objects

Feature modding is an expanding topic in the engineering fiedd [Barwick 1993].
The word feature conjures up different ideas when presented to people from different
backgrounds. A smple generd definition, suitable for our purposes, is “a fedure is a
region of interest on the surface of a part” [Pratt 1985].
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The man difficulty here is that, in trying to be gened enough to cover dl
ressonable possbilities for a feature, such a definition fals to darify things sufficiently to
give agood mentd picture.

From the engineering point of view, it is possble to classfy features in three man
aress. functiond features, design features and manufacturing features [Barwick 1993]. As
we progress from functiond features through design features to manufacturing festures,
the qudity of detall that must be supplied or deduced increases markedly. In the other
hand, the utility of the feature definitions to the target application decreases. For example,
manufacturing features of a piece may be hard to describe and have little importance
while redly usng the piece. A smilar compromise aises in the smart object case. This
gtuation is depicted in figure 4.1 and will be explained later.

A huge literaiure is avalable for the festure modding technique in the scope of
engineering. A good coverage of the theme is done by [Shah 1995].

431 Interaction Features

In the smart object description, a new class of features for Smulation purposes is
proposed: interaction features. In such context, a more precise idea of a feature can be
given as follows dl pats, movements and descriptions of an object that have some
important role when interacting with an actor.

For example, not only buttons, drawers and doors are consdered as interaction
features in an object, but also their movements, purposes, manipulation detals, etc.

Interaction features can be grouped in four different classes.

Intringc object properties. properties that are pat of the object design, for
example the movement description of its moving parts, physca properties such as
weight and center of mass, and adso a text description for identifying general objects
purpose and the design intent.

Interaction information: useful to ad an actor to peform each possble
interaction with the object. For example the identification of interaction pats (like a
knob or a button), specific manipulation information (hand shape, approach direction),
suitable actor postioning, description of object movements that affect the actor's postion
(asfor alift), etc.

Object behavior: to describe the reaction of the object for each performed
interaction. An object can have various different behaviors, which may or may not be
avalable, depending on its date. For example, a printer object will have the “print”
behavior avalable only if its internad date varidble “power on” is true. Describing
object’ s behaviors is the same as defining the overdl object functiondity.
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Expected actor behavior: associated with each object behavior, it is useful to
have a description of some expected actor behaviors in order to accomplish the
interaction. For example, before opening a drawer, the actor is expected to be in a
suitable pogtion so that the drawer will not collide with the actor when opening. Such
suitable pogtion isthen proposed to the actor during the interaction.

This cdasdfication covears the needed interaction festures to Smulate common
actor-object interactions. Still, many design choices gppear when trying to specify in
details each needed interaction feature.

The mogt difficult festures to specify are those rdative to behaviors. Behaviord
features are herein specified using pre-defined plans composed with primitive behaviora
ingructions. This has shown to be the most Sraightforward approach because then, to
perfform an interaction, the actor will only need to “know” how to interpret such
interaction plans.

In the smart object description, a tota of 8 interaction features were identified,
with the intention to make the most smple classfication possble These interaction
features are described in table 4.1.

Feature Class Data Contained

Descriptions | Object Property Contains text explanations about the object, organized by
different types: semantic properties, purposes, design intent, and
any general information.

Parts Object Property Describes the BRep of each component part of the object, their
hierarchy, and other information as mass, center of mass, and a
positioning matrix in relation to the object’ s skeleton root.

Actions Object Property Actions are specialy used to define movements, but also to
define any other changes that the object may undertake, as color
changing, texture, etc. Actions are defined independently of any
parts.

Commands | Interaction Info. Commands are used to parameterize and associate to a specific
part the defined actions. For example, the translation movement
of a drawer is an intrinsic property of the object and is modeled
as an action. The commands “open” and “close” will then permit
to parameterize the translation according to each interaction.

Positions Interaction Info. General positions needed to specify interactions are defined here
relatively to the object’s skeleton root. Such positions are then
referenced from the behavioral plans to suggest for the actors
suitable positions to be used during interactions.

Gestures Interaction Info. Gestures are considered to be any movement to suggest to an
actor. Hand shapes and locations for grasping and manipulation
are defined here, also parameters to specify the actor to sit, or to
apply any pre-recorded motion are defined here and later
referenced from the behavioral plans.
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Variables Object Behavior Variables are generally used in the behavioral plans, but specially
used to define the state of the object. The state of an object isa
key information in the description of the object’s functionality,

which is done with the behavioral plans.

Behaviors Obj./Actor Behavior | Behaviors are defined with plans composed with primitive
instructions. Such plans can check or change the states of the
object, trigger commands and gestures, call other plans, etc; and
specify both object behaviors and expected actors behaviors.
These plans form a simple scripting language that is used for the
actor-object communication during interactions.

Table 4.1 — The eight types of interaction features that are used in the smart object
description.

4.3.2 Interpreting Interaction Features

Once a smart object is modeled, a smulation system will be able to load it and
animate it in the VE. For this the smulator will need to implement a smart object
reasoning module, that will correctly interpret the behaviora plans to peform
interactions. For example, a VR gpplication in which the user wears a virtud glove to
press a button of a smart object will not make the same use of proposed hand shapes.

There is a trade-off when choosng which features to be consdered in an
goplication. As shown in figure 4.1, when taking into account the full set of object
features, less reasoning computetion is needed, but less generd results are obtained. As
an example, minimum computation is needed to have an actor passng through a door
following drictly a proposed path to wak. However, such solution would not be generd
in the sense that dl agents would pass the door using exactly the same path. To achieve
better results, externd parameters should dso take effect, as for example, the current
actor emotiona State.

Less Computation, Easier Usage - Less General, Less Adaptability

Object Properties| |Interaction|nfo.| |Object Behaviors| |Agent Behaviors

Figure 4.1 — The choice of which interaction features to take into account is directly
related to many implementation issues in the simulation system.

Note that a redligtic result is a context dependent notion. For example pre-defined
paths and hand shapes can make an actor to manipulate an object very redidticaly.
However, in a context where many actors are manipulating such objects exactly in the
same way, the overdl result is not redidtic.
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Interaction plans form the interface between stored object’'s features and the
goplication specific smart object reasoning. Figure 4.2 illudtrates the connection between
the modues. The smulaion program requires a desred task to be performed. The
reesoning module will then search for suitable available behaviors in the smart object.
For any sdected behavior, the reasoning module follows and executes each ingtruction of
the behavior plan, retrieving the needed data from the smart object representation.

Simulation Ask for Object Reasoning Search suitable Smart
Program some task Module interaction plans Object

Figure 4.2 - Diagram showing the connection between the modules of atypical smart
object application. Arrows represent function calls.

When a task to perform becomes more complex, it can be divided into smaler
tasks. This work of dividing a task into sub-tasks can be done in the Smulation program
or in the reasoning module. In fact, the logica approach is to leave the reasoning module
only to peform tasks that have a direct interpretation from the Smart Object behaviors.
Then, additionad layers of planning modules can be built according to the smulation
program god.

Another design choice gppears while modding objects with too many potentid
interactions. This issue is related to definition of the component parts of a composed
object. In such cases, in order to exercise a grester control over the interactions, it is
possible to model the object as many independent smart objects, each one containing only
basc interactions. For example, to modd an actor interacting with a car, the car can be
modeled as a combination of different smart objects: car door, radio, and the car pandl. In
this way, the smulation application can explicitly control a sequence of actions like
opening the car door, entering indde, turning on the radio, and darting the engine, thus
permitting more persondized interactions. On the other hand, if the smulaion program is
concerned only with traffic dmulation, the way an agent enters the car may not be
important. In this case, a generd behavior of entering the car can be encapaulated in a
sngle smart object car.

Later in this chepter the example of modding a smat lift is given and two
gpproaches are shown. In one gpproach, a main interaction plan “enter” is modeed which
details dl steps of taking the lift to go to the other floor. In a second approach, in order to
accomplish the same interaction, a sequence of plans needs to be sdected by the
gamulator: “press’, “goin”, “go out”, &c.

The gmart object gpproach introduces the following man characteridics in a
smuldion system:



Decentrdization of the animation control. Object interaction information is
gsored in the objects, and can be loaded as plug-ins, so that most object-specific
computation is released from the main animation control.

- Reusability of desgned smart objects. Not only by using the same smart object
in different gpplications, but dso to desgn new objects by merging any desired fegture
from previoudy designed smart objects.

- A dmulation-based design is naturdly achieved. The designer can take control
of the loop: design, test and re-design. A designed smart object can be eadily inserted into
asmulation program, to get feedback for improvementsin the design.

4.3.3 Implementation | ssues

A library composed of C++ classes has been developed to interpret smart object
plans. A main dass SmartObj keeps a list of SmartObjUser classes, which knows how to
correctly interpret each indruction in the plan. The SmartObjUser class is a base class
that interprets dl object related indructions, but the user related ingructions cdl pure
virtud methods, which have to be implemented for each specidized type of user. For
ingance, different kinds of users can be implemented: an actor, an avatar, interaction with
only apointing device, or with VR devices.

In the scope of this thesis, three types of users were implemented, inheriting the
SmartObjUser dass the fird type smply ignores dl usar-rdated indructions, permitting
to animate objects independently. A second type implements the virtud actor user (see
next chapter), and alast type implements areal user wearing a data glove (see chapter 7).

4.4 Somod Description

The somod application was developed specificdly to modd smart dojects. Somod
permits to import BRep modds of the component parts of an object, and then specify
interactively dl needed interaction features. All the festures are defined usng a graphica
us interface. Even for the definition of the behaviord plans, a specific didog box was
desgned that guides dl possble parameters to specify for each primitive ingruction. In
addition, some graphicd programming techniques are used in order to graphicaly specify
plans usng afinite sate machine graph.

44.1 SoftwarePlatform

Somod was initidly developed based on the Motif user interface library, with
some dependency on AgentLib under SGI with the Irix sysem. With the evolution of the
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software in the lab, and the tendency to move to PC platforms, somod completey
changed to use platform-independent libraries. The actud verson of somod is written in
C++, and uses the Fast and Light Toolkit [FLTK] for the graphicd user interface
programming. The FLTK library has shown to be very easy and powerful to use and is
available free of charge for nearly al computer platforms.

As graphics library, Openinventor is used. Openinventor is the best avallable
graphics library for the purpose of high levd modding. The built-in manipulators classes
permit to eadly manipulate 3D objects with a 2D mouse as input device. This library is
avaladle from [SGI] and [TGY for different computer platforms, and some initiatives
exist to propose an open source verson of Openlnventor. For instance, [SGI] has released
the source code of Openinventor to the Linux platform for free, and the same code has
been aready adapted to the Microsoft Windows platform.

For the definition of hand shgpes in somod, an internd module of DodyLib is
used, which provides the deformation of a hand skin envelope, based on the actual
skeleton joints. This module was developed by Laurent Moccozet [Moccozet 1997].

Somod is currently used only in SGI machines, but due to the platform
independent nature of itslibraries, it can be ported to other computer systems.

4.4.2 Defining Object Properties

The main window of somod is shown in figure 4.3. Feaiures are organized by
type, and for each type, a lig of features can be defined. The main window permits to
manage these ligs in a unified way. For each feature, the specific parameters can be
edited with the corresponding specidized didog box. In figure 4.3 the lig of parts is
shown. Windows in somod have two colors. the blue ones are those that can work in
pardld, and the yellow ones are didogs that block al other windows while opened.

File Wisual Object Compose Help

e |

N

Figure 4.3 — The main window of somod, showing a list of interaction features of the
selected type. When Edit is pressed, the specific dialog box to edit the parameters of
the selected feature appears. Menus are used to access extra functionalities.
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An object description didog contains smple text entries where the user can type
text descriptions. The two man fidds used are to describe a semantic name for the
object, and to describe overdl object characteristics. These definitions can then be
retrieved by smulators for any kind of processing.

The didog box to define the parameters for each part is shown in figure 4.4.
Among other parameters, it is posshble to specify the geometry files of the part and ther
hierarchy (i.e, the skeleton). Also, the postioning of each part can be done interactively
using the Openlnventor manipulators.

The same technique of usng manipulators is adopted to define the movement
actions that can be applied to the object. For example to define a trandation, the user
sdect an object’s pat and a manipulator, being able to displace the part from its origina
pogtion. The transformation movement from the initid postion to the user sdected
position is then saved as an action. Note that actions are saved independently of parts, so
that they can be laer parameterized differently (defining commands) and applied to many
different parts.

desk_drawer.iv Reload File

ROOT Ianip Position

MNONE Edit Position

Wiew All

Appl Manipulator Type : E

Transiormer ¢ Update related gestures |

< Update related actions |

Close Apply Revert

Figure 4.4 — Defining the specific parameters of a drawer. The drawer is a part of the
smart object desk, which contains many other parts. The image showsin particular the
positioning of the drawer in relation to the whole object.

4.4.3 De€fining Interaction Information

The definition of commands is done with the smple didog box shown in figure
45. Commands fully specify how to goply an action to a pat and will be directly
referenced from the behaviora plans whenever apart of the object is required to move.
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Figure 4.5 — The command editor dialog box permits to parameterize actions and to
associate an action to part.

Pogtions are defined usng the didog box shown in figure 4.6. Pogtions can be
used for any purpose and can specify aso a direction vector. It is possble to set ther
postion interactively, usng the widgets in the didog box, or directly in the 3D graphica
window usng manipulators. Each pogtion (as each feature) is identified with a given
name for later referencing in the interaction plans.

Note that al features that are related to graphica parameters can be defined
interactively, what is important in order to see ther location in relation to the object.
Postions are defined in relation to the object skeleton's root, so that they can be
transformed to the same reference frame of the actor whenever is needed, during the
smulation. Note that smart objects can be loaded and postioned anywhere in the virtua
environment.

G0 + wiewsl || Hideail ||

il hanipulate Position ||

z70 Copy Data From: ©

o Qnly Position ||

Figure 4.6 — Positions can be defined for any purpose. In the image, many different
positions (and orientations) are placed to propose possible places for actors to walk
when arriving from any of the door sides.

Gedtures are the most important interaction information. Gestures parameters are
defined in somod and proposed to actors during an interaction. We use the term gesture to
refer to any kind of motion that an actor is able to perform. The most used gesture is to
move the hand towards a postion in space in order to press a button (a push movement),
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or to grasp something. The possble parameters for the gesture feature are shown in figure
4.7.

DrawerPull | hanipulate Position
none = Edit Position Matrix |1
ActionPush = Copy Data From: ©

© | Edit Shapes... |

Figure 4.7 — Gestures parameters dialog box. Depending on the action algorithm

chosen, some parameters may be used differently. In the image, the action algorithm
push is selected.

For each gesture, a hand shape, a positioning matrix for the hand, and the desired
action agorithm must be supplied (see figure 4.8). The action dgorithm here refers to the
actions of AgentLib. Depending on the selected adgorithm, some extra parameters can be
used or not. For example, three main actions are often used: reach, push, and Sit.

The used action agorithms depend directly on the capabilities of the animation
system, 0 that they are configurable using descriptive files. When somod darts, a specid
folder is scaned where files define each supported action dgorithm in the target
animaion sysgem, and dso some pre-defined hand shgpes. The developed smulation
sysem (ACE) is based on AgentLib, and is the subject of the chapter 6. AgentLib
provides dready the action “reach’. Additiondy, the actions “push” and “St” where
developed and are the subject of chapter 5.

In short, the action reach will only animate an actor's aam to put its hand in a
given location. Depending on the state of extra parameters, after the hand has reached the
defined god, the actor can then take or put an associated part. The push action differs in
two aspects. it is able to animate the whole actor's body in order to achieve better
postures, and the actor’s hand can then follow a movement of an associated part in order
to amulate the movement of opening, pressing, pushing, etc. The gt action, will define
the actor to dt, usng a target podtion defined as a path to follow. All these actions use
inverse kinemdtics as the motion motor. Additiondly, it is dso possble to define a pre-
defined motion to be played as a keyframe.
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Figure 4.8 — The left image shows a hand shape being interactively defined. The right
image shows all used hand shapes being interactively located with manipulators.

