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Abstract. In this paper we propose a new structure, star-vertex, to represent gen-
eral planar meshes. The basic concept is simple, allowing constant adjacency query
time, and scalability (able to trade size for speed), and under specific situations
requiring less storage space than others. For simplicity, we use a generic traverse el-
ement, which resembles the behavior of oriented edges. We present implementation
examples of the proposed structure and comparisons with other mesh representation
schemes.

1. Introduction

Polyhedral surfaces, or planar meshes, are used for describing the bound-
ary of solids for visualization purposes, virtual reality applications, geometric
algorithms, and for many types of calculations, often using finite element
methods. Desirable properties of a mesh representation include low storage
space, simplicity, fast retrieval of adjacency information, easy manipulation,
and scalability (trading size for performance according to the target applica-
tion).

The winged-edge structure [Baumgart 72] pioneered the concept of storing
adjacency information. Later, traverse and construction operators were in-
troduced [Guibas, Stolfi 85], [Méantyld 88|, and extensions to n dimensions
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have been addressed [Brisson 89]. However, most of these structures keep
a lot of redundant information in order to provide direct access to all adja-
cent elements. A consequence of keeping the redundant information is that
the storage space requirements and the complexity of the implementation are
largely increased. We believe that specific data structures can still be designed
to optimize their target applications with respect to storage and speed. Re-
cently, the directed-edge [Campagna et al. 99] was developed; it is a compact
and scalable representation providing constant time adjacency information.
It is restricted to triangle meshes and its small version requires 32 bytes per
triangle.

In this paper we present the star-verter data structure, which is able to
represent arbitrary planar meshes; it is simple, compact, and provides con-
stant time adjacency information. Because of its vertex-based nature, its size
depends on the mean vertex degree of the mesh being represented, and we
show that under specific situations, it may require a surprisingly low storage
space. Moreover, it can be further compacted for meshes with uniform vertex
degree or by slowing adjacency lookup to be linear in vertex degree. We also
present a traverse element to safely access the data stored in the structure.

2. Star-Vertex Data Structure

The star-vertex structure is depicted in Figure 1. It is a vertex-based structure
that keeps, for each vertex v of the mesh, its three float coordinates, pointers
to all neighbor vertices of v, and an index that says, for each neighbor v’ of
v, which is the neighbor pointer of v/ pointing to the vertex v” so that v, v/,
and v” are in the same face. This index is so used to retrieve vertices and
edges around a face. Figure 1 represents the pointers and indices with arrows.
Dashed arrows vg,,, 15, and v, represent the indices used to retrieve vertices

Figure 1. Connectivity diagram of the star-vertex structure.
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and edges around faces. The letter n stands for the next edge around the face.
The usage of such indices will be clearer in the example explained later with
Figure 2 and Table 1.

There is a design choice when implementing this structure, between the
use of pointers for direct memory access, or the use of integers as indices
to positions in a user-maintained array. We have implemented and tested a
hybrid approach where the design goal was the simplicity of implementation
and the ease of comparison with other structures. This implementation was
done as follows:

struct Neighbor

{ Vertex *vtx; // pointer to the neighbor vertex

int nxt; // to find the next vertex in the face
s
struct Vertex
{ float x, y, z; // vertex coordinates

int num_nb; // number of neighbors

Neighbor *nb; // pointer to the array of neighbors
};

struct StarVertexMesh
{ array<Vertex> vertices; // all vertices of the mesh

+;

As an example, consider the planar mesh shown in Figure 2. Its star-
vertex representation is given in Table 1. In this table, the third column
encodes the neighborhood information. For example, vertex vy has as neighbor
array {(v1,3), (ve,2),(vs, 1), (va,2)}. Note that the first element of each pair
in the array explicitly stores in counterclockwise order the neighbors of vg:
{vla U2, Vs, 1"4}~

To traverse the vertices around a face, we start with one of its vertices,
let’s say, vg. Because of the implicit counterclockwise ordering, to traverse

