
Direct 3D Interaction with Smart Objects 
 

Marcelo Kallmann 
EPFL - LIG - Computer Graphics Lab 

Swiss Federal Institute of Technology, CH-1015, 
Lausanne, EPFL – LIG 

+41–21-693-5248 

kallmann@lig.di.epfl.ch 

 

Daniel Thalmann 
EPFL - LIG - Computer Graphics Lab 

Swiss Federal Institute of Technology, CH-1015, 
Lausanne, EPFL – LIG 

+41–21-693-5214 

thalmann@lig.di.epfl.ch 
 

ABSTRACT 
Performing 3D interactions with virtual objects easily becomes a 
complex task, limiting the implementation of larger applications. 
In order to overcome some of these limitations, this paper 
describes a framework where the virtual object aids the user to 
accomplish a pre-programmed possible interaction. Such objects 
are called Smart Objects, in the sense that they know how the user 
can interact with them, giving clues to aid the interaction. We 
show how such objects are constructed, and exemplify the 
framework with an application where the user, wearing a data 
glove, can easily open and close drawers of some furniture. 

Keywords  
Virtual Reality, manipulation, interaction, data glove, virtual 
objects, virtual environments. 

1. INTRODUCTION 
Virtual Reality (VR) technology has been employed on various 
different applications, as for example: human factor analysis, 
navigation in virtual environments, training, visualisation, and 
design of objects.  

A common point to all applications is the fact that the user wears 
VR devices, immerses in the virtual environment (VE), and 
interacts with the virtual world in order to accomplish some 
specific task. In many cases, such a task involves direct 
manipulation of virtual objects.  

Direct manipulation of objects in virtual environments is often 
awkward and inconvenient, because of mainly two factors: the use 
of simplified physical models due to computation time constraints, 
and limitations of the current VR devices.  

A simple task of grabbing and moving a virtual object may be a 
frustrating experience because of the lack of a tactile feedback, 
weightlessness of virtual objects, positioning tracker noise, and 
poor design of interaction techniques, among other factors.  

For direct manipulation, the most common used device is a data 
glove. This device has known a lot of enhancements during the 

last years [19]. However, limitations as the lack of haptic 
feedback, are still hard to solve. 

Although direct manipulation intends to be similar to 
manipulation in real world, there are significant differences which 
have to be fully understood in order to exploit the full potential of 
VR technology. 

If virtual systems are to be effective and well received by their 
users, considerable human factors issues must be taken into 
account [18]. Will the user get sick? Which are the important tasks 
to perform? Will the user perceive system limitations (e.g., 
flicker)? What type of design metaphors will enhance the user’s 
performance in VE? 

The main challenge concerns defining an efficient, simple and 
natural interaction paradigm, in order to overcome the VR 
limitations. 

In this paper, we present an architecture where the virtual object 
aids the user by giving clues on how to accomplish a desired 
interaction task. 

With our framework, we are interested on high level interactions, 
instead of a direct manipulation. We take into account interactions 
with objects having some functionality governing its moving 
parts, but that cannot be directly displaced by the user. Instead, the 
user can trigger the movements of the object, according to its 
functionality. 

Objects’ functionality is defined during the modelling phase. This 
is done by using a dedicated graphical interface that permits to 
define each possible behaviour of the object. In this way, during 
the simulation, the object knows which are the interactions that the 
user can trigger and aids the user to choose the desired one. Such 
objects are called Smart Objects [6]. 

In this paper, we present how to model Smart Objects for VR 
applications. We describe also a prototype application where the 
user, wearing a data glove, interacts with some smart objects, by 
means of a high level interaction metaphor. 

2. RELATED WORK 
There are many techniques being used for interaction, 
manipulation and navigation in VEs. For instance, Mine [9] shows 
many examples of such techniques, including a VR metaphor for 
menu selection. In a more recent work [10], the concept of 
proprioception is exploited in order to enhance the direct 
manipulation of objects. An overview of techniques for object 
manipulation, navigation and application control in VEs is 
presented by Hand [5]. 