4.4.4 Defining Behaviors

As dready explained, behaviors are defined usng pre-defined plans formed by
primitive indructions. It is difficult to define a dosed and sufficent st of ingructions to
use. Moreover, a complex script language to describe behaviors is not the god. The idea
is to keep a ample format with a direct interpretation to serve as guidance for reasoning
dgorithms, and which nor+ programmers can create and test.

A firg feature to recognize in an interactive object is its possble dates. States are
directly related to the behaviors one wants to model for the object. For instance, a desk
object will typicdly have a vaidble date for its drawer which can be assgned two
vaues “open’, or “closg’. However, depending on the context, it may be needed to
consider another midterm state value. Variables are used to keep the dtates of the object
and can be fredy defined by the user to gpproach many different Stuations. Variables are
defined by assgning a name and an initid vaue, and can be used for many purposes
from the interaction plans.

Interaction plans are defined using a specific didog box (figure 4.9) which guides
the user through dl possble primitive indructions to use. In addition, a hep window is
avallable (figure 4.10) to describe each available ingruction.

The following key concepts are used for the definition of interaction plans.

- An interaction plan describes both the behavior of the object and the expected
behavior of its user. Indructions that start with the word “user” are indructions that are
proposed to the user of the object. Examples of some user indructions are: UserGoto,
UserDoGes, UserAttachTo, etic. For a complete lis of the avalable primitive
ingructions, see section 10.1 in the appendix.
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In somod, an interaction plan is dso caled as a behavior. Many plans (or
behaviors) can be defined and they can cdl each other, as subroutines. Like
programming, this enables building complex behaviors based on smpler behaviors.

Private
Inc¥ar sktate_passing 1. 000000

state_open true
opendoor

[ Help

L aamai] o it

Figure 4.9 — The dialog box used to define interaction plans. Menu-buttons are used to
list all possible instructions to use, and for each instruction, the possible parameters
are listed in additional menu-buttons. Also, each instruction has a built-in help
description that can be automatically shown in the help window (see a'so figure 4.10).

CheckWar <varl> <varzs:

Checks if var1==varz and stops the behavior execution in case of false
| || result, returning to the caller behavior, if any. Ifitis usedin a
| |behavior that is not "Cbject Control”, neither "Private”, it also

determines the availahility of the hehavior to the sobj user. In this
case, just the first "CheckVvar” instruction found is considered.

Checkvar 1

Figure 4.10 — The help window. A description of each primitive instruction is
available to useduring the definition of the interaction plans.

There are three types of behaviors (or plans): private, object control, and user
sdectable. Private behaviors are kept only to be cdled from other behaviors. An object
control behavior is a plan that is interpreted al the time since the object is loaded in a
virtud environment. This enable to have objects acting like agents, for example sensng
the environment to trigger some other behavior, or to have a continuous motion as for a
ventilator. Object control behaviors cannot have user-relaed indructions. Findly, user
sdlectable behaviors are those that can be sdected by users, in order to perform a desired
interaction.

- Selectable behaviors can be available or not, depending on the state of specified
variables. For example for a door, one can design two behaviors. to open and to close the
door. However, only one is avalable a a time depending on the open dtate of the door.
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The indruction CheckVar is used to control the avalability of behaviors and is
exemplified in figures 3.9 and 3.10. When the CheckVar test is fase the behavior is not
available for sdection (from the smulation system) and aso it makes its interpretation to
stop.

The behavior showed in figure 4.9 uses the state passing variable to avoid closing
the door while agents are ill passng. Some ingructions were specificaly designed to
cope with more than one actor interacting with the object a the same time. For instance,
the UserGetClosest ingtruction is used to detect in which side of the door the actor is, so
that the correct postions are then given to make it pass the door. The full file description
of this automatic door example, coping with many actors a a same time, is shown in the
section 10.2.1 (gppendix). Figure 4.11 shows two agents passing through the door.

Figure 4.11 — Two actors passing through an automatic door. The used interaction
plans can correctly manage more than one actor interaction at the sametime.

Multi-Actor Interaction with a Same Object

Whenever interaction plans are designed, it should be taken into account if the
object will need to interact with many agents at a same time or not. The interaction plans
are responsible to correctly cdl the avalable primitive ingructions for synchronization. If
gynchronization is not ensured by the interaction plans, the smulator application will not
be able to guarantee a correct result.

Most of the time, varidbles are used to keep the number of agents currently
interacting with the object, and based on that, different Strategies can be taken. Note that
it is not possble to predict a globa behavior for dl kind of objects when a multi agent
interaction is required. For indance, in the automatic door example, up to three actors can
pass the door together at a same time, however, to press the cdling button of a lift only
one actor a atime can access the button and pressit.
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As an example, the automatic door shown in figure 4.11, uses two drategies to
synchronize up to three actors passing the door a the same time. One dtrategy is to count
the number of actors actualy passing through the door, in order to forbid closing the door
if this number is not zero. Another used dSrategy is to define three different pogtions on
both sdes of the door, which are then given as waking targets in pardld for the actors,
without generating collison of paths.

Graphical State Machines

Somod plans ae vey dmple to use to describe ample interactions and
functiondities. They can Hill cope with much more complex cases, but then plans dart to
get more complex to design. It is like trying to use a specific purpose language to solve
any kind of problems.

As an example, consder the case of modding a two-stage lift where actors can
take. Such a lift is composed of many parts. doors, cdling buttons, the cabin, and the lift
itsedf. These parts need to have synchronized movements, and many details need to be
taken into account in order to correctly control actors interacting with the [ift.

To amplify modeing the behaviors of such complex objects somod has a
grephica didog box to grephicaly design finite sate machines. The proposed solution is
to dat desgning basc interaction plans for each components of the lift, usng the
dandard behavior editor (figure 4.9). Then, when the components have their functiondity
defined, the state machine window is used, permitting to define the dtates of the whole
object lift, and the connections between the components.

Figure 4.12 shows a fird example of usng this grgphicad window in the case of
the lift. The user has firs desgned the plans for the functiondity of each component part
in particular. For example, there are behaviors to open and close each door of te lift, to
press each cdling button, to move the cabin, and so on. The description file generated
with thislift example is available in the appendix, section 10.2.3.

Then, the user opens the graphica state machine editor to design the functiondity
of the lift as a whole. A firg smple example is consdering that the lift can have only two
dates. floor 1 and floor 2. When the lift is in floor_1, the only possble interaction is
enter_12, that will cdl a behavior which cdls the full sequence of indructions to perform
the full interaction: pressng the cdling button, opening the door, entering indde, closng
the door, move the cabin up, opening the other door, and going out. This Smple Sate
machine example is showed in figure 4.12.
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Figure 4.12 — A state machine for a lift functionality where all interaction during the
process of taking the lift are programmed inside plans enter_12 and enter_21. In the
image, the double circle state is the current state, and the rectangular boxes show the
interaction needed to change of state. For example, to change from floor_1 to floor_2
state, interaction enter_12 isrequired.

Dedgned sate machines are automaticaly trandated into interaction plans so that,
from the smulaor point of view, dl behaviors are trested as plans. When the smart lift is
loaded in a smulatiion environment, the crested available behaviors can then be sdected.
A drawback of this dmple state machine is that the sngle interaction of entering the lift
can be very long, giving no options to the actor in the middle. A more complex solution
isgivenin Figure 4.13.

Figure 4.13 shows a more complex state machine that models the functiondity of
the lift by taking into account possible intermediate states. In this case, the actor needs to
sdlect, step by sep, a sequence of interactions in order to take the lift to the other floor.
Figure 4.14 shows some snapshots of the animation sequence of an actor entering the lift.
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Figure 4.13 — A more complex state machine for the lift where intermediate states are
considered. Additionally, behaviors are associated with each state to be triggered
whenever the object entersthat state.



Figure 4.14 — An actor entering the smart lift.

This lift modd can be much more complex in order to cope with many actors at
the same time, entering from any floor, etc. The lift modd tas been extended in order to
correctly cope with up to three actors entering from each floor a a same time. However,
it is difficult to evduae if the programmed behaviors can correctly solve dl posshble
combination of cases. Moreover, it is possble to find examples where avoiding a
deadlock dituation would be difficult. For example, a deadlock can eesily occur when
trying to solve the classical problem of smultaneous access of resources that is caled the
dining philosophers [Andrews 1991].

When an actor sdlects an interaction plan, a new process is opened in order to
interpret this plan. This process can be seen as the actor sKill to interact with objects, and
is pat of the smart object reasoning module. The issue of correctly interpreting plans in
parale isdiscussed in chapter 5.

445 Templates

Ancther utility available in somod is to load template objects. The idea is tha any
pre-modeled smart object can serve as a template to model new smart objects. A specific
window to load templates was desgned permitting to scan directories containing smart
objects and to choose the desired features to import (figure 4.15).
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Figure 4.15 — The template loader dialog box. This window permits to €an a
directory with pre-modeled objects and components, visualize their internal features,
and import any selected set of features.

The template loader window can import any kind of festures from other smart
objects Many of the features have dependencies on other features, and these
dependencies are dl tracked and coherently loaded. In addition, names are automaticaly
updated whenever conflicts with previoudy created names appear. Each time features are
imported, the user can inspect and adapt the results, usng the main window.

The template loader window associated with the graphicd state machine editor
forms an effective way of definition and reuse of object interactivity and interaction. Sets
of components can be maintained in proper folders in order to be easily imported and
connected, testing different combination of components to compose awhole object.

For example, a st of different types of door can be defined, each one having a
different geometry or functiondity, as double or single pands, center or sSide opening,
trandation or rotation opening, etc. These doors can then be easily imported to compose,
for ingance, the lift.

45 Somod Extensions

Somod has been used to model smart objects for different purposes. Some times
objects have smple geometry but a lot of semantic information, and some times objects
smply don't offer interaction, and somod is used only, for instance, to define rdative
positions around the object for collison avoidance.

Somad is flexible in the sense that it permits the user to define only the desired
features, relative to the object, that can be used later for any purpose. For example, one
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can use somod to moded a complete set of hand shapes (like the one proposed by
[Cutkosky 1989] ) to use for approaching different grasping configurations.

When modding more complex behaviors, the smplicity of the avalable set of
primitive indructions may not be sufficient. The extenson to connect with a high-leve
and complete interpreted language was integrated in somod. The used language is Python
[Lutz 1996], s0 that python commands can be sored in the plans with the ingtruction
PythonFunc (see appendix section 10.1).

To make use of the Python extenson, the smulaor sysem must be able to
interpret python scripts, and this is the case of the smulator developed, which is the topic
of chepter 6. Python is a very powerful language, avalable for nearly dl platforms and
the source code is available for free. There is even a Java module that is able to interpret
Python, opening the possibility to interpret Python scriptsin standard web browsers.

For the sske of smplicity, somod uses a dmple ascii text file forma to save
modeled smart objects (see appendix section 10.2). No specia standards were used, but
conversion to other file formats can be easily done, asfor ingance to a XML format.

Smart objects can aso be described using a VRML syntax. However, it is not
possible to fully trandate interaction plans into VRML nodes. Standard VRML nodes
only provide basic sensors and movements, so that externd Java scripts would need to be
used.

Moreover, browsers that load and animate VRML scenes don't provide an agent
environment with actors being animated and ready to interact with objects Note
however, that some efforts have been done to create virtud human animations using Java
and VRML [Babski 2000]. A mgor problem of such sysems is the much lower frame
rates achieved, as Javais an interpreted language.

A gmple trandator from the smart object format to an animated and interactive
VRML scene was developed, however with severd limitations. Only smple behaviors
can be correctly trandated, and interaction is done only using mouse clicks. Figure 4.16
shows a smart object in a VRML format loaded in a web browser. In this example,
whenever the user clicks on a drawer, the drawer will open or close. This example uses
only standard VRML nodes.
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Figure 4.16 — A smart object translated into a VRML file can be loaded and animated
inaVRML browser.

4.6 Chapter Conclusion

In this chapter, the following topics were sressed: the feature modeling concepts
used to modd interactive objects, the smart object description, and the implementation
issues of somod. In addition, examples of modeled objects were presented and discussed.

The most important aspect of the smart object description is the fact that any user
of the object can ask for a lig of avallable interactions, which is generated in run time,
depending on the current dtate of the object. This lig of possble interactions is the
communication language between actors and objects, forming a behaviord interface to
coherently manage any kind of usersinteracting with objects at a sametime,

The next chapter explains the details and implementation issues rlated to the
interpretation of interaction plans, and chapter 6 exposes the smulator system (ACE) that
contains al such capabilities to smulate actor-object interactions.
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5 Interpreting Interaction Plans

This chapter exposes the solutions adopted to overcome two main problems that
gopear during the interpretation of interaction plans synchronization of many plans
interpreted in padld, and the motion control of actors to perform  manipulation
ingructions.

The whole process from the high level interpretation of behaviors to the low leve
control of primitive actions and motions is explained. In addition, the synchronization
rules adopted, and their limitations are also discussed.

5.1 Introduction

Given a st of indructions, i.e, an interaction plan, there are some drategies to
consider in order to correctly animate the actor’ s skeleton accordingly.

A firg issue is how to synchronize plans that are interpreted in pardle. Note that,
in the scope of this thess interaction plans can dictate the behaviors of both actors and
objects. One can see an interaction plan as a program that runs in an independent process,
and that must access resources from actors and objects.

The many synchronization problems involved have a direct rdaion with the
concurrent programming area [Andrews 1991]. In this way, standard techniques can be
used: bariers, flags, etc. A Idmple synchronization rule to activate and block the many
processes interpreting plans is adopted and is discussed in section 5.3, together with the
many related issues,

Another key issue is the animation of the virtud actor interacting with objects,
i.e,, how to correctly animate the actor’s skeleton according to a behaviord ingtruction. In
most of the animation cases, a method to define a redidic skeleton podture, given a
desred location for the actor's hand is required. From now on, this specific problem will
be referred to as the reaching problem.
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The movement control of virtud actors, and specificaly the reaching problem, is
a key issue in many aress, specificaly for human factors andyss [Stanney 1998], and
ergonomics [Wang 1998], in the scope of many different applications.

Red time inverse kinematics is a key component of any human modding system,
dlowing to directly approach the reaching problem. Mechaniams with more than six
degrees of freedom (DOF) are considered redundant and thus some strategies to control
the obtained result must be taken. In section 5.4 the adopted drategies in this work are
explained.

5.2 Reated Work

The pardld interpretation of plans or behaviors is an issue that gppears in many
behaviord animation sysems. One gpecific dructure to define pardld programs for
decribing behaviors is the parallel transitions network (PaTNets) [Granieri 1995]
[Bindiganavale 2000]. PatNets can be modeed graphicdly, but no specific condderations
about object interaction are done.

Many other works address the problem of concurrency in behaviord systems, as
for ingtance [Donikian 1994], but none has draight smilarities with the object interaction
synchronization issues gopearing here. The gpproach used in this thess is to design
independent plans and then, to use date variables together with a smple built-in rule for
threads (or light processes) synchronization.

The animaion of a virtud actor, and specificdly the reaching problem, is an
active topic with many techniques proposed in the literature. Techniques can be grouped
into four categories: those based on inverse kinematics methods, those based on path
planning, those based on adaptation of pre-recorded motions, and those based on
interpolation of pre-recorded motions stored in a database, covering a discrete volume
space around the actor.

Methods based on the adaptation of pre-recorded motions are gill not flexible
enough to be used for generd cases, but some interesting results have been presented
[Bindiganavale 1998].

Inverse kinematics is 4ill the most popular technique due to the fact that it is
directly applicable to solve the reaching problem. However, redigtic results are hard to
obtain. Mot works present specific implementations regarding only the movement of the
actor's am [Tolani 1996] [Wang 1998]. Although interesting results are obtained, few
condderations are done regarding full body animation for the reaching problem, towards
more redigtic postures. For ingtance, to determine a coherent knee flexion when the actor
need to reach with its hand avery low postion.
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In another direction, database driven methods can easly cope with full body
postures. The idea is to define pre-recorded (thus redigtic) motions for reaching each
pogition in the space indde a discrete and fixed volumetric grid around the actor. Then,
when a specific pogtion is to be reached the respective motion is obtained through
interpolation of the pre-recorded motions reldive to the neighboring cdls. This is exactly
the approach taken by [Wiley 1997] with good results achieved. Database methods were
as0 successfully used to determine grasping postures [Aydin 1999] [Huang 1995].

