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Abstract 
This paper describes an approach to construct interactive virtual environments, which are 
suitable for the development of artificial virtual human life simulations. Our main goal is to 
have virtual human actors living and working autonomously in virtual environments. In our 
approach, virtual actors have their own motivations and needs, and by sensing and exploring 
their environment, an action selection mechanism is able to determine anytime the suitable 
actions to take. We adapt basic actor motivations and needs to urban situations, where most 
actions involve interactions with the environment. Thus, a specific technique to define actor-
object interactions is used, where pre-defined interaction plans are put inside interactive 
objects, and just selected during the simulation. We explain in this paper the steps taken in 
order to construct and animate such environments, and we also present a test simulation 
example. 
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1 Introduction 
Virtual human simulations are becoming each time more popular, and many systems are 
available targeting several domains, as: autonomous agents, human factors analysis, 
training, education, virtual prototyping, simulation-based design, and entertainment. As an 
example, an application to train equipment usage using virtual humans is presented by 
Johnson et al [1]. 

Simulations with autonomous virtual humans, or actors, may use different techniques 
for the behavioral programming. Most common approaches are based on scripts [2] and 
hierarchical finite state machines [3], but many other techniques exist, as the parallel 
transitions network [14]. 

Such techniques are powerful and may serve to define a large range of behaviors. 
However, achieving complex and emergent autonomous behaviors will always be a 
difficult and challenging task. 

We show in this paper how we construct interactive virtual environments, which are 
suitable for autonomous actors simulations. Our main goal is to have actors living and 
working autonomously in virtual environments, according to their own motivations and 
needs. We think that behavioral programming techniques should operate on the 
motivational level of an actor, and not directly control actions. 

We focus on common-life situations, where the actor senses and explores his 
environment, and following an action selection mechanism, determines the suitable actions 
to take. Actions often involve object interaction, and so a specific technique to model actor-
object interactions is used, following the smart object approach [4]. Smart objects contain 
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interactivity information based on pre-defined interaction plans, which are defined during 
modeling phase.  

We construct our interactive virtual environment using the Agents Common 
Environment (ACE) system [13], which provides the basic requirements for the 
implementation of autonomous actors simulations: 

• Load and position different actors and smart objects. 
• Apply an action to an actor, as: walking [7], inverse kinematics [10], facial 

expressions, etc. Actions can be triggered in parallel and are correctly blended, according 
to given priorities, by a specific internal synchronization module [8]. 

• Trigger a smart object interaction with an actor. Each smart object keeps a list of its 
available interactions, which depends on the object internal state. Each interaction is 
described by simple plans that are pre-defined with the use of a specific graphical user 
interface application called somod. These plans describe the correct sequence of actions 
and objects movements required to accomplish an interaction. 

• Query pipelines of perception [9] for a given virtual human. Such pipelines can be 
configured in order to simulate, for example, a synthetic vision. In this case, the perception 
query will return a list with all objects perceived inside the specified range and field of 
view. As an example, figure 1 shows a map constructed from the results of the perception 
information received by an agent. 

• Easy connection with external behavioral modules through Python scripts [5]. Python 
permits to create a re-use script as behavioral plug-ins, following a current trend in 
behavioral animation [6].  

 

 
Fig. 1. Perception map of the lowest agent in the image. In this example, a range of 2.6 meters and a 
field of view of 180˚ is used. The darker points in the map represent the positions of each perceived 
agent and object. 

 
We have thus implemented in Python a motivational action selection model, which 

permits to use internal actor motivations and environment information in order to select 
which actions and object interactions to take. 

Following this architecture, the action selection algorithm works on a very high level 
layer, and ACE guarantees the smooth control of low-level motions, as walking and 
interacting with objects. 

In the following sections we explain our action selection model, and show how we have 
built and used smart objects with coherent interaction capabilities. 



2 The Action Selection Model 
Different models for the action selection problem have been proposed: Tinbergen’s [15] 

or Baerends’s hierarchical decision structure (HDS) [16], Lorenz’s hydraulic model [17], 
Rosenblatt & Payton’s [18] free flow hierarchy or associated Maes’s [19] network. Tyrrell 
has tested these models in complex simulated environments with many motivations and 
close to a wild animal environment. The result shows that the free flow hierarchy improved 
by Tyrrell [11] is the most suitable mechanism of action selection (figure 2). 
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The hierarchy of our model contains four levels (figure 4): 
1. Internal variables evolving linearly during time, representing different states of the 

virtual human. 
2. Motivations corresponding to a “subjective evaluation” of the internal variables. A 

threshold system can permit to reduce or enhance motivations values according to the 
internal variables values. Whenever an internal variable gets high, the actor will rapidly 
react in order to satisfy the related motivation. Figure 3 shows the result obtained at this 
level. 
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 Time 
Fig. 3. “Subjective” evaluation of the motivations (solid curve) from the value of the internal 

variables (dashed line) with a threshold system.  
 