In order to implement a complex VR application, we can identify 
three main distinct layers, which have to be correctly designed and 
put together: 

 

 

Owner
In Proceedings of ACM Virtual Reality Software and Technology (VRST), December, 1999, London



- The low-level physical simulation model. 

- The direct manipulation metaphor. 

- The direct high-level interaction metaphor.  

The physical simulation model should give a physically based 
visual feedback to the user when an object is touched, deformed, 
or moved, correctly managing all possible intersections.  

The manipulation metaphor layer is responsible to define how the 
user, wearing VR devices (as a data glove), can interact with the 
virtual objects in order to touch, move and displace them. This 
metaphor is directly linked to the adopted physical model. 

Finally, the high level interaction layer will permit the user to 
achieve other tasks that are not feasible by means of a direct 
manipulation, but, for instance, by means of user gestures. 

Many physical models have been proposed in the literature. For 
instance, Sauer and Schömer [17] describe a rigid body simulation 
tool for the simulation of unilateral contact s, filling the gap of 
impulse-based and constraint-based simulations, including a 
friction model. An approach to model a haptic glove force 
transference was proposed by Popescu et al. [15]. 

An interesting approach has been proposed to deal with collision 
and interference in VR systems, making some use of the graphics 
rendering hardware in order to minimise time computation during 
a virtual hand grasping application [1]. 

Many manipulation metaphors have been also proposed. For 
instance, Poupyrev et al. [16] present a manipulation metaphor 
based on three main steps: Selection, Positioning, and Orientation. 
Boulic et al. [2] present an approach where each finger of the 
virtual hand has spherical sensors for detecting collision with the 
virtual object. These sensors are used for deciding when the 
virtual object is grasped or when the virtual hand needs a posture 
correction. 

As commonly stated, object manipulation needs to be optimised 
[16] in order to let the immersed participant to concentrate on 
high-level task s rather than on low-level motor activities. Some 
solutions to this matter start to be proposed [8].  

Unfortunately, less attention has been given to exploit 
implementations of high -level interaction metaphors. Existing 
works remain in the theoretical level [22], or mainly concern hand 
gesture recognition, as for instance, a dynamic two-handed gesture 
recognition system for object modelling [11]. 

Aiming to fulfil this gap in the VR research, we propose a 
framework to perform high level interactions with virt ual objects 
that, by knowing how the user can interact with them, give clues 
to aid the interaction. Such objects are called Smart Objects [6]. 

The adjective smart has been used on different contexts, as for 
instance, to refer to computers that can understand human actions 
[14]. In our case, an object is called smart when it has the ability 
to describe its possible interactions.  

Graphical languages as VRML [20], are popular to exchange 3d 
models, but less suitable as a way to specify object’s functionality. 
In VRML, most of the interactive behaviour must be written in 
external scripting languages such as Java or JavaScript. 

In another direction, some work have been done in order to link 
language to modelling [12], and also towards a definition of a 
standard and data structure -independent interface to model 

geometric objects [3]. In our case, we use language to describe 
object’s functionality. 

We do not know any related work that explores specifically this 
aspect of modelling object’s functionality for a real time 
simulation or animation. However, a close work is presented by 
Okada et al [21]. In their work, a collection of intelligent boxes, 
each one having a basic specific behaviour, can be connected in 
order to construct a more complex object. Such approach is 
suitable to define objects with reactive movements according to its 
connections. In our case, we are interested on defining, not only 
movement functionality, but also semantic meaning as its 
properties and design intent. Such information is stored in a form 
of a script language that defines each object’s behaviour. 

Smart objects are modelled using a dedicated graphical interface 
modeller, where the functionality can be defined. Object’s 
functionality is defined by a sequence of behavioural instructions 
forming a plan that describes each action to be performed (by the 
object and by the user). The next section describes this modelling 
phase of smart objects. 

3. MODELLING SMART OBJECTS 
We follow a Feature Modeling approach that is a vast topic in the 
engineering field [13]. The basic idea is to identify and define, 
during the modelling phase, all interesting features of the object. 

In a previous work [6] a more detailed description of this approach 
is done, but towards simulating interactions between virtual 
humans and Smart Objects.  