Motion planning [Smeon 2000] represents a promising approach due to the often
used probabilisic aspect, which dlows finding solutions for complex animations,
however increasing the required computationd time. So that, motion planning methods
can be considered not yet gpplicable to red time systems.

Table 5.1 makes a comparison of these many methods.

Realism

Real-Time

Generality

Collisions

Motion Adaptation

+

+

Motion Database

+

+

Path Planning

Inverse Kinematics

+

-+

Table 5.1 — Comparison of the many motion control methods, regarding: the realism
of the generated movements, the real-time ability of computation, generality for being
applied to different kinds of interactions, and the ability to handle and solve collisions
with the environment. Inverse kinematics still provides the best compromise
concerning generality and real-time computation.

The approach adopted in this thess is based on a reasoning of how to determine
inverse kinematics condraints in order to achieve visudly acceptable body postures for
the reaching problem in a good range area. For this, the inverse kinematics module
InvKinLib developed by Paolo Baerlocher [Baerlocher 1998] was extensvely used in this
thesis.

The solutions adopted here are smple and genera, so that they can be used in red
time virtua environments with accepteble computationd cods, and with good
adaptability to generd dtuations. The am is to be able to smulae actor-object
interactions in large virtud environments, o that the most important is the overdl find

animation obtained, and not the correctness of each movement detail. Section 5.4
explainsin detall the solutions adopted.
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5.3 Interpretation of Plans

Each time a user sdects an interaction plan © perform, a specific thread is created
to follow the ingructions of the plan (figure 5.1). The Sate variables of the object are
accessed from dl threads and can be used to synchronize the threads. The fina Stuation
is a S multaneous access to aresource, i.e, the smart object.

With this gpproach, it is possble to have many users (and of different types)
accessng and interacting with the same smart object. However, the interaction plans of
the object need to be wel designed in order to cope with al possble combinaions of
smultaneous access. For example, complex dtuations appear in the dining philosophers
problem [Andrews 1991]: Suppose tha a round table is designed with four dishes equaly
digributed on its surface. Between each par of dishes there is one fork or knife,
dternaivey didtributed. But then, each time someone darts to eat, both a fork and a knife
are required. The dtuation is that it is impossble to have everybody edting a the same
time, and the problem is to design strateges to share the resources.

Although such complex cases are not automaicdly handled, a smple built-in
synchronization rule between threeds is used. For this, plans indructions are grouped into
two categories. long ingructions, and local indructions. Long indructions are those that
canot dat and complete in a dngle time dep of the smulaion. For example,
indructions that trigger movements will teke severa frames to be completed, depending
on how many frames the movement needs to finish. In the current set of ingructions, the
following ae conddeed long: UsarGoTo, UsarDoGest, WatVa, DoCmd,
WaitUserProp, and Pause (see appendix section 10.1). All other ingtructions are said to be
locdl.

AN

SVART OBJECT “

Thread 1 Thread 2 Thread N
BEHAVI OR X BEHAVI OR X BEHAVI OR x
END END END

ACTOR ACTOR ACTOR
1 2 N

Figure 5.1 - For each actor performing an interaction with an object, a thread is used
to interpret the selected interaction plan. Each thread accesses and controlsits related
actor and object, according to the plan’ sinstructions.
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Plans are interpreted ingruction by indruction, and each ingruction needs to be
finished before the next one is executed. When a plan is being interpreted by some thread
t, dl other threads are suspended until a long ingruction is found. In this way, t will fuly
execute sequences of locd indructions, while dl other threads reman locked. When a
long indruction is reached, it is initidized, the other threads are activated, and t stays
observing if the indruction has finished. This scheme reaults with the Stuation where al
activated threads are in fact monitoring movements and other long instructions, and each
time locd indructions appear, they are dl executed in a dngle time step, while other
threads are locked.

This agpproach automdicdly solves most common Stuations. For  example,
suppose that the lift has a cdl behavior which interaction plan congds of: “if date of
cdling button is pressed do nothing; otherwise set dtate of the cdling button to pressed
and press it”. Suppose now that two actors, exactly at the same time, decide to cal the
lift. The synchronization rule says that while one thread is interpreting locd ingructions,
dl others are locked. In this way, it is guaranteed that only one actor will actudly press
the button. Without this synchronization, both actors would press the button together at
the same time, resulting serious incons stent results.

5.3.1 Instructions Reasoning

The smulator system needs to animate the actor's skeleton in order to achieve the
correct animation corresponding to each user related behaviora ingruction. The most
complex indruction to perform is UsarDoGest. All other user related ingructions have a
direct animation interpretation, like waking, being attached to some object part, saving a
property, etc.

The gedure indruction, according to its parameters defined in somod, will Sgnify
an action of gtting, pushing, or reaching. The used AgentLib framework (see section 2.5)
provides dready the reach action for the animation of virtud actors. The reach action
uses inverse kinematics to specify the joint values of the actor's arm in order to reach a
god location in space with the hand. This action works well in some specific cases, but it
is not sufficient for dl interaction cases, s0 that the specific action push was developed
and will be the subject of the next section. Other auxiliary actions as hand and st will be
aso presented in alater section.

During the push action, the hand shape, i.e. the configuration of the fingers, need
aso to be changed in order to reach the specified pre-defined hand shape. In addition,
depending on the god hand location, different skeleton movements need to be
undertaken, and the direction of the actor's head should be dso controlled. The correct
connection and synchronization of these primitive mations is the result of the reasoning
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module of the animation sysem. Figure 5.2 illudrates the seps from a behaviord
indruction until the definition of primitive motions and actions to animate an actor.

BEHAVI OR bh1l BEHAVI OR bh1l

Reasoning

U'ser GoTo

UéerGoTo————
User DoGest »

User DoGest==7

Ny

Instructioms

END

END

|
[
Motion Blending
Actor Animation

Interaction} Selection

Figure 5.2 — Each interaction instruction is translated into primitive actions by a
reasoning process, specifying the animation result to be obtained.

5.4 Manipulation Actions

Depending on its parameters, the ingruction UserDoGest can mean different actor
movements, but in the most common case, it is used to determine that the actor should
perform some manipulation with the object. A manipulation movement is divided in three
phases. reaching, middle, and fina phases (figure 5.3).

|

|Reaching | i Middle i Final i

i Phase i i Phase i Phase i

[ 1 1 1 1

| _ I | | |

i o \ | Following Movement I—{—} Rest Posture |\ !

RN follow [ | i .
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Start J:— % —T Check —| take i—b‘: Object Attach |—E—> Keep Posture I—r—b: Finish

L2 | | i
5] PN | .

: § ! ! Object Detach | Rest Posture [ |
bl | | |
P ! ! !

Figure 5.3 — Reasoning diagram for the interpretation of a manipulation instruction.

All manipulation movements gat in the reaching phase. In this phase, inverse
kinematics is used in order to animate the actor's skedleton to have its hand in the
gpecified postion. Then three cases can happen, depending on the parameters. follow,
take, and put (see figure 4.7). Parameters follow and teke are used to specify the
attachment of objects to the actor’s hand. The follow parameter indicates that the actor's
hand should then follow a specified movement. This is the case for example to press
buttons and open drawers. the specified trandaion movement to animate the object part
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is followed by the actor's hand, while inverse kinematics is used in order to adjust the
posture of the actor’s skeleton.

Additiondly to the inverse kinematics motion controlled by the developed action
push, two other primitive actions are used in pardld: look, and hand. The AgentLib look
action permits to animate the head orientation to face a given point in space. This action
is used to keep the actors head to look to the object being manipulated. However, this
feature can be deactivated if some externa behaviora module wants to control the head
orientation during an interaction.

The hand action developed amply interpolates the current joints of the fingers
until they reach the pre-defined manipulation hand shape (sored in the smart object). In
this way, hand animation for grasping is obtained through direct interpolation between
the initid actor's hand shape to the desired pre-defined hand shape. These two “extra’
primitive actions run in pardld with the push action.

541 ThelnverseKinematics Module

The AgentLib primitive action push was developed, which directly uses the
inverse kinematics module. In order to better explan how condraints are used, an
introduction to the used actor skeleton and the inverse kinematics module of [Baerlocher
1998] is given here.

As dready dated, the actor's skeleton is composed of many joints, disposed in a
hierarchy. The whole hierarchy can be seen in figure 10.1 (in the gppendix). The
skeleton’s root is a node between the pelvis and the column, and which separates the
hierarchies of the legs and feet from the hierarchies of the column, head and ams.

The motion flow root is a node in the hierarchy from whom the “mation” is
propagated to adjacent nodes. The motion flow root does not necessarily correspond to
the hierarchy root; it can be moved a any time, for example to congrain a foot to be
firmly planted on the floor. In the scope of the utilization done in this thess for the
manipulation of objects, the motion flow root is aways kept the same as the skeleton
root.

The animation results obtained have a fixed motion flow root while the ams, legs
and head are moved to reach pre-defined congraints. Many different condraints can be
defined. The mogt used type of condraint is to define a postion and/or orientation in
gpace where a pecified joint must reach.

For example, it is possble to specify the actor's hand to reach a podtion p in
gace. In this case, the inverse kinematics module will generate a suitable skeleton
posture so that the actor's hand reach the point p. The actor's hand is aso called as end-
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effector, and p as a task. The dlowed joints of the skeleton to be animated by the inverse
kinematics module can be specified to attend different needs. To cdculate a fina skeleton
posture, the inverse kinematics module uses iterative numericd methods, so that some
iteration steps are required to converge to the solution, with a specified precison error.

When defining many tasks to be solved, some times it may not be possble to
solve dl tasks. For example if one task says that the actor's head should Stay in its
origind draight podtion while the actor's hand should reach a very far pogtion, it may
not possible to satisfy both tasks. Priorities can be set for each task in order to say which
of them have higher priority to be solved. In the example, if the hand's task is given a
higher priority the actor’s column will move towards the pogtion to reach with the hand.

When a smart object indruction requires an actor to do some manipulaion with
the object, a reasoning about the dtuation is done in order to coherently distribute the
needed condraints to animate the manipulation usang inverse kinematics.

5.4.2 CongraintsDigtribution

At the beginning of a manipulation (see figure 5.3), the actor's skeleton Szes and
the task position to reach with the hand are analyzed and different constraints are set:

- Firg, the inverse kinematics module is set to only animate the joints of the am,
shoulder, clavicle, and the upper pat of the column (see gppendix 10.5.2 for a precise
lising of the used joints). This st of joints makes larger the reach volume space, as the
actor can reach father postions by flexing the column. However, a Sde effect is that
even for closer pogtions to reach, the column can move, generating weird results. To
overcome this, two new condrants are created. A podtiond condrant, with a low
priority, is used to keep the vertebra VTS5 joint in its origind postion. In addition, a low
priority orientation condraint is aplied to the vertebra VC8 to mantan a vertica
orientation. These two condraints ensures that the column stays draight as long as it is
possble, while permitting the column to rotate dong its vertica axis. This feature
correctly runs in pardld with the look action that controls the head orientation. Figure
5.4 shows some results obtained with this approach.

- Secondly, if the god podition (the task) to reach with the hand is lower than the
lowest pogtion achieved with the hand in a draight rest pogtion, a specid knee flexion
configuration is set. The joints of the hip, knee, and ankle (see appendix 10.5.2) are added
to the dlowed joints to be animated by the inverse kinemaics module, and two new
condraints, with high priorities, are added to keep each foot on its origind postion and
orientation. This configuration makes the actor to flex the knees, keeping its feet fixed in
the ground, when the actor's skeleton root is gradudly lowered. Figure 55 shows
different knee flexions obtained while reaching positions of different heights.
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Figure 5.4 — A specific constraint is used to keep the actor’ s column straight aslong as
it is possible, while permitting a rotation movement of the body along its vertical axis.

Figure 55 — When the position to reach with the hand is too low, additional
constraints are used in order to obtain knee flexion. The images show, from left to
right, the postures achieved when reaching each time lower positions.

5.4.3 Animation Control

After the initid phase of condraints and joints control digribution, a higher
priority hand task is set. The hand task is set to make the hand to follow given postions p
and orientations .

During the reaching phase, only the find hand podtion (p;) and orientation (1)
are given. These vaues are retrieved from the smart object data. The initid hand podtion
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(po) and orientation Qo) are determined from the globa position of the actor's hand at the
beginning of the reaching phase.

Then, the number of desred time seps (n) to accomplish the reaching phase is
determined. This number is determined based on the distance to the god find postion.
Experimentally, good results were obtained having 35 time steps per meter. In this way,
conddering that pogtions are measured in millimeters, n is determined with the following
formula  n=dist(po,p1)* (35.0/21000.0). In addition, a test is done to ensure that n has a
minimum value of 5, for better results with short, detailed movements.

During the animation loop, in the reaching phase, the hand task is st to a pogtion
interpolated dong the draght line from pp to p1, giving the most direct way to achieve
the find god. When, in the middle phase, a following movement is required, the hand
keeps its orientation, but its podtion is updated to follow the movement of the object
being manipulated. Intermediate orientations are obtained with quaternion interpolation.
Thefind dgorithm can be summarized as follows

perform push_action_step ()

if ( start ) { t=0.0; inc=1.0/n; }

i f
{ t + inc;

(1.0-t)*pg + t*py; /1 position interpolation

q quat _slerp ( 9o, q1, t ); // quaternion interpolation
set _hand_constraint_to ( p, q );

if ( do_knee_flexion ) |ower_skeleton_root_position();
converge_inverse_kinematics ();

if ( t==1.0 ) reaching_phase = fal se;

( reachi ng_phase )
t =
p =

}
if ( doing_follow ng _novenent )
{ p = actual _hand_position ();
g = actual _hand_orientation ();
p =p + position_difference_of_object_being followed ();

set _hand_constraint _to ( p, q );
converge_inverse_kinematics ();

}

updat e_current _phase ();

}

An example of the animation obtained during the reaching phase is given in figure
5.6. Note that the showed animation of button pressng aso has a middle phase with the
following movement, which is needed to actudly press the button and not only to touch
it. Another example of the “following movement” is given in figure 5.7 to dose a drawer
in a difficult lower podtion. Note tha during the following-movement the same
congtraints used for the reaching phase are kept.
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Figure 5.6 — The reaching phase of a button press manipulation. Note that the action
look makes the actor to look to the button, and the action hand gradually interpolates
theinitial hand shape towards the final button press shape.

Figure 5.7 — The reaching and following movements used to close a drawer. Note that
during the following phase (closing the drawer) the knee flexion is kept.

5.5 Other Actions

The ingruction UserDoGest can be dso used to specify other type of movements.
A movement tha is interesting to have usng inverse kinematics is dtting. The animation
of a dtting movement is normaly done using pre-defined keyframe animation because of
its complex nature. However, the main drawback is that the used motion only works for a
specific par char-actor. Each time the actor or height to St change, a new motion need to
be crested. To overcome this, the inverse kinematics action Sit was also developed.
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Figure 5.8 — The sit action. The position of the arms are controlled by other modules
for any purpose, as for instance using the push action or a pre-defined keyframe
motion.

The used congdraints are the same used for the knee flexion configuration, the only
difference is that the root of the skeleton is interpolated adong a draght line from its
current podtion to the specified pogtion to st (which is retrieved from the smart object
chair).

The position of the ams is not changed, but additiona ingtructions can be used to

manipulate the ams, or to play a keyframe animation for the upper body part. Figure 5.8
exemplifies the results obtained with such a gtting action.

5.6 Chapter Conclusion

This chepter explained the issues rdaed with the interpretation of interaction
plans. The main problems addressed were the parale execution of plans, and the used
congraints distribution to animate object manipulations.

The implemented action push was explaned and some results of animations
generated were presented. An important aspect of the action push is its flexibility. It can
be used for many manipulation cases, and in fact, it was used to generate al actor
animations showed in the figures of thisthess.

The next chapter introduces the ACE system that incorporates the push action to
perform actor-object interactions.
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6 Agent Common Environment

This chapter describes the implemented system for virtud human agents
smulaion supporting interaction with smart objects. The system is able to coherently
manage a virtud environment shared by agents (actors and objects), and is called “agent
common environment” (ACE).

The description of the system architecture is presented and discussed in this
chapter. Mogst of the results obtained and showed in this thess were generated using
ACE.