3. Motivated behaviors having the only goal to generate actions to move the actor to a 
place where it can satisfy the correspondent motivation. 

4. Actions influencing directly the internal variables. Locomotion actions increase the 
internal variables, while the physiological actions decrease them. If the actor has a choice 
between these two kinds of actions, it will choose a physiological one, as it is more 
beneficial for him. Indeed, the rule weight for physiological actions equals twice the rule 
weight of a locomotion action in the model, and in all the cases the system chooses always 
the most activated action at each iteration. 
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switches to perform the one with the higher priority. At the end, the motivated behaviors 
can summarize the activities from different motivations (compromise behaviors), and their 
chances to be chosen increase because their values are higher.  

In another words, the main role of the action selection mechanism is to maintain the 
internal variables under the thresholds by choosing the correct actions. Actions involving 
interactions with smarts objects are preferably chosen because they are defined to be 
directly beneficial for the virtual human. Otherwise, the virtual human is instructed to walk 
and reach the place where the motivation can be satisfied. 

Take as an example the eat motivation depicted in figure 5. The behaviors “go to 
known location” or “go to a visible food” control the actor displacement to a specific 
direction, using the low level action of walking.  
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Fig. 6. Modeling phase of some used smart objects: the desk used to work, the sofa used to rest, and 
the hamburger and the cup of coffee, which can be taken to satisfy the needs of drinking and eating. 
 

For example, regarding the hamburger and the coffee, the interaction consists of 
moving the object to the actor’s mouth, using inverse kinematics. The following table lists 
each used modeled smart object, with their main interaction capability: 
 

Action Smart Object Interaction 
Eat hamburger eat 
Drink a cup of coffee drink 
Resting sofa sit 
Work computer and desk sit and type 
go to the toilet toilet use 

 
Somod (the smart object modeler) is used to create each smart object, and in particular 

to define the behavioral and interaction information. For instance, figure 7 shows a 
programming session with somod, to define the interaction plans used for the toilet model. 
 

 



Fig. 7. Modeling the interaction plan of a “simplified toilet”. 
 

From ACE, only the given name of each interaction is seen and available for selection. 
When smart objects are loaded, the system only exposes the possible interactions of each 
object, hiding the internal interpretation of the interaction plans from the user, which is 
transparently executed by ACE. 

Figure 8 shows the ACE system being used to test the interaction capabilities of the 
modeled desk. The user can easily select (from Python, or from an user interface) the 
interaction plans available in the object. 

 
Fig. 8. Testing the interaction capabilities of the desk model. 

4 Obtained Simulation in ACE 
The action selection model was entirely developed in Python. The script makes use of two 
threads: one controlling the graphical refresh of the environment, and one controlling the 
continuously evaluation of parameters in the hierarchical action selection model. 
 

 



Fig. 9. A snapshot of the achieved simulation. The curves on the left show the variation of the 
internal motivational parameters of the virtual human, at different levels in the hierarchy. 

 
The obtained simulation shows the virtual human actor living autonomously in the 

virtual environment, as exemplified in figure 9. It also shows the variation of the 
motivational parameters at different levels in the hierarchical selection model. The first 
graph (top left) shows the linear evolution of the internal variables during the simulation 
time due to the effects of actions. The second graph shows the “subjective” evolution of the 
motivations according to the threshold system and environment information. The last graph 
shows the evolution of physiological and locomotion actions according to their associated 
rule weights. 

When the simulation starts, the actor has the initial behavior to explore the 
environment, collecting perceived information regarding the position of useful objects, like 
the hamburger and the coffee. After some time, the energy level drops, and the action to eat 
or drink is selected, according to the evaluation of the action suitability to perform. Other 
parameters regarding resting or the need to go to the toilet also change, controlling the 
actor accordingly. Whenever there are no motivations to satisfy, the actor will then go to 
work (default behavior). 

5 Concluding Remarks 
We have shown in this article our approach to construct complex autonomous actors 
simulations, which is based on three main steps: definition of the required actor-object 
interactions, modeling of the interactive smart objects, and simulation inside ACE using 
Python scripts.  

The advantages of our approach are mainly due to the modularity achieved, specially 
regarding the separation of the object interaction information from the behavioral action 
selection module, which is programmed in a high level scripted language as Python. In 
particular, such modularity allows the parallel development of low level animation 
algorithms and behavioral algorithms without many conflicts. 

As most of the action selection models are based on animal observations, we have 
shown in this paper our first results about translating these models to the urban human life.   

Many enhancements are being done to this system in order to complete our behavioral 
platform. For instance, we intend to integrate the following modules: 

- a navigation planning module that will enable us to perform tests with 
simulations in much larger environments.  

- a training module based on the rule weights for a better adaptation of the 
virtual human with his environment. 

- a multi-agent module to manage interactions between virtual humans. 
- a emotional module to improve the communication with the real humans. 
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