
A Common Environment for Simulating Virtual Human Agents in Real Time

Marcelo Kallmann, Jean-Sébastien Monzani, Angela Caicedo and Daniel Thalmann

EPFL Computer Graphics Lab – LIG
CH-1015 – Lausanne – Switzerland

{kallmann, jmonzani, angela, thalmann}@lig.di.epfl.ch

Abstract

This paper describes a system platform for virtual
human agents simulations that is able to coherently
manage the shared virtual environment. Our “agent
common environment” provides built-in commands for
perception and for acting, while the in-between step of
reasoning and behavior computation is defined
through an external, extendible, and parameterized
collection of behavioral plug-ins. Such plug-ins are of
two types: the first type defines agent-object
interactivity by using a feature modeling approach,
and the second type controls the reasoning and
behavior of each agent through scripted modules. Our
system is analyzed in this paper and a concrete
example with some modules integrated with a Lisp
behavioral system is shown.

Keywords: Agents, Virtual Humans, Virtual
Environments, Behavioral Animation, Object
Interaction, Script Languages, Python, Lisp.

1 Introduction

Virtual humans simulations are becoming each time
more popular. Nowadays many systems are available
to animate virtual humans. Such systems encompass
several different domains, as: autonomous agents in
virtual environments, human factors analysis, training,
education, virtual prototyping, simulation-based
design, and entertainment. As an example, an
application to train equipment usage using virtual
humans is presented by Johnson et al [1].

Among others, the Improv system [2] is mainly
controlled by behavioral scripts designed to be easily
translated from a given storyboard. Also using scripts,
the Motivate system [12] is defined as a hierarchical
finite state machine targeting game development.

Game engines are more and more appearing,
providing many behavioral tools that can be easily
integrated as plug-ins for constructing games.
Although they offer many powerful tools, they may
not be well suitable for some specific needs different
than games.

In another direction, the Jack software package [3],
available from Transom Technologies Inc., is more
oriented for human factors applications rather than
social and behavior animation.

This paper describes a system platform for virtual
human agents simulations that unifies the advantages
of both scripts and behavioral plug-ins. The system
provides the basic agent requirements in a virtual
environment: to be able to perceive and to act in a
shared, coherent and synchronized way. Our “agent
common environment” (ACE) provides tools for the
perception of the shared environment, the ability to
trigger different motion motors and facial expressions,
and provides ways of connection with various
behavioral modules.

The central point of ACE is the easy connection of
behavioral modules as plug-ins. Such plug-ins can be
defined in two ways: specific modules for describing
agent-object interactions using the smart object
approach [4] and a behavioral library composed of
modular Python scripts [5].

Virtual human agents created in ACE have
automatically the ability to perform many actions, as
walking, using inverse kinematics, looking at some
direction, performing facial expressions, etc.

The use of behavioral plug-ins is a current trend [6]
that, when well designed, can overcome the difficulty
of correctly supplying all the parameters needed to
initialize these actions, what can be a strenuous task.

This paper makes an overview of our system, and a
simulation example integrating some different
behavioral modules is described.

Owner
In Proceedings of the Workshop on Achieving Human-Like Behavior in Interactive Animated Agents, Autonomous Agents Conference, Barcelona, Spain, June, 2000

2 The System

The core of the ACE system understands a set of
commands to control a simulation. Among other
features, these commands can:

• Create and place different virtual humans, objects,
and smart objects (objects with interactivity
information) [4].

• Apply a motion motor to a virtual human.
Examples of such motion motors are: key-frame
animation, inverse kinematics [13], a walking motor
[7], facial expressions, etc. These motors can be
triggered in parallel and are correctly blended and
composed, according to given priorities, by a specific
internal module [8].

• Trigger a smart object interaction with a virtual
human. Each smart object keeps a list of its available
interactions, which depends on the object internal
state. Each interaction is described by simple plans
that are pre-defined with the use of a specific
graphical user interface. These plans describe the
correct sequence of motion motors to accomplish an
interaction. The GUI is used to interactively define the
3D parameters needed to initialize the motion motors,
as positions to put the hand, movements to apply at
object parts, etc.

• Query pipelines of perception [9] for a given
virtual human. Such pipelines can be configured in
order to simulate, for example, a synthetic vision. In
this case, the perception query will return a list with
all objects perceived inside the specified range and
field of view.

All these commands are available through simple
Python scripts. An example of a valid Python script is
as simple as the following:

Create a virtual human and a smart object:

luc = vhnew (“Luc”, “sports-man”)

computer = sonew (“computer”, “linux-cd”)

Query a 3 meters perception with a 170

degress field of view:

perception = vhperceive (luc, 3000, 170)

If the computer was perceived, perform

two interactions with it:

If computer in perception :

sointeract (computer, luc, “eject_cd”)

sowait (computer)

sointeract (computer, luc, “push-cd”)

Figure 1 shows a snapshot of the animation
generated from this simple script. The created agent is
performing the “push-cd” interaction (note that in the
image other objects that were previously created are
also shown).