Vi V4

V3
Vs

\'%) Vo
Figure 2. A planar mesh example.
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(z,9,2z) | num_nb | nb - list of neighbors
Vo 4 (v1,3), (v2,2), (vs, 1), (v4,2)
U1 4 (/UO’?’)’( ) (’03, )7( v ’0)
U2 3 (UO’O)’( 172)’( U3, )
U3 2 (v1,1), (va, 1)
Va4 3 (’Uo, 2), (’1,'5, 0), (’Ul, )
vs 2 (vo,1), (v4,0)

Table 1. Mesh of Figure 2 in the star-vertex representation.

the face {vg,v1,v2} we know that the edge to consider is {vg,v1} which has
vp as its first vertex. Since the first pair (v1,3) of the neighborhood array of
vp is the one that points to v, we take the index 3 that tells which pair in the
neighborhood of vy is the one to continue the traverse. The pair with index 3
of v; is (ve, 0) (indices start from 0). Continuing with this process, we move to
the pair (vg, 0) of v9, which will then lead us back to the initial pair (v1,3). In
this way we have identified all vertices and edges around the face {vg, v1, v2},
in an ordered way, by traversing sequentially the pairs: (v1, 3), (v2,0), (vo, 0).
Note also that the boundary {wo,ve, v, v1,v4,v5} is considered to be a back
face and will be traversed clockwise.

3. Traverse Element

We have seen in the last section how the structure encodes edges around a
vertex and vertices around a face. This information is sufficient to retrieve
all kind of adjacency relations, and in order to provide a safe and convenient
interface to access them, we now propose a traverse element, or travel.

A travel is a structure-independent generalization of concepts from edge-
based structures, like the edge-use [Weiler 85], the dart [Lienhardt 89], the half-
edge [Mantyla 88|, and the iterators defined in a recent C++ implementation
[Kettner 98]. Figure 3 shows the same mesh example of Figure 2 and Table
1, but some travels are represented graphically as oriented edges. Each travel

V3 Ltl ,t\\s‘ vs

A} ~ Vo

Figure 3. Some traverse elements graphically represented.
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is always adjacent to one, and only one, vertex, edge, and face of the mesh.
For example, in Figure 3, travel ¢ is adjacent to vertex vo, to edge {vo,v1},
and to face {vg,v1, v2}. We now define two operators that can be applied to ¢:
naxt and rot. The nzt operator,when applied to ¢, will return the travel that
is adjacent to the next edge and vertex around the face adjacent to . This
operator allows traversal of the edges around a face. For example, in Figure
3, t.nxt = 1, t1.nxt = o, and f.nxt.nxt.nxt = 1.

Similarly, when applying the rot operator to ¢, the travel adjacent to the
next edge and face around the adjacent vertex of £ is returned. This operator
allows the possibility to “rotate” around a given vertex. For example, in
Figure 3, we have t.rot = ¢', and ¢'.rot.rot.rot = .

With these two operators defined, we can define the operator sym, that
gives the symmetrical travel: t.sym = t.nxt.rot = s. And also the inverses:
tsym~! = t.sym, t.axt™! = t.rot.sym, and t.rot™! = t.sym.nxt. As our
traverse element behaves exactly as an oriented edge, we refer the reader to
the half-edge structure [Méntyla 88] for a detailed explanation of a very similar
scheme of traverse operators.