6.1 Introduction

The importance of dmulations with virtud humans has dready been dressed in
previous chapters. The ACE system presented here was developed to perform many kinds
of behaviord smulations with actors, incduding the capability of interaction with smart
objects. ACE can aso be connected with some virtua redlity devices (see section 24) in
order to permit a direct interaction with smart objects. this capability is the topic of the
next chapter.

ACE is controllable through Python scripts [Lutz 1996], and provides the basic
agent requirements in a virtua environment: to be able to perceive and to act in a shared,
coherent and synchronized way. ACE is thus a system that has been used as a platform to
the development of different kind of gpplications based on virtua human smulations.

The centrd point of ACE is the easy connection of behaviord modules as plug-
ins, following a trend in computer animation systems [Badler 2000]. Such plug-ins can be
defined in two ways actor-object interactions using smat objects and a behaviord
library composed of modular Python scripts.
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6.2 Redated Work

Many smulation sysems are described in the literature, and many of them ae
driven by scripts The Improv sysem (Improvisaiond Animetion) [Perlin 1996] is
controlled by behavioral scripts designed to be easly trandated from a given storyboard.
Scripts have a smple syntax, close to a natura language specification of storyboards.

Also usng soripts, [Motivate] and [Nemo] systems use hierarchicd finite dtate
machines to define characters behaviors, targeting game development. Another recent
successful game is [TheSms], where the user can interact with a Smulation of actors
living day-life stuations.

Game engines are more and more gppearing, providing many behaviord tools tha
can be eadly integrated as plug-ins to build games. Although they offer many powerful
tools, they may not be well suitable for gpplications different from games.

In another direction, the Jack software package [Badler 1999b], available from
Transom Technologies Inc., is more oriented for human factors gpplications rather than
socid and behavior animation. Jack is a software package for human animeation with a
large pdette of features incuding collison detection, baance control and dynamic
drength consderations. Different sytems have been built, deveoping their own
extensons to the Jack software [Johnson 1997] [Bindiganavale 2000].

[Blumberg 1995] built autonomous animated cregiures for interactive virtud
environments, which are aso cgpable of being directed a multiple levels motivationd,
task level, and motor leve.

The man difference between these sysems and ACE is that they don't exhibit
any specific approach to model actor-object interaction. They're more concentrated in the
behaviord modeling of the actors adone. For instance, ACE can be usad to implement the
many different approaches for actors behavior definition.

The only sysem that shows some actor-object interactions is the game [TheSimg).
It was not possible to know much about their gpproach, but some texts about the game
reved that they associste somehow interaction information with objects thus having
some smilarities with the gpproach herein presented.

6.3 ACE System

6.3.1 SoftwarePlatform

ACE is a sysem implemented on top of AgentLib (see section 2.5), integrating
nearly dl libraries avaldble in the lab for virtud human agents animdion. For the
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graphics visudization, the Performer library from [SGI] is used, and thus the system runs
in SGI mechines.

For the graphica user interface [FLTK] is used, and for the scripting capabilities,
[Python] is used. Apat the Peformer library, the other libraries are platform
independent.

6.3.2 ACE Functionality

The core of the ACE system understands a set of commands in Python to control a
gmulation. For a complete lig of the currently avalable Python functions executed in
ACE, see gppendix section 10.3. Among other features, these commands can:

- Create and place different virtud humans, objects, and smart objects. Actors
information (dze, gopearance, clothes, etc) is defined in a gpecific .inf file which is
loaded by DodyLib. Objects in general can be declared only by giving a geometry file to
display them, and smart objects are loaded from their .so description file. The smart
object loader is able to share the geometry representation between many ingtances of
smart objects.

- Apply a primitive action to a virtud human. Examples of such actions are: key-
frame animations, walking, facia expressons, etc. These motion motors can be triggered
in pardlel and are correctly blended by AgentLib [Boulic 1997].

- Trigger asmart object interaction with a virtua human actor.

- Ak for a collison-free path anong previoudy defined 2d obstacles (figure 6.1).
The implemented dgorithm is based on an exact cdl decompostion of a 2d environment,
usng a smilar (less optimized) dructure to the dtar-vertex (chapter 3), which | have dso
developed.

- Query pipelines of perception [Bordeux 1999] for a given virtua human. Such
pipelines, integrated in AgentLib, can be configured in order to dmulate, for ingtance, a
gynthetic vison. In this case, the perception query will return a lig with al objects
perceived indde the specified range and field of view. As an example, figure 6.2 shows a
map constructed from the results of the perception information recelved by an actor.

All previoudy described features are avalable through simple Python scripts.
When ACE dats, two windows gppear. One window shows the virtud environment
being smulated. The other one is the man window, which contains the interactive
Python shell (figure 6.3).

The man window contains dso menus to access other available didog boxes to
control and monitor the ongoing smulaion. Such didogs can interactively place actors
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and objects in the scene, st lights, control camera parameters and behavior (as autometic
perception and atachment to actors), control actor-object interactions, inspect the
perception of actors, send naturd language orders, etc. Some of these controls will be
exposed in section 6.6.

Figure 6.1 — The image illustrates the use of a 2d path planner in ACE: once obstacles
are declared as polygona approximations, an exact cell decomposition process is
used, based on a constrained Delaunay triangulation. Free paths are then computed by
just exploiting free cells adjacency, using any known graph search algorithm.
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Figure 6.2 — Perception map of the lowest actor in the image. In this example, a range
of 2.6 meters and a field of view of 180° are used. The darker points in the map
represent the positions of each perceived actors and objects. The lighter point
represents the position of the perceiver.
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Figure 6.3 — The ACE system with the graphical output window and its main window,
witch contains the interactive Python shell.

o

6.3.3 A Script Example

In the interactive Python shell it is possble to load or type scripts to control the

gmulaion. An example of avalid Python script is as Smple as the following:

# Create a virtual human and a smart object:
bob = vhnew ( “bob”, “sports-man” )
conmputer = sonew ( “conputer”, “linux-cdroni )

# Query a 3 neters perception with a 170 degress field of view
perception = vhperceive ( bob, 3000, 170 )

# |If the conputer was perceived, performtwo interactions with it:
if conputer in perception :

soi nteract ( conputer, bob, “eject_cd” )

sowait ( computer )

soi nteract ( conputer, bob, “push_cd” )

Figure 64 shows a sngpshot of the animation generated from this script. The

cregted agent is peforming the “push cd’ interaction (note that in the image other
objects that were previoudy created are aso shown). Other example scripts are showed in
the appendix section 10.4.
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Figure 6.4 — An actor-object interaction being performed.

The smart object “computer” loaded in this example (figure 6.4) was defined with
somod (chapter 4), where al low-levd 3D parameters were defined, as shown in figure
6.5.

Figure 6.5— Modeling phase of the smart object computer using somod.

In this way, the low-levd motion control is performed interndly in ACE by
folowing the interaction plans defined indde each smart object description. All the issues
discussed in chapter 5 regarding the interpretation of such plans are implemented insde
ACE. Python scripts can then eadly indruct an actor to interact with a smart object
without the need of any additiond information. After an interaction, the Sate of the smart
object is updated, and the virtua human actor will wait for another Python order.
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6.4 Multi Actor Smulations

In order to coherently control a multi actor smulation in ACE, each actor runs in
a separate thread, handled by a common agents controller module This module is
respongble for trangporting messages between the threads by providing a shared area of
memory for communication (figure 6.6).

!

L Agents Controller #
Shared Area

1
| Python Layer |
| e
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i Agent Thread #n :
| Agent Thread #1 .
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| action action cad 1 thread n :
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ACE — Agents Common Environment

Low-level Motion Control

| Facia Expressions Control
Smart Object Control
Perceptions Management

Figure 6.6 — ACE system architecture.

Usudly, each time an actor is created, a new thread darts in order to control it.
This is directly implemented a the Python layer. The display update is handled by the
controller, which aso provides synchronization facilities between threads Keeping the
display update into the controller ensures that no conflicts arise (this could be the case if
concurrent processes update the display a a sametime).

Concurrent actions (motions or facid expressons) are dready handled interndly
in ACE with AgentLib. However, in some cases it may be interesting to have specific
concurrent modules controlling the evolution of gpecific primitive actions. For such
cases, new threads can be created within the agent threed, as depicted in figure 6.6.
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Insde an actor’s thread, the user of the system can ask actor-object interactions to
be peformed, and aso initidize any primitive action directly. Note that an actor-object
interaction may trigger many primitive motions sequentidly or in padld, o0 tha 4l
current motions being applied to a virtua human agent need to be correctly blended, what
is guaranteed by AgentL.ib.

Whenever an object interaction is asked, a specid Object Interaction Thread
(figure 6.7) is crested to monitor the execution of the needed motions until completion.
This module implements the smart object reasoning issues, and is implemented interndly
in ACE (not in the Python layer). It can be seen as the actor capability to interpret object
interaction indructions; like reading the user's manud of a new object to interact. The
object interaction thread does not use any system-related libraries for thread credtion; it is
programmed (and smulated) insde ACE, in the same executable program.

Python Layer

Interaction Plan selected Other Motion Control Modules

Object Interaction Thread: Thread per agent
and per plan controlling needed motions

B

Blending of all Activated Motions

v

| Final Joint Values

Figure 6.7 — Motion blending permits other control modules to run in parallel with an
object interaction, for example, to control body parts that are not used during the
interaction.

In this way, a the Python layer, an object interaction is seen as any other
primitive action. Motion blended is supported in dl cases, but the user is responsble to
coherently dart the motions and object interactions. For instance, when an object
interaction to push a button with the right hand is requested, the object interaction thread
will be active until the interaction finishes If, a the same time, another module is
controlling the right arm towards a different position, a deadlock may happen.

Although object interactions are defined with pre-defined plans many issues ill
need to be solved during run time as minima information ingde the plans is kept. In this
way, there is space for the agent’s autonomy when generating motions for interactions.
This is exactly the role of the smart object reasoning module, and the developed primitive
action push (see section 5.3 and 5.4). For example, for a smple interaction like opening a
drawer, the related interaction plan defines a pogtion to stand near the drawer, a postion
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for the hand end-effector and a suitable hand shape to use. But where to look and if it is
needed to flexion the knees or not are decisons taken by the actor during run time (see
figures 5.5 and 5.7 of the previous chapter).

6.5 User Control of the Animation

ACE has severd capabilities to permit the user to control and ingpect the ongoing
gmulaion. A fird way to interact with the amuldion is by usng the interactive Python
ghdl (figure 6.3). During a smulation, new Python commands can be typed in order to
send orders to actors, for example, to command them to wak, play animation keyframes
or interact with objects.

Concerning actor-object interaction, a specid didog box was desgned (figure
6.8). This window permits to visudize, for each smart object loaded in the VE, its current
avaladle interactions. In this way, the user can quickly sdect an actor, an object and an
interaction available, and the actor will promptly perform the animation.

It is ds0 posshle to sdect an object interaction without selecting an actor to
peform it: in this case, dl actor-rdated indructions of the interaction plan are smply
ignored, and the object gppears to move by itsdf. This feature is important in severd
cases. One example is a modded room that has an interaction of turning off lights. Then,
each time an actor perform this interaction, it is no more possble to see the smulation as
the VE becomes dark. In such a case, the ability to turn on the lights is used, without
having to ask some actor to do it, what would interfere the smulation.

:.i Smart Object Control i a iD

Yirtual Humans  Smart Objects  30bj Behaviors
0: vh 10 life open

open_2

press
press_2
moveto
move_cahine
enter_12
enter_21
enter

: ((T:\use) (Reloag ) (Upsate ) Interact )

Figure 6.8 — Object interaction window. When a smart object is selected, the list of its
current available interactions appears for selection. In this way, the user can easily
command actors to perform object interactions.

Each avalable interaction with a smart object is identified by a text description,
which should reflect the meaning of the interaction. ACE has another built-in interactive
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shdl for contralling the Smulation, which is based on naurd language. This shel
trandates Smple naturad language indructions into Python scripts.

The use of natural language to creste, animate and control a Smulétion is an area
of active research, with many proposed sysems [Strassmann 1991] [Bindiganavae
2000]. In ACE, the natura language interpreter was built to command actors in the
virtua environment, specifically to command object interaction.

The interpreter was mainly developed to test the connection with semantic
information contained in smat objects. As expected, a Smple implementation was
possible & it was not necessary to have any previous table associating possible actions to
perform with exiging objects, as it is normdly done. The interpreter is able look insde
each smart object of the scene, which are the actions (or interactions) that the object is
cgpable of doing. For this, coherent semantic information must exist in objects.

The naurd language interpreter was tested with an environment that is a
computer lab with many smart objects such as computers, printers, tables, cup boards, etc
(figure 6.11). The interpreter can then be used to easly command actors insde this
environment. After recelving an indruction, the interpreter andyses it, and trandates the
ingruction into a Python script that is then interpreted by ACE. Figure 6.9 shows the
result of an indruction accessng the actor's perception and information insde the
perceived smart objects.

what can you do, Bob 7

T LArT CJCL.;L_II[.I'..I'..I)-l ATTET CJCLJL_LJU e LJUIII'JULCI_LU.
4 | can turn_right and turn_up the screen_z0.

|| can eject_floppy and eject_cd the computer_21.
| can set_on the screen_21.

| can eject_floppy and eject_cd the computer_ZZ.
i | can set_on the screen_zz.

4 | can print the printer_5.

i | can lower and push and push_side the chair_zz.
| can lower and push and push_side the chair_z3.

Figure 6.9 — Interactive natural language shell. When the instruction “What can you
do, Bob?’ is entered, the interpreter generates a Python script that lists all available
interactions of the smart objects perceived by the actor. The Python script is executed
by ACE, and the result iswritten in the shell window.

The interpreter saves information about the current context of the “didog’, so that
if an actor or object name is missng in the written sentence, the previoudy referenced
subjects are used. Actions to perform are those provided by AgentLib (walk, look, etc),
otherwise they're searched insde the list of avalable behaviors of the smart object in
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question, and if no match is found, they’re looked insde al smart objects perceivable by
the actor. Figure 6.10 exemplifies a case where only an action verb is entered and the
missing subjects are automatically found.

Print !

T LArT CJCLJL_“UPP)" AT CJCLJL_LJU e UUIIIPULCI_L LI
i | can set_on the screen_z1.

i | can eject_floppy and eject_cd the computer_2Z.
i | can set_on the screen_zz.

4 | can print the printer_&.

4 | can lower and push and push_side the chair_zz.
4 | can lower and push and push_side the chair_z3.
| Assuming the subject is bob.

1 Assuming the object is printer_5.

Figure 6.10 — When an action is entered, it is searched in the last referenced object, or
in al smart objects perceivable by the actor. If an interaction matching the requested
action isfound, the previous actor referenced is used to perform the interaction.

Building an effective naturd language interpreter that works in al contexts is 4ill
a chalenge. Normdly, results are obtained only after some time of use, when the user
darts to get used how to write sentences in a way that they're correctly interpreted. At the
end, is like having an interactive shel that works with key sentences and key words. No
much time was invested in building an effective natura language interpreter, as the man
purpose was only to test the communication with smart objects, and this was easly
achieved.

Other auxiliay ways of contralling the smulaion ae avaladle in ACE. For
indance, it is possble to grgphicdly set postions for placing agents and objects, and aso
to define locations for the actors to walk.

Ancther important type of user interaction investigated in ACE is the direct
interaction (usng VR devices) with smat objects This kind of interaction will be
specifically exposed in the next chapter.

6.6 Extension Through Python Scripts

Python scripts can be organized in modules, which are dynamicaly loaded from
other scripts Many avalable modules exig for different purposes, as graphical user
interface generdtion, image processing, mathematical computation, threads cresation,
TCP/IP connection, etc. The Python interpreter, together with such modules, is available
for most computer platforms, including Unix sysems and PC Windows. Moreover, if
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required, new modules can be implemented in Python that might aso dynamicaly access
methods in C/C++ to achieve better performance.

As shown in the previous section, threads credtion is a key issue to obtain agents
running ther own behaviord modules in an asynchronous environment. The use of
behaviord Python modules is sraightforward: the animator chooses one module from a
library of pre-programmed modules and runs it ingde its actor thread. However, such
modules need to be carefully designed in order to avoid corflicts and to guarantee a
correct synchronization between them.