Figure 1. An agent-object interaction being performed.

The smart object “computer” loaded in this example

was defined with a specific modeler where all low-
level 3D parameters, object states, needed motion
motors, etc were defined (figure 2).

Figure 2. Modeling phase of the smart object “computer”.

In this way, the low-level motion control is

performed internally in ACE by following the
interaction plans defined inside each smart object
description. Python scripts can then easily send orders
to an agent to interact with a smart object without the
need of any additional information. After an
interaction, the smart object state is updated, and the

virtual human agent will wait for another Python
order.

In ACE, each agent runs as a separate process
(thread), handled by a common agents controller
module, which is responsible for transporting
messages between the threads by providing a shared
area of memory for communication (figure 3).

Usually, each time an agent is created, a new thread
starts in order to control it. This is directly
implemented in the Python layer. The display update
is handled by the controller, which also provides
synchronization facilities between threads. Keeping
the display update into the controller ensures that no
conflicts arise (this could be the case if concurrent
processes update the display at a same time).

Concurrent actions (motions or facial expressions)
are already handled internally in ACE. However, in
some cases it may be interesting to have specific
concurrent modules controlling the evolution of
specific agent actions. For such cases, new threads can
be created within the agent thread, as depicted in
figure 3.

Figure 3. ACE system architecture.

3 Using Python Scripts

Python scripts can be organized in modules, which
can be dynamically loaded from other scripts. There
exist many available modules from the Python web
site [5] for different purposes, as graphical user
interface generation, image processing, mathematical
computation, threads creation, TCP/IP connection, etc.
The Python interpreter, together with such modules, is
available for most computer platforms, including Unix
systems and PC Windows. Moreover, if required, new
modules can be implemented in Python that can also
access methods in C/C++ to achieve better
performance.

As shown in the previous section, threads creation
is a key issue as we want agents to be able to run their
own behavioral modules in an asynchronous
environment. The use of such behavioral Python
modules is straightforward: the animator chooses one
module from a library of pre-programmed modules
and runs it inside its agent thread. However, such
modules need to be carefully designed in order to
avoid conflicts and guarantee a correct
synchronization between them.

The module for TCP/IP connections is used
whenever one wants to control the simulation with
messages generated from another application. This is
the case for the example showed in the following
section, where we use a behavioral module written in
Lisp sending orders to ACE threads in order to
simulate a predefined scenario.

4 A Simulation Example

We have created a virtual computer lab with around
90 smart objects, each one containing up to four
simple interactions. When we put some virtual human
agents in the environment, we end up with a lot of
possible actions combinations to choose.

In this environment, each created agent has internal
threads to specifically control its navigation, gestures
played as key-frame sequences, smart object
interactions, and an idle state.

The navigation thread controls the walking motion
motor along given collision-free paths. Key-frame
animation gestures and object interactions are
performed and controlled when it is required. And
whenever the agent is detected to stop acting, the idle
thread is activated, sending specific key-frames and
facial expressions to the agent, simulating a human-
like idle state.

The idle state thread is a parameterized behavioral
Python module based on some agent emotional states.

Agent Thread #n

action
thread 1

action
thread n …

Agent Thread #1

action
thread 1

action
thread n …

Agents Controller

Shared Area

Python Layer

ACE – Agents Common Environment

Perceptions Management

Smart Object Control

Facial Expressions Control

Low-level Motion Control

For example, when the agents anxiety grows, the
frequency of small and specific body posture and
facial animations (as eye blinking) increases.

We have then translated a simple storyboard into
Lisp plans inside IntelMod [10], an agent-based
behavioral Lisp system. This system communicates
with the ACE agent threads by means of a TCP/IP
connection, as shown in figure 4.

Figure 4. Agent-based behavioral system with ACE.

The scenario is as follows: a woman that has access

to the lab comes in a day-off to steal some
information. So she enters into the room, turns on the
lights, read in a book where is the diskette she would
like to steal, then she takes the diskette, turns off the
lights and go out of the room. During all the
simulation, the woman is nervous about being
discovered by someone, and so the idle state module
was set to synchronize a lot of head movements and
some small specific facial expressions to demonstrate
this state.

The behavior of the stealer woman has been
modeled in IntelMod. The agent’s behavioral engine is
in charge of deciding which is the next action to take
relying on the agent’s current beliefs, internal agent’
states and goals. All this information is used to trigger

one of the agent’s plans available. When a plan is
triggered, some post-conditions are reached, some
updates in the internal agent’ structures are done and
finally the corresponding actions are sent through the
TCP/IP socket to be performed. Inside ACE, the
corresponding agent action thread is activated, and
will later send a feedback to the IntelMod’s
correspondent agent once the action has finished.