Once the traverse element is equipped with operators to retrieve its adjacent
elements, we are able to traverse freely through the structure, querying all
adjacent relations. The following code indicates how to implement such a
traverse element for the star-vertex structure, using C++ notation:

class Travel
{ Vertex #v; // points to the adjacent vertex of the travel
int r; // indicates the adjacent edge of the travel

// some operators and methods :

Travel ( Vertex *vtx, int rot ) { v=vtx; r=rot; }

Travel rot () { return Travel(v, (xr+1)%v->num_nb); }

Travel nxt () { return Travel(v->nbl[r].vtx,v->nbl[r].nxt); }
Travel sym () { return nxt().rot(); }

float *pnt () { return &(v->x); }

bool operator == ( Travel t ) { return v==t.v && r==t.r; }

+;

The travel structure keeps a pointer to the current adjacent vertex v, and the
index r. This index defines the pair in the neighborhood array of v which
has v, as the vertex defining the current adjacent edge {v,v,} of the travel.
Because of the implicitly stored counterclockwise order, the adjacent face is
also defined. As an example, it is easy to verify that: Travel(vg,0).nxt() =
Travel(vy, 3), and that Travel(vg,0).rot() = Travel(vg,1). One consequence
of using such a vertex-based structure is that faces are not stored explicitly.
Thus some algorithm to retrieve faces is needed, and in many cases some
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mechanism is required to mark traverse elements already visited. The follow-
ing code shows how we can use the nxt index of the Neighbor structure to
mark elements, by adding two methods to the Travel structure:

void Travel::mark () { v->nb[r].nxt *= -1; }
bool Travel::marked () { return v->nb[r].nxt<0; }

The mark is stored by setting the index to a negative value. Note however,
that this implies that the 0 index can not be used, and that it is necessary to
consider the absolute value of the index. The following code gives an example
of an algorithm that sends the faces of a star-vertex mesh to an OpenGL
renderer. It starts with an initial face and exploits face adjacency to render
all other faces:

render ( const StarVertexMesh& m )

{
array<Travel> stack;
stack.push( Travel(m.vertices[0],0) );
while ( !stack.empty() )
{ Travel ti = stack.pop();
if ( ti.marked() ) continue;
Travel t=ti;
glBegin ( GL_POLYGON );
do { glVertex3fv ( t.pnt() );
if ( 't.marked() ) t.mark();
stack.push ( t.sym(Q) );
t = t.nxt();
} while ( t!=ti );
glEnd Q);
}
}

Note that in the case of a planar mesh like the one in Figure 2, the exterior
border is also sent, but it will be considered a back-face as we have consistent
orientations. Note also that faces need to be convex to be correctly handled
by OpenGL.

Some strategies can be used to avoid unmarking all previously marked tra-
verse elements each time such an algorithm is called. For example, each time
the algorithm starts, it can determine if elements are considered marked when
indices are negative or positive. However, with this technique, we cannot allow
an algorithm to leave the mesh “half-marked”.

The fact that faces are not explicitly stored does not slow down rendering,
because nearly all systems work with optimized display lists of the polygons
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to be rendered. Thus, traversal of faces would be done to update display lists
only when the model changes. Moreover, the generation of display lists can
make use of the encoded adjacent relations to generate optimized “connected”
lists, as for example, the triangle or quad strip schemes of OpenGL.

4. Analysis

The size of the star-vertex structure is directly related to the number of edges
around vertices. Let v be a vertex of the mesh. The degree of v is equal to the
number of edges incident to v. Let us now define k£ as the mean of all vertex
degrees in the mesh: k = (3 degree(v))/n, where n equals the total number
of vertices. The parameter k is directly related to how the mesh was created.
For instance, meshes generated from parametric surfaces, as NURBS [Foley
et al. 92], commonly have quadrilateral faces and k = 4.

Meshes with & = 3 have good properties and methods exist for their gener-
ation [Delingette 94]. A cube, a cylinder and a tetrahedron are examples of
models with & = 3. However, for some objects, it is not possible to have an
accurate representation with k¥ = 3. One example is the polyhedral approxi-
mation of a cone with a polygonal base of b vertices. All vertices in the cone
base have degree 3, but the peak will have degree b, giving k = (3b+b)/(b+1),
which approaches k = 4 for large values of b.

For triangular meshes, k approaches 6 when the number of vertices grows.
Figure 4 gives examples of meshes with £ =3, k =4, and k = 6.