As an example, a virtua computer lab was created with around 90 smart objects
(many of them repeeted), each one containing up to four smple interactions. Then, insde
the actor's Python thread, a smple behavior of random wak or random interaction was
easdsly implemented in Python, and a diaog box was crested showing the actor's status
and enabling to change the current actor behavior. This example shows how new

goplications can be built on top of ACE. A sngpshot of this example smulation is shown
in figure 6.11.

Figure 6.11 — A virtual lab being animated by ACE. Each small dialog box at the left
was created in Python and are used to individually control each actor in the
simulation.

ACE has been currently used by many people in the ladb as a plaform for
development of many applications. Virtud humans behaviord research has been done on
top of ACE, as for example, in the topic of sound propagation for communication
between human agents [Monzani 2000], and an agent-based decison-making system
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written in Ligp (and later Java) [Caicedo 1999]. In this last case, the Python module for
TCP/IP connections is extensive used to send Lisp aders to ACE. Some results obtained
with these applications are showed in chapter 8. For a better overview about the
connection with Lisp, see [Kalmann 2000g].

Mog of the features available in ACE ae being integrated with the previoudy
developed system VHD (virtud human director) [Sannier 1999]. This integration will
merge the capabilities of both systems; resulting on a new smulation system platform.

6.7 Chapter Conclusion

This chapter detailed the ACE system, which has built-in cgpabilities to control
actor-object interactions. ACE was used to generate most of the example images shown
in this thess. The important characterisic of being connected with a high-levd and
object oriented script language (Python), makes ACE an extendible system, which can be
used in the development of many other goplications.

The next chapter shows the specific feature of ACE to perform direct interaction
with smart objects using VR devices, and chapter 8 shows the main results achieved with
ACE.
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7 Direct Interaction with Smart Objects

This chapter introduces a high-level direct interaction metaphor based on smart
objects. The user, i.e. a red person, wearing virtud redity devices to immerse in the
virtua environment, can trigger the behaviors sored in smat objects During the
interaction, smart objects help the user by means of visud clues.

The concepts and implementation issues involved are discussed, and an example
of an interaction sesson is presented.

7.1 Introduction

Vinud Redity (VR) technology has been employed on various different
goplications. A common point to al applications is the fact that the user wears VR
devices, immerses in the virtud environment (VE), and interacts with the virtud world in
order to accomplish some specific task. In many cases, such a task involves direct
manipulation of virtua objects.

Direct manipulation of objects in virtud environments is often awkwad and
inconvenient, because of mainly two factors the use of amplified physcd modes due to
computation time condraints, and limitations of the current VR devices A smple task of
grabbing and moving a virtual object may be a frudrating experience because of the lack
of a tactile feedback, weightlessness of virtud objects, positioning tracker noise, and poor
design of interaction techniques, among other factors.

For direct manipulation, the most common used device is a data glove (see figure
2.6). This device has known many enhancements during the last years [Sturman 1994].
However, limitations as the lack of force-feedback, are ill hard to solve.

Although direct manipulation intends to be smilar to manipulation in red world,
there are sgnificant differences, which have to be fully understood in order to exploit the
full potentid of VR technology.

If virtud systems are D be effective and well received by their users, congderable
human factors issues must be taken into account [Stanney 1998]. Will the user get sck?
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Which are the important tasks to perform? Will the user perceive sysem limitations (eg.,
flicker)? What type of design metgphors will enhance the user’s performance in VE? The
main chalenge concerns defining an efficient, Imple and naturd interaction paradigm, in
order to overcome the VR limitations.

Using smart objects it is possble to define an architecture where the virtua object
ads the user on how to accomplish a desrred interaction task by giving visud clues. The
framework herein presented focuses on high-levd interactions, insead of a direct
manipulation based on sdection and displacement. The concerns are about interactions
with objects having some functiondity governing its moving pats but tha cannot be
directly displaced by the user. Ingtead, the user can trigger the movements of the object,
according to its functiondity. Such issues were dready published in the previous work
[Kalmann 1999D).

The framework proposed is not meant to solve dl limitaions involving direct
interaction with VES, but illustrates a technique that can be combined with other exigting
techniquesin order to achieve easer and higher level object interactions.

7.2 Reated Work

7.2.1 Interaction with Body Postures

There are many sysems being proposed in the literature where the user is
interacting with a virtud environment. Many of them focus on interaction based on
recognizing the full body postures of the user.

In the ALIVE sygem (Artificdd Life Interactive Video Environment) [Maes
1995], the user interacts, in an augmented virtud environment, with a reactive virtud
dog. [Davis 1998] introduces a virtua persona aerobics trainer (PAT), that, based on
optical motion capture system, monitors if the user is correctly repeating some showed
EXErcises.

Face-to-face communications ether between synthetic actors [Cassdl 1994] or
between the user and a synthetic character [Cassdll 1999] have already been addressed.
Also, [Emering 1999] proposes a system where the user, wearing magnetic sensors, can
fight with avirtud actor.

7.2.2 Manipulation and Navigation

Mog interaction techniques being proposed in the literature target manipulation
and navigation in VEs For ingance, [Mine 1995 shows many examples of such
techniques, including a VR metaphor for menu sdlection. In a more recent work [Mine

- 96 -



1997], the concept of proprioception is exploited in order to enhance the direct
manipulation of objects. An overview of techniques for object manipulaion, navigation
and gpplication control in VEsis presented by [Hand 1997].

In order to implement a complex VR application, it is possible to identify three
main diginct layers, which have to be correctly designed and put together:

- The low-levd phydcd smulation modd, which should give a physcaly based
visud feedback to the user when an object is touched, deformed, or moved, correctly
managing al possble intersections.

- The direct manipulation metaphor, responsible to define how the user, wearing
VR devices (as a data glove), can interact with the virtual objects in order to touch, move
and digplace them. This metgphor is directly linked to the adopted physical modd.

- The direct high-leved interaction metaphor. This layer will permit the user to
achieve other tasks that are not fessble only by means of direct manipulation, needing
aso to take into account other interaction rules and aso user gestures.

7.2.3 Physical Models

Many physica models have been proposed in the literature. For instance, [Sauer
1998] describes a rigid body method for the smulation of unilaterd contacts, filling the
gap of impulse-based and congraint-based smulaions, including a friction modd. An
approach to model a haptic glove force transference was proposed by [Popescu 1999).

Another interesting approach has been proposed to ded with collison and
interference in VR systems, making some use of the graphics rendering hardware in order
to minimize time computation during a virtud hand grasping gpplication [Baciu 1998].
Many related topics as collison detection, optimized rendering, red-time deformations,
etc, are in congtant development and are employed in VR applications.

7.2.4 Manipulation Metaphors

Many manipulation metaphors have been aso proposed. For instance, [Poupyrev
1997] presents a manipulation metgphor based on three man deps  Sdection,
Pogtioning, and Orientation. [Boulic 1996] presents an gpproach where each finger of the
virtud hand has sphericd sensors for detecting collison with the virtua object. These
sensors are used for deciding when the virtua object is gragped or when the virtua hand
needs a posture correction.

The work presented by [Okada 1999] introduces intelligent boxes, which ae
modules having basc gpecific functiondity and that can be inter-connected and
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connected to VR devices data input. However, no specific manipulation metaphors are
proposed.

As commonly dated, object manipulation needs to be optimized [Poupyrev 1997]
in order to let the immersed participant to concentrate on high-level tasks rather than on
low-level motor activities. Some solutions to this matter start to be proposed [Kitamura
1998].

7.2.5 High Level Metaphors

Unfortunatdly, less atention has been given to exploit implementations of high-
level interaction metgphors. Existing works remain in the theoreticd level [Gibson 1977],
or manly concern hand gesture recognition, as for indance, a dynamic two-handed
gesture recognition system for object modelling [Nishino 1997].

Aiming to fulfill this gap in the VR ressarch, a framework to peform high-leve
interactions with virtua objects moddled as smart objects is herein proposed. The smart
object framework can be integrated as a top layer of interactive VR systems, providing
higher-leve capatiilities of interaction.

mavelamp
movelampback.
openbogk
closebook

Hand Clues

CheckWar openl false

UserDoGest gestl LeftHand \/ Reference POS| tl on

SetVar openl true
DoCmd openl

I

[ Help

Plan to open First Drawer

NE

Figure 7.1. - Modeling the behaviors of a smart desk for interaction. The hand shapes
and positions, used as end-effectors for actor-object interactions, are used as hand
cluesfor direct user interactions.
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7.3 Smart Object I nteraction M etaphor

Once smart objects are modeled, they can be loaded into the virtud environment.
The interaction information contained in each smart object is used in order to facilitate
the user interaction (see figure 7.1). This gpproach frees the user many difficult low-leve
motor activities.

The user is conddered to be immersed in the virtud environment usng a daa
glove and a Sx degrees of freedom tracker placed on the glove (see figure 7.5). In this
way, the user can fredly move its hand in the virtud environment (however in a resricted
goace). The pogtion of the user in the VE is conddered to be the postion of its virtud
hand representation, captured by the positional tracker.

Two main modules control our interaction metgphor: The smart object controller,
and the interaction manager. The interaction manager is responsble to aid the user to
sdect avalable smat object’'s behaviors, while the controller interprets the sdlected
behaviora indructions.

7.3.1 Interaction Manager

The interaction manager monitors the user pogtion in relation to each object
reference podtion. When the user reaches a certain distance from the object reference
position, we say that the user is ingde the interaction range of the object. In this way, a
dynamic lig of al objectsingde the interaction range of the user is maintained updated.

For each smart object in range, al available interactions are checked in order to
determine those that are closest to the current user’s hand podtion. This is done by
measuring the distance of the usar’s hand postion to the clue hand that each behaviord
plan specifies as a parameter of its fird UserDoGest indruction. A specific plan
ingruction VrClue can be dso used for the same purpose, when it is desrable to define
different hand pogitions for actor interaction and user interaction.

All available behaviors in range have an associated hand clue. All hand clues that
are within a certain distance (in relaion to the user postion) are displayed in the virtud
environment, and are kept in another dynamic ligt. This list keeps a link to dl available
behaviors that are currently in range. Figure 7.2 depicts this architecture.

The interaction manager monitors the postion of the smart objects and the user's
hand, in order to display only the hand clues corresponding to closer available behaviors
in range. Once the user actudly places its hand near the same postion and orientation
gven by a hand clue, the corresponding smart object behavior is selected and interpreted
by the controller.
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b

Interaction Manager:
Monitors positionsin the VE

v

UpdateList 1. Dynamic List
of SOBJsin Range

\/

UpdateList 2: Dynamic List of Hand Cluesfor the
available behaviours of theobjects —| behavioursof L2
inL1, that are closer to the user. are displayed.

Figure 7.2 — The interaction manager module keeps updated a list of smart objects in
range and a list of their available behaviors that are closest to the user. A visibility
distance parameter defines the range to consider.

Note that when the user sdects a behavior, other behaviors may change their
avalability date, wha will cause the interaction manager to dynamicdly update the
displayed hand clues.

User’'sHand

Hand Clues

Figure 7.3 — To close the book or the drawer of the smart desk, the user selects the
corresponding object behavior by placing the hand closer to the desired hand clue.

FHgure 7.3 shows the case where the user’s hand postion is in the range of two
available behaviors of the smart desk: to close a book on it, and to close its first drawer.
To trigger one of these two behaviors, the user sees the two related hand clues, so that by
just putting its hand near a hand clue, the associated smart object behavior will be
triggered.

Figure 7.4 shows another smart object that is a dosser containing six drawers.
The behaviors definitions are smilar to the desk drawer, so that the object has a total of
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sx pairs of behaviors, each pair being rdated to each drawer (open and close). In this
way, only Sx interactions (or behaviors) are available & a same time. Figure 7.4 shows
two moments of the interaction of opening a drawer.

Figure 7.4 — The image on the left shows three hand clues indicating that there are
three available interactions in range to open the drawers. The image on the right
showsthe final state of the drawer after the middle one is chosen.

7.3.2 The Smart Object Controller

When a hand clue is sdected, the smart object controller starts to directly interpret
each indruction of the related behaviord plan, animating the object and updding its
internd date variables, i.e. performing the interaction.

As the fird UserDoGest ingruction found in the sdected behavior serves as the
behavior hand clue, this one is directly skipped. But, in the case where another
UserDoGest indruction is found, the controller will wait the user to place its virtud hand
near to the associated hand clue to then skip to the next ingruction. In this case, dl hand
clues displayed by the interaction manager are turned off. Only the hand clue rdated to
the current UserDoGest being interpreted is displayed.

Smilaly, if a UserGotoPosition ingruction is found, al other clues are turned
off, just disgolaying the god postion clue that the user must reach in order to let the
following ingructions be executed.

The scenaio is dmple the user can navigae in the VE with its virtud hand
seeing many clues being turned on and off on the screen. The undergtanding of which
interaction is related to a clue is obvious. For example, by seeing a hand clue positioned
in the handle of a closed drawer, there are no doubts that the available interaction is to
open the drawer.

In this way, dl interactions ae triggered by means of comparing distances,
minimizing the needed low-level motor activities of the user. Only when two hand clues
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are too close to each other that the hand posture of the user will be used in order to decide
which interaction to select.

7.4 An Interaction Example

When garted with the option of direct user interaction, ACE uses one Ascension
Flock of Birds (FOB) magnetic 3d posgtiona tracker [Motion Star], attached to a Cyber
Touch data glove from Virtud Technologies [VirTech]. To give a 3D visud feedback,
the Stereo Glasses from [Stereographics) is used, attached to a[SGI] machine.

The number of used VR devices is minimized in order to reduce discomfort
during usage, and dso smplify the system setup. For the example showed herg, it is
aufficient that the user wears only one data glove. Figure 7.5 illustrates a user wearing the
needed VR devices.

FOB sensor

Figure 7.5 — A picture of the user with the needed VR devices, ready to use the
system.

Figure 7.6 shows a smulated scene. It is composed of two smart objects with
many posshilities of interactions. The user days in front of the computer screen, and can
see its virtud hand being displaced accordingly to its red hand postion. Depending on
the postion of the virtud hand, some hand clues ae displayed, indicating that
interactions can be selected.

The Cyber Touch data glove contains smal specid devices on the pam and on
eech finger, which can generate a variable vibration sensation. This gives a totd of dx
vibration devices. Such vibrations can be used to give two different kinds of feedback to
the usar: To indicate how many hand dues are displayed, by activating a different
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number of vibration devices. And to indicate that an interaction was sdected, it is
possible to send, for a short period of time, a stronger vibration on al activated vibration
devices.

The use of the vibration devices gives an interesting feedback to the user in cases
where many close interactions exis. Many different uses can be dso designed, but, in the
other hand, sometimes the excessive fedling of vibrations is uncomfortable.

Actvation Distance :| w
Closest Distance :[337666

s

"L

Figure 7.6 —The interaction behavior depends on two parameters: the visibility and the
activation distance. The visibility distance controls the range for showing hand clues,
and the activation distance specifies the minimum distance to consider the user’s hand
triggering a selected hand clue. In theimage, three hand clues are displayed.

7.5 Analyss

In this application example no metaphor for navigaing in large virtud
environments was designed. Jugt the natura tracked hand postion is used, what limits the
interaction space to arather smal VE.

Also, in order to select a desired interaction, only distances measured between the
user’s hand and the clue hands are used. The shape of the user’s virtud hand could dso
be used to distinguish between two hand clues that are too close one to another. This
Stuation does not occur with the showed example.

The objects used in this gpplication have a smple functiondity to open and close
some of ther pats, but more complex smart objects behaviors can dso be used. For
example, manufacturers could provide a smart object description of their products
together with the user’s guide. In this way, the user could see dl possble actions to
perform with the equipment, virtualy seeing what happens when, for indance, some
button is pressed.
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One important aspect of this approach is that smart objects are modded in a
generd way that is independent of the application. This introduces a way to have
dandard interactive object descriptions that can be used to describe many different types
of objects. The key idea is that each object contains a complete description of its possble
interactions, then its up to the application to interpret this description accordingly to its
needs. For example, indde ACE smart objects can be manipulated smultaneoudy by
virtua actors and users (see figure 8.9 in next chapter).