3.1 Interaction Features 
In the scope of our VR applications goals, we can define four 
classes of different interaction-features:  

- Intrinsic object properties. For example, the description of the 
movements of each object part. 

- Interaction information . These are the positions of interactive 
parts (knobs, buttons), and the hand shapes and locations to 
interact with them.  

- Object behaviours. These are available depending on object’s 
state. For example, a door has an available behaviour to close 
itself only if its state is open. 

- Expected user behaviours. These are associated with object 
behaviours in order to indicate when and where the user should 
put his hand. 

3.2 A Smart Object Example 
Figure 1 exemplifies the modelling phase of a smart desk. This 
desk has five interactive parts: a lamp, a book, two drawers and a 
small door. Each of these parts has an indication of where the user 
should put its hand in order to interact with that part. This 
indication is modelled by placing a hand object to serve as a clue. 
These hand clues define the expected hand shape and location in 
order to perform an interaction. 

We can also notice in figure 1 the definition of a reference 
position that is used to indicate a nearby position that the user 
should be in order to interact with this object. 

Once these properties are identified, the behaviours of the objects 
can then be defined. The smart desk contains a total of five pairs 
of behaviours, each pair relative to one interactive part. 



For instance, the first drawer of the desk has two behaviours: one 
for opening (open1), and another one for closing. Only one among 
these two is available to be selected by the user, depending on the 
state variable of the drawer. Each time one is selected, the state 
variable changes, switching the available behaviour. 

In figure 1, the behaviour open1 is selected on the behaviour 
editor dialog box. This behaviour describes a plan to be performed 
in order to make the first drawer of the desk open. This plan is 
composed of four simple scripted instructions that are to be 
interpreted one after another: 

- CheckVar open1 false. Here the drawer state variable is checked. 
Only when the state variable means that the drawer is closed that 
this open behaviour will be available to be selected by the user.  

- UserDoGest gest1 LeftHand. This instruction says that the user 
should have its left hand in a similar shape and location given by 
the hand clue gest1. In our prototype implementation, we consider 
that all gestures can be performed by both the right or left hand.  

- SetVar open1 true. After the user has put its hand in the correct 
position, the state variable of the drawer is changed, changing this 
behaviour to be unavailable, but making the other behaviour of 
closing available. 

- DoCmd open1. Finally, this instruction triggers the translation 
movement to make the drawer to open. The argument open1 refers 
to a translation movement interactively defined before. 

3.3 Smart Object Behaviours 
Objects functionality is defined by the set of its behaviours. A 
variety of instructions are available in order to model more 
complex behaviours. Most of these instructions provide similar 
capabilities of those available on standard programming 
languages. Once we have the flexibility to describe the logic of 
any complex behaviour, the limiting aspect is related to the 
possible instructions to animate the object and to describe 

expected actions of the user. The more difficult is to define what 
are the user-related instructions that can be used. 

It is possible to compare a smart object to a dialog box of a 
graphical user interface: both show their interactive parts (like 
buttons), and react, according to their functionality, when some 
interaction is selected.  

Two distinct phases exist in this process: the interaction selection, 
and the behaviour interpretation. Depending on the type of the 
user that interacts with a smart object, these phases must be 
considered differently. 

For example, a virtual human user can compare semantic names of 
behaviours in order to choose one based on some reasoning 
process. We can also imagine a (real) user that selects behaviours 
by choosing one from an available list. In the case of our VR 
application, the immersed user will select behaviours by matching 
its virtual hand to hand clues, as will be explained in the next 
section. Once a behaviour is selected, each instruction is 
interpreted in order to perform the interaction. 

Our current behavioural language considers two main user-related 
instructions: the UserDoGest, and the UserGotoPosition 
instructions. As already described, the UserDoGest instruction 
says that, at a certain moment of the interaction, the user needs to 
have its hand on a specific location. In a similar way, the 
instruction UserGotoPosition means that the user should be in a 
certain location. 

During the interpretation of the behavioural instructions, when a 
UserDoGest instruction is found, the application shows the related 
hand clue and waits the user to put its virtual hand near the clue 
before skipping to the next instruction. 