An example of a plan used in this simulation is as
follows:

(newPlan 'enter-to-place
 '((tiredness 90 <)
 (nervosity 30 <))
 '((needs steal info (? company))
 ((? company) has his info (? place))
 (! (is inside (? place)))
 '((Act (sointeract door(? place) open))
 (Add (opening (? place) door)))

)

The first goal of the stealer is to enter the room

where the company’s information resides. Then the
action applied by the agent is to open the door and
enter. Some important internal states in this case are
checked. The agent should not be too tired but she is
very nervous and these states are sent to the idle state
thread. Some snap shots of this simulation is shown in
figure 4.

Figure 4. Some images of the simulation.

6 Final Remarks

We showed in this article how different types of
plug-ins are used in the ACE system, having the
Python script language as the main interface layer

Beliefs

Plans

Internal
states

socket

Goals

Behavioral engine

Agent #n

Beliefs

Plans

Internal
states

socket

Goals

Behavioral engine

Agent #1

Lisp

…
action
thread 1

action
thread n

Agent Thread #n

socket

action
thread 1

action
thread n

Agent Thread #1

socket

…

Python

Agents Controller

Shared Area
ACE

between the low-level motion animation control, and
the high-level behavioral control.

The Python layer can be also seen as the boundary
between general-usage animation modules and
application-specific modules. For example, ACE has a
built-in walking motor but without a navigation
control, as navigation requirements can change
drastically depending on many issues as: real time
interactivity, human-like navigation and exploration,
optimized path planning, etc.

The extensibility via Python scripts allows the plug-
in of behavior modules, and also of any kind of
utilities, as to monitor agents state, or to let the user
control and interact with the environment. Actually we
make extensive use of many control dialog boxes
(written in Python or in C/C++) to inspect agents
perceptions, place objects, test agent-object
interactions, etc. Another type of user interactivity has
been tested through a natural language interpreter, that
translates simple English sentences into Python scripts
to direct the animation as an interactive shell.

The ACE architecture is currently being integrated
with the virtual human director software [11]
developed in our lab in order to merge the capabilities
of both systems.

7 Acknowledgments

The authors are grateful to Eric Devantay for the
modeling of the virtual lab objects.

This research was supported by the Swiss National
Foundation for Scientific Research and by the
Brazilian National Council for Scientific and
Technologic Development (CNPq).

8 References

[1] W. L. Johnson, and J. Rickel, “Steve: An
Animated Pedagogical Agent for Procedural
Training in Virtual Environments”, Sigart
Bulletin, ACM Press, vol. 8, number 1-4, 16-21,
1997.

[2] K. Perlin, and A. Goldberg, “Improv: A System
for Scripting Interactive Actors in Virtual
Worlds”, Proceedings of SIGGRAPH’96, 1996,
New Orleans, 205-216.

[3] N. Badler, R. Bindiganavale, J. Bourne, J.
Allbeck, J. Shi, and M. Palmer, “Real Time
Virtual Humans”, International Conference on
Digital Media Futures, Bradford, UK, April,
1999.

[4] M. Kallmann and D. Thalmann, “A Behavioral
Interface to Simulate Agent-Object Interactions in
Real-Time”, Proceedings of Computer Animation
99, IEEE Computer Society Press, 1999, Geneva,
138-146.

[5] Python Script Language, http://www.python.org.

[6] N. Badler. "Animation 2000++", IEEE Computer
Graphics and Applications, January/February
2000, 28-29.

[7] R. Boulic, N. Magnenat-Thalmann, and D.
Thalmann, “A Global Human Walking Model
with Real Time Kinematic Personification”, The
Visual Computer, 6, 344-358, 1990.

[8] R. Boulic, P. Becheiraz, L. Emering, and D.
Thalmann, “Integration of Motion Control
Techniques for Virtual Human and Avatar Real-
Time Animation”, In Proceedings of the
VRST’97, 111-118, 1997.

[9] C. Bordeux, R. Boulic, and D. Thalmann, “An
Efficient and Flexible Perception Pipeline for
Autonomous Agents”, Proceedings of
Eurographics '99, Milano, Italy, 23-30.

[10] A. Caicedo, and D. Thalmann, “Intelligent
Decision making for Virtual Humanoids”,
Workshop of Artificial Life Integration in Virtual
Environments, 5th European Conference on
Artificial Life, Lausanne, Switzerland, September
1999, 13-17.

[11] G. Sannier, S. Balcisoy, N. Magnenat-Thalmann,
and D. Thalmann, “VHD: A System for Directing
Real-Time Virtual Actors”, The Visual
Computer, Springer, Vol.15, No 7/8, 1999, 320-
329.

[12] Motivate product information, Motion Factory
web address: http://www.motion-factory.com.

[13] P. Baerlocher, and R. Boulic, “Task Priority
Formulations for the Kinematic Control of Highly
Redundant Articulated Structures”, IEEE
IROS’98, Victoria (Canada), 323-329.