We now count the space requirements of our structure. From Euler’s for-
mula [Foley et al. 92], we have V — E + F = 2 for a general manifold mesh,
and also that F =~ 2V (F = 2V — 4) if the faces are all triangles. Consider
now that we have a mesh composed of n vertices and m faces. A mesh repre-
sented by the star-vertex structure will occupy 4 X 5 x n bytes for the vertex
structure, plus approximately 4 x 2 x k x n bytes for the list of neighbors,
assuming four-byte integer and float types.

For comparison purposes, let us assume we are applying the star-vertex
to a triangle mesh, so that we can apply the m = 2n property. The whole

k=3 k=4 k=6

Figure 4. Example of meshes with different vertex degrees.
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structure will then take (4 x5+4 x 2 x k)n ~ 10+ 4k bytes per triangle. This
gives us approximately 22, 26, 30, or 34 bytes per triangle when describing
a triangle mesh with k£ equal to 3, 4, 5, or 6, respectively. We can still
decrease this storage space for some specific cases, and we will now show two
simplifications for the given “general” star-vertex structure.

An initial simplification is accomplished when the mesh has a constant
vertex degree for all vertices. In this case, we can drop the pointer to an
array of variable length and the number of neighbors per vertex. Doing so,
we can economize 1 integer and 1 pointer per vertex, making an economy of 8
bytes per vertex, or 4 bytes per triangular face. The result is 6 4+ 4k bytes per
triangle for this “uniform” star-vertex, that can only represent meshes with
constant vertex degree.

Another type of simplification reduces the required storage space even more,
but no longer has constant time execution for the nxt operator. This simplifi-
cation simply drops the nxt index of the Neighbor structure. The nxt operator
will then take time O(dmaz), where dpmq, is the maximum vertex degree in
the mesh. This happens because we need to search among all edges incident
to the neighbor vertex, the one that correctly produces the result of the nxt
operator. The implementation of the nxt operator would then look as follows:

Travel Travel::nxt ()
{ Travel t (v—>nblr].vtx,0);
while ( t.v—>nbl[t.r].vtx!=v ) t=t.rot();
if ( ——t.r<0 ) t.r = t.v->num_nb-1;
return t;

}

In this compact version, the structure will occupy 4 x 5 x n bytes for the
vertex structure, plus 4 X k X n bytes for the list of neighbors, ending up
with (4 X 54+ 4 x k)n ~ 10 + 2k bytes per triangle. It is also possible to
have a structure with both compact and uniform simplifications, leading us
to (4 x 34+ 4 x k)n bytes = 6 + 2k bytes per triangle.

5. Comparison

We will now compare the star-vertex with several structures: directed-edge
[Campagna et al. 99], a simplified version of quad-edge [Guibas, Stolfi 85],
and with simple polygon lists. Even if some of the structures can represent
general meshes, in order to compare them, we will consider that they are
representing triangular meshes, so that the m = 2n relation can be applied.
For each edge, our simplified quad-edge implementation keeps pointers ex-
plicitly giving the result of the nxt, rot, nxt~! and rot~! operators, plus
two pointers for the two vertices of the edge. This representation requires
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rot nxt bytes/A
data structure operator | operator | mesh type
time time Any k [k=3|k=4|lk=5|k=6
polygon lists - O(1) - 22 22 22 22 22
triangle lists - O(1) A 18 18 18 18 18
simplified quad-edge| O(1) O(1) - 42 42 42 42 42
small directed-edge | O(1) O(1) A 32 32 32 32 32
star-vertex O(1) O(1) - 10+ 4k| 22 26 30 34
uniform star-vertex [ O(1) O(1) deg cte [6+4k| 18 22 26 30
compact star-vertex | O(1) [O(dmaz) - 10 + 2k| 16 18 20 22
minimal star-vertex | O(1) [O(dmaz)| degcte | 6+2k | 12 14 16 18

Table 2. Comparison of the several data structures. In the rot operator column,
“” indicates that its computation is not possible with only a local search in the data

@ _”

structure. In the mesh type column, indicates that there are no restrictions on
the mesh to be represented. Variables k and dmaz represent, respectively, the mean

and the maximum vertex degree of the mesh.