When a UserGotoPosition instruction is found, the application 
shows the goal position clue and waits the user to get closer to it 
before skipping to the next instruction. In order to support this 
instruction, the VR interaction metaphor must include some 
efficient navigation solution.  

Hand Clues 

Reference Position 

Figure 1.  Modelling the behaviours of a smart desk. 

Plan to open First Drawer 



With these two user-related instructions it is possible to model 
many complex high -level interactions, as for example, entering in 
a lift [6]. 

Although a complete set of behavioural instructions has not yet 
been defined, some other behaviour definitions can be seen in 
previous works [6,7]. 

The prototype VR application described in the next sections does 
not consider a navigation metaphor for the immersed user. In this 
way, we consider only smart objects wh ich behaviours are 
described with the four instructions showed in figure 1. 

The next section details how the user, wearing a data glove, can 
select a desired available object behaviour. 

4. INTERACTION METAPHOR 
Once smart objects are modelled, they can be loaded into the 
virtual environment (VE). We make use of the interaction 
information that each smart object contains in order to facilitate 
the user interaction. This approach frees the user many difficult 
low-level motor activities. 

We consider that the user is immersed in the virtual environment 
using a data glove and a six degrees of freedom tracker placed on 
the glove. In this way, the user can freely move its hand in the 
virtual environment (however in a restricted space). We consider 
that the position of the user in the VE is the position of its virtual 
hand representation, captured by the positional tracker. 

Two main modules control our interaction metaphor: The smart 
object controller, and the interaction manager.  

The interaction manager is responsible to aid the user to select 
available smart object’s behaviours, while the controller interprets 
the selected behavioural instructions. 

4.1 The Interaction Manager 
The interaction manager monitors the user position in relation to 
each object reference position. When the user reaches a certain 
distance from the object reference position, we say that the user is 
inside the interaction range of the object. In this way, a dynamic 
list of all objects inside the interaction range of the user is 
maintained updated. 

For each smart object in range, all available behaviours are 
checked in order to determine those that are closest to the current 
user’s hand position. This is done by measuring the distance of the 
user’s hand position to the clue hand that each behaviour specifies 
as a parameter of its first UserDoGest instruction. Note that we 
can have a behaviour with more than one UserDoGest instruction, 
for example to describe an interaction requiring a sequence of 
buttons to be pressed.  

All available behaviours in range have an associated hand clue. 
All hand clues that are within a certain distance (in relation to the 
user position) are displayed in the virtual environment, and are 
kept in another dynamic list. This list keeps a link to all available 
behaviours that  are currently in range. Figure 2 depicts this 
architecture.  

In this way, the interaction manager monitors the position of the 
smart objects and the user’s hand, in order to display only the 
hand clues corresponding to closer available behaviours in range. 

Once the user really places its hand near the same position and 
orientation given by a hand clue, the corresponding smart object 
behaviour is selected and interpreted by the controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  The interaction manager module keeps updated a list of 
smart objects in range and a list of their available behaviors that 

are closest to the user. 

 

Note that when the user selects a behaviour, other behaviours may 
change their availability state, what will cause the interaction 
manager to dynamically update the displayed hand clues.  

 

 

 

 

 

 

 

 

 

 

Figure 3.  To close the book or the drawer of the smart desk, the 
user selects the corresponding object behaviour by placing the 

hand closer to the desired hand clue. 

 

Figure 3 shows a snapshot of our prototype implementation where 
the user’s hand position is in the range of two available behaviours 
of the smart desk: to close a book on it, and to close its first 
drawer. To trigger one of these two behaviours the user sees the 
two related hand clues, so that by just putting its hand near a hand 
clue, the associated smart object behaviour will be triggered. 

VE 

SOBJ 1 SOBJ n 

User  

Interaction Manager:  
Monitors positions in the VE 

… 

Update List 1: 
Dynamic List of 
SOBJs in Range 

Update List 2: 
Dynamic List of 

available behaviours 
of  the objects in L1, 
that are closer to the 

user. Hand Clues for 
the behaviours 

of L2 are 
displayed.  