Users that have experienced the system showed that the interaction process is
graightforward to learn and understand. However, the action of getting close to a hand
clue was sometimes not 0 easy to perform without activating surrounding clues. This
factor is strongly related to the specific objects used in the gpplication. In summary, the
facility to activate the clues can be an advantage in some cases, but not in al cases, what
suggests the use of variable thresholds.

7.6 Chapter Conclusion

This chepter presented a high-levd interaction metaphor usng smart objects.
Because of the architecture smplicity, the system eadily achievesinteractive frame rates.

This prototype sysem permits an interesting andyss of the desgned furniture
regarding human factor aspects. Another direct gpplication for this framework is training
the use of complex equipments, by experiencing with them.

Other techniques ill need to be integrated in order to have a complete
operational system for direct interaction. For instance, a low-levd physcd modd would
enhance the correctness of the VE, and a navigation metaphor would be essentid b free
the user from the red world space condraints.
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8 Achievementsand Results

This chapter presents the many results achieved with the proposed smart object
goproach. Sections are divided by type of results, showing and explaining the results
obtained in each different topic, gpplication or integration with other works.

8.1 Modeled Smart Objects

Many different smart objects were modded for many different purposes. Figure
8.1 shows some objects modeled for smulations with the virtua lab room. Figure 8.2
shows anather room with some interactive furniture.

Figure 8.3 shows two actors entering the smart lift. This lift has one of the most
complex functiondity modded with the interaction plans. It was tested to fully handle
three actors entering @ a same time in a same floor. For this, many variable dates are
used to determine dl the possible configurations of access. However, it is not possible to
date that the modded functionality can handle dl combination of cases.

Figure 84 shows a table modded with a dingle interaction that is to propose
actors a fruit on the table to be grasped. Again, state variables are used to control which
are the current free fruits to be grasped.

Regarding the actor animation control, dl actor manipulations in these examples
ae handled with the implemented action push (section 54), showing that a sngle
drategy can serve to many kinds of interactions.

However, one man drawback of this generdization is that the resultant actor
movements are not specificaly desgned for a given dtuation. The point is thet it would
not be possble to obtan complex, and large, interactive environments without
goproaching the problem with a smple solution. Moreover, experience showed that
people working on behaviord animation that needed to use smart objects, were not
looking for a highly parameterized interaction with redigic low-levd motor activities,
and smple, specidly fast, solutions were dways preferred.
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Figure 8.1 — Four images showing different smart objects interactions. Such objects
are part of the virtual lab simulated in ACE, with many different interactive objects.

Figure 8.2 — Interactive furniture. The desk model has many possibilities of
interaction, including opening the book and moving the lamp.
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Figure 8.3 — Two actors entering the smart lift.

Figure 8.4 — Aninteractive table that always proposes free fruits to be grasped.

8.2 Urban Environment Simulations

A gmat object reasoning and animation library was specificdly developed for
integration with a sysem for simulation of urban environments. This sysem is the result
of an integration of many different modules a module managing environmental data, a
module for crowd behaviora control, a rule-based system that generates sub-tasks from a
hign-level given god, and smat objects. These modules are interconnected using a
message protocol passing through a central controller. For the detailed description of this
system, see [Farenc 2000]. Figure 8.5 shows a snapshot of a smulation obtained with this
sysem.
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Figure 8.5 — A snapshot of an urban simulation application. The image shows a crowd
of people inside atrain station. Actors of the crowd can interact with automatic doors,
escalators, and the lift shown.

Figure 8.6 - Example smart objects that can interact with many actors at a sametime.

Figure 8.6 shows some sngpshots of a smulation involving crowds [Musse 1997],
which virtud actors can interact with smart objects. Smart objects are consdered an
action point for the behaviord modd of the crowd. Then, each time an individud actor
reaches an interaction point, the actor's control is released from the crowd behaviord
model, and the smat object interaction plan is interpreted. When the interaction is
finished, the actor is back under the control of its crowd behaviors.

8.3 Behavioral Animation

ACE has shown to have a good flexibility to be used for many different
goplications, in paticular regarding behaviord animation research. A virtua computer
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lab with around 90 smart objects, each one containing up to four smple interactions, was
modeled and can be animated in ACE.

In this environment, actors were created indde ACE Python threads, controlling
navigation, gestures played as key-frame sequences, smart object interactions, and other
behaviord modules written in Python. One example of a Python module is an idle state
thread developed in the scope of the work of [Monzani 2000]. Whenever the actor is
detected to stop acting, the idle thread is activated, sending specific key-frames and facid
expressons to the actor, according to the actor's emotiond state, smulating a human-like
idle state (see figure 8.7).

Figure 8.7 — The idle thread in action: different facial expressions and head
movements are controlled in order to achieve amore human-like behavior.

The Ligp agent-oriented behaviord modd IntelMod [Caicedo 1999] was
connected with the ACE Python threads by means of a TCP/IP connection. This
connection dlows Lisgp rules to send orders to the actors in ACE. A dmple test
storyboard was then written in Lisp: a woman that has access to the virtud lab comes in a
day-off to sted some information. So she enters into the room, turns on the lights, read in
a book where is the diskette she would like to stedl, then she takes the diskette, turns off
the lights and go out of the room. During dl the smulation, the woman is nervous about
being discovered by someone, and so the idle state module was set to synchronize many
head movements and some smal specific facid expressons to demondrate this date.
Figure 8.8 shows some sngpshots taken from this smulation.
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Figure 8.8 — Some snapshots of a simulation with ACE inside the virtual lab. Lisp
plans are used to follow a simple storyboard, and orders from the Lisp behavioral
module are sent through TCP/IP to control the actor in ACE. In parallel with the Lisp
control, a Python thread runs to control the actor’sidle state.

8.4 Virtual Life Smulations

A motivationdl modd for the action sdection problem was implemented in
Python specificdly for virtud human actors [Sevin 2001]. This modd is composed of a
free flow hierarchy [Tyrrd 1993], associated to a hierarchicd classfier sysem [Donnart
1996]. Such a modd permits to take into account different types of motivations, and aso
information coming from the environment perception.

The main used motivations are to edt, drink, rest and to use the toilet. Each time
one of these motivations becomes “urgent”, there is a relative object interaction to be
sected that will “sisfy” the motivation, lowering its urgency levd. When no
motivations are urgent, then the actor will go to work. Figure 8.9 shows a snapshot of the
scenario Smulated with ACE.
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= % |a | = ACE - Agent Common Environment

Figure 8.9 — A snapshot of avirtual life simulation achieved with ACE. The curves on
the left (implemented in Python) show the variation of the internal motivational
parameters of the virtual human, at different levelsin the action selection model.

All object interactions performed in the smulation ae done usng smart object
cgpabilities, usang the low level motions generated by the waking motor, and the inverse
kinematics module. The scenario contains a sofa where the actor dts to rest, a cup of
coffee and a hamburger that the actor is able to grasp and bring them to its mouth,
satisfying the et and drink motivations. The actor can dso gt at the toilet, and work with
a computer. The interaction to work with the computer involves dtting on a chair, turning
on the computer, putting the hands on the keyboard and dso moving the mouse. Figure
8.10 shows a snapshot of the actor working with the computer. The details of such smart
objects are discussed in a recent workshop publication [Kalmann 2000b].
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Figure 8.10 — Testing object interactions relative to the work motivation.
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8.5 Direct Interaction

Chapter 7 introduced the approach used to let red users, wearing VR devices, to
interact with smart objects. As a result of the smart object architecture, it is draght
fowad to have in ACE diffeent kinds of users immersed in the same virtud
environment and interacting with objects.

Figure 811 shows, in the same scenario exposed in chapter 7, a virtud actor
interacting with objects together with the user wearing its data glove.

Figure 8.11 — Smart objects allow simultaneous interaction with many kinds of users.
The image shows a virtual actor opening a drawer, and a “flying hand”, which is the
graphical representation of thereal user’s data glove.

8.6 Augmented Reality Applications

A pat of the smart object framework was integrated with VHD system [Sannier
1999] for the andyds of human factors related to object design and prototyping. VHD is
a dient-sarver system where the sarver maintains an augmented redity environment, and
clients can connect to the environment to control smulations. A Python based client was
implemented which can read smart object files (trandated to python). This Python client
can thus send to the server the needed interaction information to control interactions.

This framework was tested to evauate modifications in the dedgn of exigting
objects. As example, a SGI computer was modeled with the interaction information to
open the CD player drawer. Then, with Python scripts, different postions for the CD
draver could be specified giving different actor interaction results. To enhance the
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redity, the entire background scene is taken from a rea input video. Just the new CD
drawer and the virtud actor are virtua entities. This framework was presented in a recent
publication [Bacisoy 2000], and an image showing an obtained result is shown in figure
8.12. For other augmented redlity applications, see [Bacisoy 1998].

Figure 8.12 — An actor interacting with a smart object in an augmented reality
environment. The computer and the background scenario are real. A virtua CD
drawer was put in a lower position, to be tested as a design change in the computer.
The virtual actor can interact with the added virtual part, giving a feedback for the
design change. Such framework focuses simul ation-based design of objects.
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9 Conclusions

This find chapter presents the main conclusions about the proposed smart object
gpproach. Each previous chapter of this thess dready exposed some conclusions related
to each specific sub-topic, so that a more globa view of the work is done here. In
addition, limitations and future work directions are discussed.

9.1 Main Conclusions

The smart object gpproach presented in this thess provides a consstent definition
of how objects are animated, and how actors can interact with them. The approach was
successfully tested in the ACE smulator for different agpplications, and many relaed
topics were examined.

The main concluson obtained from this work is that, in order to achieve complex
gmulated environments, an extendible module organization, with coherent inter
communication protocols need to be defined. This is exactly the approach used in this
thess object interaction is defined in smart objects, which users can access interpreting
pre-defined interaction plans.

The man point is where to put the separation line between modules. How far
actors should decide what to do by their own, and how far they should follow pre-defined
interaction indructions. Smilar issues, regarding pre-defined data from motion capture
versus caculated data, gppear dso when animating actors for object manipulation. For
indance, the used inverse kinematics procedures cover a wide range of manipulation
configurations, but pre-recorded keyframe motions would give a much more redidic
movement. This ggp between motioncapture animation and smulation/procedural
animation has been recognized as a mgor problem in computer graphics [Foley 2000].

In this thess animaions were achieved usng dl pre-defined information of the
interaction plans and using sandard animation techniques to control actors. Such design
decisons lead to easer control of smulations. In generd, the smart object gpproach
introduces the fallowing characterigics in a smulaion system:

- 115-



Decentrdization of the animation control. By following object and actor
behaviors stored in smart objects, many object-specific computation is released from the
main animation control module.

- Reusability of designed smart objects. A smart object can be modeled for some
gpecific gpplication, and used in many others. Moreover, it can be easly updated if
needed to achieve the requirements of a new application.

- A dmulation-based design is naturdly achieved. The designer can take control
of the loop: design, test and re-design of objects. A designed smart object can be easly
inserted into a smulation program, which gives feedback for improvements in the design.

Easy connection with higher-levd behaviord modules. Interactions are
identified with meaningful text tags and smart objects can contain any kind of semantic
information. An example is the easy connection of the interactive naturd language shell
of ACE.

- Smart objects can be loaded in smulators as behaviord plug-ins. In this way,
objects can be easly sdected and loaded to form a new interactive scenario. This feature
was successfully achieved with ACE. Behaviorad plug-ins have been identified to be a
current trend in animation systems [Badler 2000].

Having the low-levd object interaction issues solved in the smulaion system,
amulaors can concentrate on animating the behavior of actors and achieving smulations
with higher complexity. ACE capabilities have shown to be suitable for many types of
goplications, 0 that the system has been used as a smulaion development platform for
other internal projectsin the lab.

9.2 Limitations

Many details can Hill be adjusted in the developed software to better attend other
goplications. For example, the command to trigger an object interaction could receive
more parameters, like to permit actors to choose only to open 50% of a drawer. Other
extensons would be to have both hands of an actor manipulating a same object, or to
better define smart objects containing other smart objects, for instance to better smulate
putting things insde cupboards or drawers Many other possble extensons could be
liged, but they are more rdaed to implementation extensons regarding the intended
smulation context than red limitations of the proposed architecture.

However, three main limitations with the proposed gpproach have been identified:

The qudity of the actors movements is directly related to the pre-defined
geometric parameters stored in smart objects. For ingance: if podtions to reach with the
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hand are not close enough, weird postures are generated. Also, actors can happen to
collide with object parts during manipulation, depending on the defined positions to walk
and hand locations to reach. No collison detection techniques were used in thisthesis.

- The proposed actor animation control does not update the position of the actor
during an interaction. This limitation is noticed with manipulations where the actor's
hand needs to follow some object part during long distances. For ingance, it is not Smple
in red life to grab a door's handle and open it, without waking a the same time. Smilar
limitations regard more complex issues, like being able to take some object without
needing to stop waking, etc. In fact, these limitations come from the organization of the
used animation tools, which target different kinds of actor motions. One direction to
overcome this limitation would be to smplify robot motion planning techniques in order
to alow red time control of the full articulated actor bodly.

Each defined interaction runs without intervention until completion. This is a
direct consequence of the man desgn choice of easy controlling actor-object
interactions. when an interaction is sdected, adl needed information to complete it is
dready defined. For ingance, if the complete interaction of taking the lift is sdected, the
actor will not be able to change of mind when it is indde the lift cabin. The actor will
need to wait until the end of the interaction to then choose ancother one. To minimize this
effect, long interactions can be divided into smaler ones. However, it is dways needed to
well define what is congdered to be a*“primitive interaction” in the context.

9.3 Futurework

Some of the man research directions to extend the proposed smart object
framework are listed here.

- Data dructures are the basis of dl computer systems. Many important geometric
dgorithms for multi-resolution  changing, deformable modds, morphing, subdivison,
collison detection, motion planning, eic, need specific and efficient data Sructures. To
integrate dl such dgorithms in a dngle and coherent interactive virtud environment, a
data dructure representation suitable for al cases and with acceptable memory
requirements is needed. The proposed star-vertex structure aready addresses some of the
issues involved, but research gill have to be done in order to integrate each agorithm
with a common data structure, and make them to work together. This would enable to
have, for ingance, an actor's skin envelope to be deformable, displayed in multi-
resolution, with possble morphing effects and dso able to efficiently answer to callison
detection queries. Related to this issue, there is dso the problem of data sructure
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converson, specificdly from standard formats like VRML, which uses a large st of
possible descriptions with no guarantees concerning the modd vdidity.

- Modding object functiondity and behaviors in generd is a complex issue. The
smart object representation uses a smple script language organized in interaction plans to
describe the object functiondity. State machines and grgphicd programming are dso
used. However, a generd, intuitive and smple way to define functiondities and
behaviors is dill a topic of intense research. Another issue is to investigate possble
dandards and protocols for connection and communication of entities containing
functiondity. Such issues, and other related topics, are mainly addressed in the agents
fidd.

FiIl the gap between motion-capture animation and sSmulation/procedurd
animaion. Some ideas are to mix pre-recorded motion (database driven or not), corrected
with ample interpolation or inverse kinematics methods. The god is to resch redigtic
humant like movements, parameterized for awide range of object manipulation.

- Algorithms for planing low-level manipulation procedures. Rather then dways
usng pre-defined geometric parameters for generd manipulations, robugst agorithms ill
need to be developed in order to generate redistic human motions, taking into account
collison detection with the manipulation space, and automatic decison and dynamic
update of hand configurations and placements. For indance, the actor's hand
configuration should change during the movement of opening a drawer, and the same for
the whole skeleton configuration. Opening a door redidicaly would aso involve a
combination of waking and hand manipulaiion. One posshle approach for future
investigations is to adapt human condrants to robotics planning agorithms, as the one
introduced by [Simeon 2000].

Integrate low-level and high-level virtud redity interaction metaphors. Physica
models exist that can be used to drive redigtic object interactions, and methods have been
proposed for the low leve displacement of objects. However, it is Hill a chdlenge to
obtain redidic virtud environments where the user can redly fed immersed indde
touch, fed and manipulate complex objects, wak and peform tasks together with
autonomous actors, etc, and dl of thisin an intuitive way.
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10 Appendix

10.1Primitive Plans I nstructions

This section ligs the current available set of behaviord indructions that can be
used to form smart object interaction plans:

UserAddProp <text> : Gives any text property to the smart object user. The text is
converted to lower case on all property operations.