3 x 4 x n = 12n bytes for the vertex coordinates, plus 6 x 4 = 24 bytes per
edge. From Euler’s formula, ¥ = V + F — 2, and so this structure requires
12n+424 x (n+m—2) = 6m+12m+24m = 42m when representing triangular
meshes.

Simple polygon or triangle lists are very popular and most commercial scene
graphs implement them using the name indexed face set. A triangle list is
based on arrays of vertex coordinates and vertex indices forming the triangles,
usually requiring 3x4xn = 12n bytes for the coordinates, and 3x4xm = 12m
for the indices. (12n+ 12m ~ 18m). This benchmark of 18 bytes per triangle
has been considered a lower limit for storing triangle meshes. For polygon
lists, the face indices array will include a 1 index to indicate when each face
has finished, resulting in 12n 4 16m = 22m, i.e., 22 bytes per triangle.

Table 2 compares the different data structures. We have listed the time
required for the determination of the rot and nxt operators. When these two
operators are provided in constant time, all adjacent relations also can be
retrieved in constant time. As expected, our structure can achieve very low
memory requirements when k is small. In particular, when the uniform or
compact versions can be applied, the star-vertex can even achieve less storage
space than representations based on polygon lists, while still storing adjacency
relations. In such cases, the star-vertex structure becomes the most compact
structure available.

It is important to note that the star-vertex structure requires many pointer
indirections in order to retrieve the adjacencies, which can slow down al-
gorithms. To give an example of a real application, we have re-written an
incremental Delaunay triangulation algorithm [Guibas, Stolfi 85] using the
directed-edge, quad-edge and the star-vertex structure in its general and com-
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data structure time (seconds) size (Kbytes)
n=32000 | n=48000 | n=64000 | n=32000 [ n=48000 | n=64000
simplified quad-edge| 27.6 51.2 79.6 2625 3938 5250
small directed-edge 29.2 56.3 93.7 2000 3000 4000
star-vertex 34.7 66.0 109.8 2125 3188 4250
compact star-vertex | 42.3 81.7 134.5 1375 2063 2750

Table 3. Performance comparison. The variable n stands for the number of vertices
inserted in the Delaunay triangulation.

pact form. We have defined an abstract traverse element class, with all oper-
ators required by the algorithm implemented as virtual methods, and then we
have derived this class for each different data structure. This abstract class
inclusion slows our original algorithm by a factor of 2.5.

The incremental Delaunay algorithm is divided into two phases: the first
phase finds the triangle containing a random point to be inserted by just jump-
ing through adjacent triangles, and the second phase inserts the point with
local edge flip operations. In this way we are measuring both the performance
of adjacency queries and structure updates.

Table 3 shows the obtained times and sizes. As expected, the simplified
quad-edge was the fastest structure as it explicitly stores the result of ad-
jacency operators; on the other hand, it was the structure consuming more
memory. The star-vertex consumed approximately 20% less memory but was
30% less efficient. Compared to the directed-edge, the star-vertex was ap-
proximately 20% slower and consumed 6% more memory. This gives an idea
how our structure behaves for one of its worst cases, i.e., a triangulation with
k ~6.

However, the compact form consumed 45% less memory at the performance
cost of approximately 44%. Note also that the directed-edge is a specific

used to test the star-vertex structure.
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structure for triangulations while the star-vertex is a general one. These
tests were performed on a Pentium III computer with 410 Mbytes of memory
without any kind of optimization in the implementation of the data structures.

We have also noticed that the compact form of the star-vertex was faster
than the general version up to n = 2000; for larger values of n the general
implementation was faster. This shows that having O(dq.) time for the nxt
operator is compensated by simpler structure updates and can be acceptable
in many cases. As an illustration, one generated Delaunay triangulation is
shown in Figure 5.
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