Hand Clues 

User’s Hand 



Figure 4 shows another smart object that is a dossier containing 
six drawers. The behaviours definitions are similar to the desk 
drawer, so that the object  has a total of six pairs of behaviours, 
each pair being related to each drawer (open and close). In this 
way, only six behaviours are available at the same time. Figure 4 
shows two moments of the interaction of opening a drawer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  The first image shows three hand clues indicating that 
there are three available interactions to open drawers of the 

dossier. The second image shows the final state of the drawer after 
the middle one is chosen.  

 

4.2 The Smart Object Controller 
When a hand clue is selected, the smart object controller starts to 
directly interpret each instruction of the related behavioural plan, 
animating the object and updating its internal state variables, i.e. 
performing the interaction.  

As the first UserDoGest instruction found in the selected 
behaviour serves as the behaviour hand clue, this one is directly 
skipped. But, in the case where another UserDoGest instruction is 
found, the controller will wait the user to place its virtual hand 
near to the associated hand clue to then skip to the next 
instruction. In this case, all hand clues displayed by the interaction 
manager are turned off. Only the hand clue related to the current 
UserDoGest being interpreted is displayed. 

Similarly, if a UserGotoPosition instruction is found, all other 
clues are turned off, just displaying the goal position clue that the 
user must reach in order to let the following instructions be 
executed. 

The scenario is simple: the user can navigate with its virtual hand 
seeing many clues being turned on and off on the screen. The 
understanding of which interaction is related to a clue is obvious. 
For example, by seeing a hand clue positioned in the handle of a 
closed drawer, there are no doubts that the available interaction is 
to open the drawer. 

In this way, all interactions are triggered by means of comparing 
distances, minimising the needed low-level motor activities of the 
user. Only when two hand clues are too close to each other that the 
hand posture of the user will be used in order to decide which 
interaction to select. 

5. THE PROTOTYPE VR APPLICATION 
Our prototype implementation uses one Ascension Flock of Birds 
(FOB) magnetic 3d positional tracker, attached to a Cyber Touch 
data glove from Virtual Technologies inc. To give a 3d visual 
feedback, we use a pair of Stereo Glasses attached to a SGI Impact 
machine. 

We minimise the number of VR devices in order to reduce 
discomfort during usage. For this application, it is sufficient that 
the user wears only one data glove. Figure 5 illustrates a user 
wearing the needed VR devices and ready for using the 
application. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  A picture of the real user with the needed VR devices, 
ready to use the system.  

 

Figure 6 shows the considered scene. It is composed of two smart 
objects, a desk (figure 1 and 3) and a dossier with six drawers 
(figure 4). Both objects have only behaviours of the kind depicted 
in figure 1. 

In this way, the user stays in front of the computer screen, and can 
see its virtual hand being displaced accordingly to its real hand 
position. Depending on the position of the virtual hand, some hand 
clues are displayed, indicating that interactions can be selected.  

 

 

 

 

 

 

 

 

Figure 6.  The virtual environment is composed of two smart 
objects where the user can move its virtual hand freely in order to 

explore available interactions.  

The Cyber Touch data glove contains small special devices on the 
palm and on each finger, that can generate a variable vibration 

User’s Hand 

User’s Hand 
FOB emitter 

FOB sensor 

Stereo Glasses 

Cyber 
Touch 



sensation. This gives a total of six vibration devices. We use such 
vibrations to give two different kinds of feedback to the user: 

- To indicate how many available behaviours are selectable. To do 
this, we send a small vibration to n vibration devices, where n is 
the number of hand clues that are currently being displayed. 

- To indicate that an interaction was selected, by sending for a 
short period of time, a stronger vibration on all activated vibration 
devices. 

This logic of using vibrations gives an interesting feedback to the 
user in cases where many close interactions exist. For example, in 
the first image of figure 4, the user feel 3 fingers vibrating, what 
makes him to pay more attention to his acts, in order to select the 
correct one. When he selects an interaction (second image of 
figure 4), he feels a stronger vibration, what makes him to visually 
confirm that the object acted accordingly. In the other hand, 
sometimes the excessive feeling of vibrations may be 
uncomfortable. 