UserDelProp <text> : Removes a property from the smart object user. The text is
converted to lower case on dl property operations.

UserNumProp <var> <text> : Put in var the number of smart object user properties
<text> found.

UserGoTo <pos> : Move the smart object user to pos. For a virtud human user, waking
action should be used. If there is more than one postion with the same name and if there
is dready some user associated with this pogtion, the position having the same name, but
with less users associated is chosen. This B useful for interactions with many users a the
sametime.

UserGetClosest <pos> <var> <podist> : Compares dl postions in podist to the smart
object user current postion, saving in pos the closest one. Also, the index of the selected
position in the Ist is saved in var (1,2,...,n). Note that pos and var are not affected by the
Usalndex indruction as they are return vaues. Also, if different pogtions with a same
name exigt, only the first one is considered.

UserDoGest <gest> <hand> : Will make the smart object user move to a close enough
pogtion (if necessary) and will perform the gesture with the hand specified. The hand
parameter isjust not considered when it is not applicable.

UserAttachTo <part> : Attach the smat object user to follow the movements of some
smart object part.

UserDetach : Detach the smart object user from any previoudy attached smart object
part.

WaitVar <varl> <varZ> : Will make the user or the controller to stop interpreting its plan
until the variable varl becomes equa to var2.
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DoCmd <cmd> : Will make the smart object execute the command cmd.
SetPos <posl> <pos2> : Makes posl=poz, i.e., put the value of pos2 in posl.
SetVar <varl> <var2> : Changesthe state variable varl to var2, i.e. varl=var2.
InitVar <var> <vadue> : Changes the state variable var to value.

CheckVar <varl> <var2> : Checks if varl==var2 and stops the behavior execution in
cae of fase reault, returning to the caler behavior, if any. If it is used in a behavior that
isnot Object Control neither Private it dso determines the avallability of the behavior to
the smart object user. In this case, just the first CheckVar ingtruction found is considered.

AddVar <varl> <var2> : Addsvar2 to thevariable var, i.e. varl+=var2.
IncVar <var> <vaue> : Addsvaueto thevariable var, i.e. varl+=value.

WaitUserProp <text> : Makes the current smart object control module to wait its plan
interpretation until all smart object users have the property text.

Private : Indicates that the current behavior will not be user sdectable. Can be put
anywhere in the behavior, but better asthe firgt instruction.

ObjectControl : Indicates that the current behavior will be executed dl the time by the
smart object. This is expensve to use, and cannot contain user-related ingructions. If
more then one exids, they run in pardld. Can be anywhere in the behavior, but better as
the firgt ingtruction.

Uselndex <var> : Index the parameters of only the next affect able ingtruction if var>1. If
the indexed parameter name do not exis, the norma name is used. For example, if we
have “Usalndex ind” where ind is a vaiable containing vadue 2, the indruction
“UserGoTo pos’ will be trandated to “UserGoTo pos 2’. Indructions affected are
UserGoTo, UserGetClosest, UserDoGest, UsarWaitVar, UserAttachTo, DoCmd, SetPos,
SetVar, CheckVar, AddVar, DoBh, If and Elself.

DoBh <bh> : Executes the behavior bh. Works as cdling a subroutine.

If <varl> <var2> : Start a conditiona block, see dso: Elsalf, Else and Endlf.
Elsel f <varl> <var2>: Continues a conditiona block, see do: If, Else and Endif.
Else : Continues a conditional block, see dso: If, Elself and Endif.

EndIf : Ends aconditiond block, see dso: If, Elself and Else.

Pause : Forces the amulator to leave the interpretation of this plan, an so to update the
display and other gpplication modules. This is sometimes an important keyword to
guarantee synchronization of many plans being interpreted in pardld.

VrClue : Defines a gesture to be the virtud redity interaction clue. These clues are used
in the beginning of each behavior, defining the pogtion of the virtud hand to trigger the
behavior.

PythonFunc : Defines a cdl to an externd defined python function. The function cdl is
dored asatext string and it is up to the smulator to interpret it when needed.
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10.2Example of Smart Object Description Files

This section shows the smart object description file generated by somod to three
smart objects showed in section 3: an automatic door, adesk, and alift.

10.2.1 autodoor.so
SMART OBJECT DESCRI PTI ON

PARTS

# nanme filenanme | mass masscenter
al | aut odoor_nmain.iv

partl aut odoor _pl.iv

part 2 aut odoor _p2.iv

END # of parts

HI ERARCHY

# parent sun

ROOT al

ROOT partl

ROOT part?2

END # of hierarchy

ACTI ONS

# nane type and data (matrix, rot:cent/axis/ang)
transl mat ri x

1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 -826.997253 1.00

trans?2 matri x

1.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00

0.00 0.00 1.00 0.00

0.00 0.00 -1651.752319 1.00
END # of actions

POSI Tl ONS

# nane position / orientation

pos_in -645.00 0.00 150.00 1.00 0.00 0.00
pos_in -645.00 0.00 600.00 1.00 0.00 0.00
pos_in -960.00 0.00 260.00 1.00 0.00 0.00
pos_in -940.00 0.00 730.00 1.00 0.00 0.00
pos_out 450.00 0.00 150.00 1.00 0.00 0.00
pos_out 450. 00 0.00 600.00 1.00 0.00 0.00
pos_out 670.00 0.00 260.00 1.00 0.00 0.00
pos_out 720.00 0.00 730.00 1.00 0.00 0.00
pos_in_2 450.00 0.00 150.00 -1.00 0.00 0.00
pos_in_2 450. 00 0.00 600.00 -1.00 0.00 0.00
pos_in_2 660.00 0.00 270.00 -1.00 0.00 0.00
pos_in_2 720.00 0.00 740.00 -1.00 0.00 0.00
pos_out _2 -645.00 0.00 150.00 -1.00 0.00 0.00
pos_out _2 -645.00 0.00 600.00 -1.00 0.00 0.00
pos_out _2 -970.00 0.00 270.00 -1.00 0.00 0.00
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pos_out _2 -930.00 0.00 720.00 -1.00 0.00 0.00
pos 0.00 0.00 0.00 0.00 0.00 0.00
END # OF POSI Tl ONS

COVIVANDS
# nane action part i ni end i nc
opendoor transl partl 0. 00 1.00 0. 0500
opendoor trans2 part?2 0. 00 1.00 0. 0500
cl osedoor transl partl 1.00 0. 00 0. 0500
cl osedoor trans2 part 2 1.00 0. 00 0. 0500
END # of commands
VARI ABLES
state_open 0. 00
st at e_passi ng 0. 00
t np 0. 00
true 1.00
fal se 0. 00
one 1.00
END # of vari abl es
# BEHAVI ORS :
BEHAVI OR open
Private
I ncVar state_passing 1.00
CheckVar state_open fal se
Set Var state_open true
DoCd opendoor
END # of behavi or
BEHAVI OR cl ose
Private
I ncVar state_passing -1.00
CheckVar state_open true
CheckVar state_passing fal se
Set Var state_open fal se
DoCd cl osedoor
END # of behavi or
BEHAVI OR go_1 2
Private
User GoTo pos_in
DoBh open
User GoTo pos_out
DoBh cl ose
END # of behavi or
BEHAVI OR go_2_ 1
Private
User GoTo pos_in_2
DoBh open
User GoTo pos_out _2
DoBh cl ose

END # of behavi or

BEHAVI OR ent er
User Get Cl osest pos tnp pos_in,pos_in_2
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| f tnmp one

DoBh go_1 2
El se
DoBh go 2 1
Endl f

END # of behavi or
# END OF BEHAVI ORS

END # of file

10.2.2 desk.so
SMART OBJECT DESCRI PTI ON

I NFO

# name

desk_wi th_drawers
END # of info

PARTS

# nanme filenanme | mass masscenter
desk desk_main.iv

drawer 1 desk_drawerl.iv

dr awer 2 desk_drawer2.iv

door desk_door.iv

| anp desk_lanp.iv

book desk_book. iv

bookcover desk_book_cover.iv

END # of parts

ACTI ONS
# nane type and data (matrix, rot:cent/axis/ang)
transl ate mat ri x

1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 200.00 1.00

open_book rotation
-91. 257004 983.854980 -0.001039 0.00 0.06 1.00 1.800000

nove_| anp rotation
-624.843018 764.047974 14.526200 0.00 1.00 0.00 0.500000

open_door rotation
801. 242004 956. 505981 376. 069000 0.00 1.00 0.00 0.800000
END # of actions

GESTURES
# nane filenane actionfile part
gestl Dr awer Pul | Act i onDef aul t drawer 1

false false 0.080000

-0. 360000 -0.110000 -0.930000 0.00
-0. 060000 0.990000 -0.100000 0.00
0. 930000 0. 020000 -0.360000 0.00
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-500. 00 893. 711975 565.882996 1.00
Ri ght HHndGeom f al se

gest 2 Dr awer Pul | Parti al Spi ne dr awer 2
false false 0.080000

-0.437588 -0.356673 -0.825409 0.00

-0.296295 0.923888 -0.242147 0.00

0. 848953 0. 138604 -0.509963 0. 00

-464. 392761 721.660645 557.591492 1.00

Ri ght HHndGeom f al se

gest3 Dr awer Pul | Act i onDef aul t door
false false 0.080000

0.592971 -0.190616 -0.782336 0.00

0. 059617 0.979299 -0.193418 0.00

0. 803014 0. 068050 0.592061 0.00

337.719543 894. 270264 577.408081 1.00

Ri ght HandGeom true

gest 3cl ose Dr awer Pul | Act i onDef aul t door
false false 0.080000

0. 350000 -0.890000 -0.300000 0.00

0. 430000 -0.130000 0.890000 0.00

- 0. 830000 -0.440000 0.340000 0.00

395. 154999 955. 836975 541. 934021 1.00

Ri ght HandGeom true

gest | anp Dr awer Pul | Act i onDef aul t I anp
false false 0.080000

0. 310000 -0.370000 -0.880000 0.00

- 0. 950000 -0.070000 -0.310000 0.00

0. 050000 0.930000 -0.370000 0.00

-450. 933990 1283. 089966 383.074005 1.00

Ri ght HandGeom f al se

gest book Dr awer Pul | Act i onDef aul t bookcover

false false 0.080000

- 0. 040000 0. 040000 -1.00 0.00

- 0. 040000 1.00 0.040000 0.00

1.00 0.040000 -0.040000 0.00

91. 553673 1048. 533203 385.387939 1.00
Ri ght HandGeom f al se

END # of gestures

POSI Tl ONS

# nane position / orientation

pos_desk 0.00 0.00 750.00 -0.050367 -0.001221 -0
pos1l 0.00 0.00 750.00 -0.050367 -0.001221 -0
pos2 0.00 0.00 750.00 -0.050367 -0.001221 -0
pos3 0.00 0.00 750.00 -0.050367 -0.002317 -0
END # OF PCSI Tl ONS

COVMANDS

# nane action part i ni end
open_1 transl ate drawer 1 0. 00 1.00
close_1 transl ate drawer 1 1.00 0. 00
open_2 transl ate dr awer 2 0. 00 1.00
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cl ose_2

open_3
close_3
nmove_| anp

nove_| anp_back

open_book
cl ose_bhook

transl ate
open_door
open_door
nmove_| anp
nove_| anp
open_book
open_book

dr awer 2
door

door

| amp

| anp
bookcover
bookcover

END # of commands

VARI ABLES
open_1
open_2
open_3

open_book
| anpnoved

true
fal se

. 00
00
00
00
00
00
. 00

opoocooo

END # of vari abl es

# BEHAVI ORS :

BEHAVI OR nove_I| anp

CheckVar
Vr Cl ue
User GoTo

User DoGest

Set Var
DoCnd

| anpnoved fal se
gestl anp

posl

gestl anp LeftHand
| anpnoved true
nove_| anp

END # of behavi or

BEHAVI OR nove_| anp_back

CheckVar
Vr Cl ue
User GoTo

User DoGest

Set Var
DoCnd

| anpnoved true
gestl anp

posl

gestl anp LeftHand
| anpnoved fal se
nove_| anp_back

END # of behavi or

BEHAVI OR open_book

CheckVar
Vr Cl ue
User GoTo

User DoGest

Set Var
DoCnd

open_book fal se
gest book

posl

gest book LeftHand
open_book true
open_book

END # of behavi or

BEHAVI OR cl ose_book

CheckVar
Vr Cl ue
User GoTo

User DoGest

Set Var
DoCnd

open_book true
gest book

posl

gest book LeftHand
open_book fal se
cl ose_book

END # of behavi or

BEHAVI OR open_1
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CheckVar open_1 fal se

Vr Cl ue gestl

User GoTo posl

User DoGest gestl LeftHand
Set Var open_1 true
DoCnd open_1

END # of behavi or

BEHAVI OR cl ose_1

CheckVar open_1 true
Vr Cl ue gestl

User GoTo posl

User DoGest gest1l LeftHand
DoCnd close_1

Set Var open_1 fal se

END # of behavi or

BEHAVI OR open_2

CheckVar open_2 fal se
Vr Cl ue gest2

User GoTo pos2

User DoGest gest2 LeftHand
Set Var open_2 true
DoCnd open_2

END # of behavi or

BEHAVI OR cl ose_2

CheckVar open_2 true
Vr Cl ue gest 2

User GoTo pos2

User DoGest gest 2 LeftHand
DoCnd close_2

Set Var open_2 fal se

END # of behavi or

BEHAVI OR open_3

CheckVar open_3 fal se
Vr Cl ue gest3

User GoTo pos3

User DoGest gest 3 Ri ght Hand
DoCnd open_3

Set Var open_3 true

END # of behavi or

BEHAVI OR cl ose_3

CheckVar open_3 true

Vr Cl ue gest3

User GoTo pos3

User DoGest gest 3cl ose Ri ght Hand
DoCnd close_3

Set Var open_3 fal se

END # of behavi or
# END OF BEHAVI ORS

I NTENT
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Desk with many interaction capabilities:
and a lanp. Contain interaction information for
END # of intent

END # of file

10.2.3 lift.so
SMART OBJECT DESCRI PTI ON

PARTS

# name filename

lift lift_main.iv
door 1l lift_doorll.iv
door 1r lift_doorlr.iv
door 2r lift_door2r.iv
door 2| lift_door2l.iv
cabi ne lift_cabine.iv
buttonl lift_button.iv
but t on2 l[ift_button.iv

END # of parts

MATRI CES
# nane
buttonl
0.163373 0.00 0.00 0.00

0.00 0.163373 0.00 0.00

0.00 0.00 0.183531 0.00

2260. 166992 1192. 737793 1525. 454346 1. 00

type and matri x data

button2

0. 197661 0.00 0.00 0.00

0.00 0.197661 0.00 0.00

0.00 0.00 0.246796 0.00

737.667236 6565.471680 -1533.418945 1.00
END # of matrices

ACTI ONS
# nane
ac_up
1.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00

0. 00 5400.00 0.00 1.00

type and data (matrix,
mat ri x

0.00 0.00

ac_openr mat ri x
1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00

550. 00 0.00 0.00 1.00

ac_openl matri x
1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
-550.00 0.00 0.00 1.00
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ac_pressl
1.00 0.00
0.00 1.00
0.00 0.00
0.00 0.00

ac_press2
1.00 0.00
0.00 1.00
0.00 0.00
0.00 0.00
END # of a

GESTURES
# nane
press

false fa

matri X

0.00 0.00
0.00 0.00
1.00 0.00

-50.00 1.00

matri x

0.00 0.00
0.00 0.00
1.00 0.00
50.00 1.00
ctions

filename

But t onPr ess

Se

0. 080000

0.311908 0.083569 -0.946429 0.00
-0. 053292 0.996094 0.070391 0.00
0.948613 0.028482 0.315144 0.00
2192. 496094 1231.207886 1716.597168 1.00
Ri ght HandGeom f al se

press_2

false fa

But t onPr ess

Se

0. 080000

actionfile part foll ow
Act i onDef aul t buttonl true
Act i onDef aul t but t on2 true

-0.193824 -0.102024 0.975717 0.00
0. 116514 0.985143 0. 126156 0. 00

-0.974093 0.138137 -0.179056 0.00
759. 944946 6623. 169434

Ri ght HandGeom

END # of ¢

POSI TI ONS
# nane

pos_press
pos_enter
pos_enter
pos_goout
pos_goout
pos_goout

pOS_press_
pos_enter _
pos_enter _
pos_goout _
pos_goout _
pos_goout _

ne
ne
ne
ne
ne
ne

pos_cabi
pos_cabi
pos_cabi
pos_cabi
pos_cabi
pos_cabi
pos

_2
_2
_2

fal se
estures

-1735. 859863 1. 00

position / orientation

1850.
1290.
1800.
1290.
1613.
1290.
2 1100.
2 1400.
2 1100.
2 1935.
2 1613.
2 1935.
1613.
1290.
1800.
1613.
1450.
1750.