In this application example, no metaphor for navigating in large 
virtual environments was designed. Just the natural tracked hand 
position is used, what limits the interaction space to a rather small 
VE. 

Also, in order to select a desired interaction, we consider only 
distances measured between the user’s hand and the clue hands 
(figures 3 and 4). The shape of the user’s virtual hand would be 
used only to distinguish between two hand clues that are too close 
one to another. This situation does not occur with the used objects. 

In this way, the implemented application runs very fast, easily 
achieving interactive frame rates on an Impact SGI computer.  

This prototype system permits an interesting analysis of the 
designed furniture regarding human factor aspects. Another direct 
application for this framework is training the use of complex 
equipments, by experiencing with them. 

The objects used in this application have a simple functionality to 
open and close some of their parts, but our behavioural language 
can also be used to model a more complex logic. For example, 
manufacturers could provide a smart object description of their 
products together with the user’s guide. In this way, the user could 
see all possible actions to perform with the equipment, virtually 
seeing what happens when, for instance, some button is pressed. 

6. FINAL REMARKS AND FUTURE WORK 
We presented in this paper a framework dedicated to model 
interactive objects that can be used in applications for direct 
interaction using VR devices. 

Moreover, we present our first results towards a definition of a 
high-level interaction metaphor, naturally achieved from the smart 
object framework. 

The important aspect of our approach is that smart objects are 
modelled in a general way that is independent of the application.  

This introduces a way to have standard interactive object 
descriptions that can be used to describe many different types of 
objects. The key idea is that each object contains a complete 
description of its possible interactions; then its up to the 
application to interpret this description accordingly to its needs. 

For example, users that do not have a VR system, could still 
interact with smart objects, by using other metaphors based on 
mouse navigation. 

We believe that such approach of defining object’s functionality 
by an interaction oriented description, provides a flexible 
framework that can be used by different interaction metaphors. 

Users that have experienced the system showed that the 
interaction process is straightforward to learn and understand. 
However, the action of getting close to a hand clue was sometimes 
not so easy to perform without activating surrounding clues. But 
this factor is strongly related to the specific objects used in the 
application. In summary, we could see that the facility to activate 
the clues can be an advantage in some cases, but not in all cases, 
what suggests the use of variable thresholds.  

As future work, we intend to incorporate two complementary 
modules to the application: 

- A low-level physical model connected to a direct manipulation 
metaphor, in order to enable the user to displace objects, for 
example between the drawers of the smart objects. 

- A navigation metaphor, to free the user from the real world space 
constraints, allowing navigation on large VEs and interaction of 
many different kinds of smart objects. Such environments have 
been successfully constructed in the scope of simulating a virtual 
city populated with virtual humans that can autonomously interact 
with smart objects [4]. 

7. ACKNOWLEDGEMENTS 
The authors are grateful to Valery Tschopp for the aid on 
implementing the prototype VR application, to Dr. Tom Molet for 
the FOB use, and to Fabien Garat for appearing in the photo of 
figure 5. This research was supported by the Swiss National 
Foundation for Scientific Research and by the Brazilian National 
Council for Scientific and Technologic Development (CNPq). 

8. REFERENCES 
[1] G. Baciu, W. Wong, and H. Sun, “Hardware-Assisted 

Virtual Collisions”, Proceedings of the ACM Symposium 
on Virtual Reality Software and Technology, VRST, Taipei, 
Taiwan, 145-151, 1998. 

[2] R. Boulic, S. Rezzonico, and D. Thalmann, “Multi Finger 
Manipulation of Virtual Objects”, Proceedings of the ACM 
Symposium on Virtual Reality Software and Technology, 
VRST, 67-74, 1996. 

[3] K. Bowyer, S. Cameron, G. Jared, R. Martin, A. 
Middleditch, M. Sabin, and J. Woodwark, “Introducing 
Djinn – A Geometric Interface for Solid Modelling”, 
Information Geometers, ISBN 1-874728-08-9, 24pp, 1995. 

[4] N. Farenc, S. R. Musse, E. Schweiss, M. Kallmann, O. 
Aune, R. Boulic, and D. Thalmann, “A Paradigm for 
Controlling Virtual Humans in Urban Environment 
Simulations”, Applied Artificial Intelligence Journal, 1999, 
to appear. 