0. 00

END # OF POSI TI ONS

COVIVANDS

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

. 00
00
00
00
00
00

coocooo0

5400.
5400.
5400.
5400.
5400.
5400.

0. 00
0. 00
0. 00

5400.
5400.
5400.

1935.
2300.
2600.
2500.

00 0.347226 -0.001221 -0.937781

00 -0.050367 -0.003516 -0.998725

00 -0.151799 -0.003516 -0.988405

00 -0.050183 -0.001221 0.998739
2000. 00 -0.050183 -0.001221 0.998739
1700. 00 -0.050183 -0.001221 0.998739

00 -2100.00 -0.250528 -0.054506 0.966574
00 -2300.00 0.050774 -0.001221 0.998709
00 -2581.00 0.050774 -0.001221 0.998709
00 -2600.00 0.050574 -0.024041 -0.998431
00 -2258.00 0.250901 -0.000185 -0.968013
00 -1835.00 0.050574 -0.024041 -0.998431
-550. 00 0.151031 -0.000185 -0.988529
-123.00 0.151031 -0.000185 -0.988529
445.00 0.151031 -0.000185 -0.988529

00 323.00 0.050774 -0.001221 0.998709

00 -323.00 0.050774 -0.001221 0.998709
00 -645.00 0.050774 -0.001221 0.998709

0.00 0.00 0.00 0.00 0.00
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# nane action part
cnmd_cabt o ac_up cabi ne
cnd_cabto_2 ac_up cabi ne
cnd_open ac_openr door 1r
cnd_open ac_openl door 1
cmd_cl ose ac_openr door 1r
cnd_cl ose ac_openl door 1
cnd_open_2 ac_openl door 2r
cnd_open_2 ac_openr door 2
cnd_cl ose_2 ac_openl door 2r
cnd_cl ose 2 ac_openr door 2
cnd_press ac_pressl buttonl
cnd_press_2 ac_press2 button2
cmd_unpress ac_pressl buttonl
cnmd_unpress_2 ac_press?2 button2

END # of commands

VARI ABLES
open 0. 00
open_2 0. 00
fl oor 1.00
fal se 0. 00
one 1.00
t wo 2.00
true 1.00
t np 0. 00

END # of variables

# BEHAVI ORS :

BEHAVI OR open
CheckVvar open fal se
Set Var open true
DoCnd cnd_open

END # of behavi or

BEHAVI OR open_2

CheckVar open_2 fal se
Set Var open_2 true
DoCrmd cnd_open_2

END # of behavi or

BEHAVI OR cl ose

CheckVar open true
Set Var open fal se
DoCnd cnmd_cl ose

END # of behavi or

BEHAVI OR cl ose_2

CheckVvar open_2 true
Set Var open_2 false
DoCnd cnd_cl ose_2

END # of behavi or

BEHAVI OR press

User GoTo pos_press
User DoGest press Ri ght Hand
DoCrmd cnd_press

PPOORPOOREOOORT
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. 00

00
00
00
00
00
00
00
00
00
00
00
00

. 00

eoRPOoORFPOORREREO

. 00
.00

00
00
00
00
00
00
00
00
00
00
00

. 00

. 025000
. 025000
. 050000
. 050000
. 050000
. 050000
. 050000
. 050000
. 050000
. 050000
. 050000
. 050000
. 050000
. 050000



DoCnd
END # of behavi or

cnd_unpress

BEHAVI OR press_2

User GoTo pos_press_2

User DoGest press_2 Ri ght Hand
DoCnd cnd_press_2

DoCnd cnd_unpress_2

END # of behavi or

BEHAVI OR noveto_2

CheckVar fl oor one
Set Var fl oor two
DoCnd cnd_cabto_2
END # of behavi or
BEHAVI OR npvet o
CheckVar floor two
Set Var fl oor one
DoCnd cnd_cabto

END # of behavi or

BEHAVI OR nove_cabi ne

| f fl oor one
Set Var floor two
DoCnd cnd_cabto_2
El se

Set Var fl oor one
DoCnd cnd_cabto
Endl f

END # of behavi or

BEHAVI OR enter_12

DoBh

DoBh

DoBh

User GoTo
DoBh
User Att achTo
DoBh
User Det ach
DoBh

User GoTo
DoBh

END # of behavi or

BEHAVI OR enter_21

DoBh

DoBh

DoBh

User GoTo
DoBh
User Att achTo
DoBh
User Det ach
DoBh

User GoTo

press
novet o

open
pos_cabi ne
cl ose

cabi ne
nmove_cabi ne

open_2
pos_goout _2
close_2

press_2
nmoveto_2
open_2
pos_cabine_2
cl ose_2

cabi ne
nove_cabi ne

open
pos_goout
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DoBh cl ose
END # of behavi or

BEHAVI OR ent er
User Get Cl osest pos tnp pos_press, pos_press_2

| f tnp one
DoBh enter_12
El se
DoBh enter_21
Endl f

END # of behavi or

BEHAVI OR goi n
User GoTo pos_cabi ne
END # of behavi or

BEHAVI OR goi n_2
User GoTo pos_cabi ne_2
END # of behavi or

BEHAVI OR goout
User GoTo pos_goout
END # of behavi or

BEHAVI OR goout _2

User GoTo pos_goout _2
END # of behavi or
# END OF BEHAVI ORS

END # of file

10.3ACE Python Interface Description

s = cmdline () : Returns a gring with the arguments passed to ACE in the command line.
Arguments that ACE understands are not included in the string.

viewfloor (onoff ) : Turnsonif 1 isthe argument, off otherwise.

viewaxis (onoff ) : Turnson if 1 isthe argument, off otherwise.

setcamera ( vx, vy, vz, fx, fy, fz [roll, fovx, fovy] ): Sets camera parameters view point,
focus point, roll, and fovs. Defaults are roll=0, fovx=45, fovy=-1.

setlight (id, X, y, z r, g, b)) : Ses light id. By default only ids O or 1 are ok. (x,y,2)
definesthe light direction, and (r,g,b) the color in the range [0,1] for each component.

update ( [n] ): Makes the screen and the smulation to be updated. n specifies how many
times to update, default==1.

f = lastframe () : Returnsthe last frame number updated.
setcury (y) : Setsthe current y position.
y = getcury () : Gets the current y position.
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loadfile ( filename) : Loads an iviwrl file and displaysit.

avoidwalkcol ( onoff, [range, fov, gap, freq, sleep] ): Turns on/off a ample colligon
avoidance during walk. Default is off, default parameters: range=1400, fov=10, gap=700,
freq=3, deep=>5.

n = numvos () : Return the number of virtud objects. All ids created are insde the
interval O<=id.

vo = vonew ( hame, filename, [px, pz, ox, oy, oz, color, d1, d2, d3] ) : Creates avirtud
object solid or from a iviwrl file a pogtion (px,cury,pz) and orientation (0x,0y,0z). If
filename == 'CUBE, (d1,d2,d3) = (lengthheightwidth). If filename == 'CYLINDER,
(d1,d2) = (radiusheight). If filename == 'SPHERE,, (d1) =(radius). String color can be:
black, red, darkred, green, darkgreen blue, darkblue, yedlow, darkyellow, magenta,
darkmagenta cyan, darkcyan, gray, darkgray, white, skin.

vosetdata ( vo, data ) : Associates with vo any data for user usage.

data = vogetdata ( vo, [keep] ): Retrieves the previoudy associated data. By defaullt,
keep==1, what means that the vobject keeps referencing the data. If keep==0, the data is
dereferenced and thus destroyed automatically if the ref counter becomes 0.

bool = voisvh (vo) : Returns 1if voistheid of avirtud human, and fase otherwise.
bool = voisso (vo) : Returns 1 if vo istheid of asmart object, and false otherwise.

vo = vofind ( name ): Returns the id of the virtua object with the given name. -1is
returned if the nameis not found.

name = voname ( vo ) : Returns the name of the virtud object vo.

vosetpos ( Vo, X, z, [0Xx, 0z, Yy, oy] ) : Puts vo in pogtion (x,y,z) with orientation (0x,0y,02)
if y isnot given, the current y is used.

voseeable ( vo, state ): Sets vo to be percevable or not from a vhuman. By default, al
objects are seeable.

p = vogetpos ( vo ) : Gets the current position and orientation of vo. p is alist contaning
(x,z,0x,0zy,0y). This order is to smplify most applications that work with 2d
coordinates.

vodisplay ( vo, onoff ) : Will display or hide avo.(not working...).

matrix = vogetlocalmat ( vo, [jointid] ): Will get the matrix relative to the parent node.
Jointld can be specified for a vhuman and can be any of BODY_N3D* numbers in the
file body_def.h.

vosetlocalmat ( vo, matrix, [jointid] ): Will s&t the matrix reative to the parent node.
Jointld can be specified for a vhuman and can be any of BODY_N3D* numbers in the
file body_def.h.

matrix = vogetglobalmat ( vo, [jointid] ): Will get the matrix relaive to the root scene
node. Jointld can be specified for a vhuman and can be any of BODY_N3D* numbers in
the file body_def.h.
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vr = vrusernew ( [onoff=1] ): Creates a virtual hand connected to the fob and cyber
glove. Only smart objects created before this command will be consdered. If onoff is O,
FOB and Glove are not used.

vh = vhnew ( [name, inffile, px, pz, ox, 0z] ) : Creates a new virtud human using the
default virtud human path and the current y podtion. If inffile=="SOLID", a solid-type
agent is created.

ok = vhstop ( vh, action_name, [face decay] ) : Stops an action. action_name is a gring
containing the name of the saction. For example ‘walk’, ‘look’, etc. For actions that have a
gpecificid, thisid isto be used, like for 'keyframe. 1 is returned if the action was found.

ok = vhactivate ( vh, action_name, [face duration, face weight, face intensity] ):
Activates an action. action name is a gring containing the name of the saction. For
example ‘wak’, 'look’, etc. For actions that have a specific id, this id is be used, like for
'keyframe. 1isreturned if the action was found.

vhbreathe ( vh, time, intensity ) : Changes the parameters of sa_breathe, default: 0.4, 1.5.

ok = vhtransitions ( vh, action_name, initial, final ) : Changes the trangtions durations
(in secs) of an action.

ok = vhloadface ( vh, face_name, filename) : Loads aface expression file.

vhwalkspeed ( vh, lin, [ang] ): Sets the linear and angular speed during wak. If a vaue
is0, itisnot modified. By default, ang isO.

vhwalk ( vh, px, pz, [oX, 0Z] ): Makes the current virtua human to wak to the given
location. The current y podtion is used.

bool = vhwalking ( vh ): Returns 1 if the virtua human vh is waking, otherwise returns
0.

vhlook ( vh, X, z [y] ) : Makes the virtua human to look to the given point. By default, y
isequal to 1600.

vhloadkf ( vh, keyframe name, trk file ) : Load a keyframe and associate it to
keyframe _name.

vhplay ( vh, keyframe_name) : Play aprevious loaded keyframe.

bool = vhplaying ( vh, keyframe name ) : Returns 1 if the virtud human vh is playing
the, keyframe with given name, otherwise returns 0.

| = vhperceive ( vh, [range, fov] ) : Returns ligt of perceived vo ids. By default, range and
fov are -1, what makes the perception to work with the last vaue set for vh. Initidly, the
vaues are: range==10000mm, and fov==120 degrees.

sopath ( path ) : Changes the current path to search for smart objects.

so = sonew ( name, sofile, [pX, pz, ox, 0z] ): Creates a new smart object. The default
smart object path and the current y position are used.

sointeract ( so, vh, [bhname, bhindex] ) : Start interaction bhname. If a second integer
argument indicating the index of the interaction is given, the index is used and the name
is not considered.
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bool = sointeracting ( so, [vh] ) : Returns 1 if the virtud human vh is interacting with the
smart object so.

sowait ( so ) : Waitsuntil dl interactions are done.

soexec ( so, [bhindex, bhname] ) : Execute a smart object behavior with index bhindex.
If bhindex is not given, the firg interaction is used. To Secify the interaction by a name,
cdl with bhindex==-1 and bhname with the interaction name.

so = sogetcur () : Returnsthe last smart object that called a python callback.

n = sonumbhs ( s0) : Returns the number of avallable behaviorsin the smart object.

s = sobhname ( so, bhid) : Returns the name of the bhid behavior of the smart object.
n = sonumvars ( o) : Return the number of sate variablesin the smart object.
s=sovarname ( so, varid ) : Returns the name of the varid sate var of the smart object.

f = sogetvar ( so, varid, [varname] ) : Returns the state var vaue. If varid<O, varname is
used.

souselook (yes or_no) : Enable or not the use of sa look during an object interaction.

10.4ACE Example Python Scripts

The Python function extenson used by ACE are defined as the module aglib, so
that scripts must import this module. Some smple example Python scripts are shown
here, the following one crestes one actor, and ingde aloop makesit walk in circles:

frommath inport *
fromaglib inmport *

vhl = vhnew( " bob")

radi us = 2000
ang = 0

whi | e ang<=6. 4:
i f vhwal ki ng(vhl) ==0:
ang = ang+0.5
vhwal k ( vhl, radius*sin(ang), radius*cos(ang) )
updat e()

The next script just crestes 2 actors, an automatic door smart object, and
commands the actors to interact with the door. Note that many default parameters are
assumed, like when asking for the actor-object interaction, if no extra parameters are
defined, the firgt available interaction of the smart object is used.
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fromaglib inmport *

vhl = vhnew ( "", "", 1000, 0 )
vh2 = vhnew ( "", "", 1200, 0)
sol = sonew ( "", "newso/autodoor.so" )

sointeract ( sol, vhl)
soi nteract ( sol, vh2 )

The next script loads an actor and a smart object computer and then cals a
sequence of different actions and interactions, controlling a short animation sequence to
take and put back the computer’ s diskette.

fromaglib inmport *
setcamera ( 2578, 1354, 194, -2805, 497, 3242, 0, 45, -1)

vhl = vhnew ( "vhl" )
vo = sonew ( "conputer", "test/conputer.so" )
voset pos ( vo, 1500, 1500, -1, 0 );

soi nteract ( vo, vhl, "eject_floppy" )
sowait ( vo )

soi nteract ( vo, vhl, "take_floppy" )
sowait ( vo )

vhwal k ( vhl, 0, 0)

update ( 50 )

sointeract ( vo, vhi, "put_floppy" )
sowait ( vo )

soi nteract ( vo, vhl, "push_floppy" )
sowait ( vo )

10.5Actor Skeleton Joints
10.5.1 Skeleton Hierarchy

Figure 10.1 shows the skeleton joint hierarchy used to represent actors in
BodyL.ib. For an explanation of the related libraries, see section 2.5.
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10.5.2 Joints Used by Action Push

The following joints are animated by the implemented push action, usng the
inverse kinematics module, to perform actor-object manipulations. Note that some of the
liged joint names exist both for right and left limbs, so that they're used according if the
manipuletion is being done with the right or left hand.

VLL_TILT, VL2_TILT, VL2_ROLL, VL3_TILT, VL3_ROLL, VT4_TILT, VT4_ROLL,
VT4_TORSI ON, VT5_ROLL, VT5_TORSI ON, CLAV_ABDUCT, CLAV_ROTATE,
SHOULDER _FLEXI ON, SHOULDER_ABDUCT, SHOULDER _TW STI NG, ELBOW FLEXI ON,
ELBOW TW STI NG, WRI ST_FLEXI ON, WRI ST_PI VOT.

The fdllowing joints are used only when the knee flexion configuration is used.
Here, both the left and right joints reative to the following lised names are used. See
section 5.4 for details.

H P_FLEXI ON, KNEE_FLEXI ON, ANKLE_FLEXI ON.
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