[5] C. Hand, “A Survey of 3D Interaction Techniques”, 
Computer Graphics Forum 16(5), 269-281, 1997. 

[6] M. Kallmann and D. Thalmann, “Modeling Objects for 
Interaction Tasks”, Proceedings of the 9th Eurographics 
Workshop on Computer Animation and Simulation, 73-86, 
Lisbon, Portugal, 1998. 

[7] M. Kallmann and D. Thalmann, “A Behavioural Interface to 
Simulate Agent-Object Interactions in Real Time”, 



Proceedings of Computer Animation 99, Geneva, May, 
1999. 

[8] Y. Kitamura, A. Yee, and F. Kishino, “A Sophisticated 
Manipulation Aid in a Virtual Environment using Dynamic 
Constraints among Object Faces”, Presence, 7(5), 460-477, 
October, 1998. 

[9] M. Mine, “Virtual Environment Interaction Techniques”, 
UNC Chapel Hill Computer Science Technical Report 
TR95-018, 1995. 

[10] M. Mine, F. P. Brooks Jr., and C. Sequin, “Moving Objects 
in Space Exploiting Proprioception in Virtual Environment 
interaction”, Proceedings of SIGGRAPH’97, Los Angeles, 
CA, 1997. 

[11] H. Nishino, K. Utsumiya, D. Kuraoka and K. Korida, 
“Interactive Two -Handed Gesture Interface in 3D Virtual 
Environments”, Proceedings of the ACM Symposium on 
Virtual Reality Software and Technology, VRST, Lausanne, 
Switzerland, 1-14, 1997. 

[12] A. Paoluzzi, V. Pascucci, and M. Vicentino, “Geometric 
Programming: A Programming Approach to Geometric 
Design”, ACM Transactions on Graphics, 14(3), 266-306, 
July, 1995. 

[13] S. Parry-Barwick, and A. Bowyer, “Is the Features Interface 
Ready?”, In “Directions in Geometric Computing”, Ed. 
Martin R., Information Geometers Ltd, UK, Cap. 4, 129-
160, 1993. 

[14] A. Pentland, “Machine Understanding of Human Action”, 
7th International Forum on Frontier of Telecom Technology, 
Tokyo, Japan, 1995. 

[15] V. Popescu, G. Burdea, and M. Bouzit, “VR Simulation 
Modelling for a Haptic Glove”, Proceedings of Computer 
Animation 99, Geneva, May, 1999. 

[16] I. Poupyrev, S. Weghorst, M. Billinghurst, and T. Ichikawa, 
“A Framework and Testbed for Studying Manipulation 
Techniques for Immersive VR”, Proceedings of the ACM 
Symposium on Virtual Reality Software and Technology, 
VRST, Lausanne, Switzerland, 21-28, 1997. 

[17] J. Sauer and E. Schömer, “A Constraint-Based Approach to 
Rigid Body Dynamics for Virtual Reality Applicatio ns”, 
Proceedings of the ACM Symposium on Virtual Reality 
Software and Technology, VRST, Taipei, Taiwan, 153-161, 
1998. 

[18] K. M. Stanney, R. R. Mourant, and R. S. Kennedy, “Human 
Factors Issues in Virtual Environments: A Review of the 
Literature”, Presence, 7(4), 327-351, August, 1998. 

[19] D. J. Sturman, and D. Zeltzer, “A Survey of Glove-based 
Input”, IEEE Computer Graphics and Applications, 30-39, 
January, 1994. 

[20] The Virtual Reality Modelling Language, VRML, 
http://www.vrml.org.  

[21] Y. Okada, K. Sh inpo, Y. Tanaka and D. Thalmann, “Virtual 
Input Devices based on Motion Capture and Collision 
Detection”, Proceedings of Computer Animation 99, 
Geneva, May, 1999. 

[22] J. J. Gibson, “The theory of affordances”, In R. Shaw & J. 
Brandsford (eds.), Perceiving, Acting and Knowing. 
Hillsdale, NJ:Erlbaum, 1977. 

 

 




