
A Behavioral Interface to Simulate Agent-Object Interactions in Real Time

Marcelo Kallmann and Daniel Thalmann

EPFL Computer Graphics Lab – LIG
CH-1015 – Lausanne – Switzerland
{kallmann, thalmann}@lig.di.epfl.ch

Abstract

This paper shows a new approach to model and control
interactive objects for simulations with virtual human
agents when real time interactivity is essential. A general
conceptualization is made to model objects with
behaviors that can provide: information about their
functionality, changes in appearance from parameterized
deformations, and a complete plan for each possible
interaction with a virtual human. Such behaviors are
described with simple primitive commands, following the
actual trend of many standard scene graph file formats
that connects language with movements and events to
create interactive animations. In our case, special
attention is given to correctly interpret object behaviors
in parallel: situation that arrives when many human
agents interact at the same time with one same object.

Keywords: Virtual Humans, Virtual Environments, Object
Modeling, Object Interaction, Script Languages,
Parameterized Deformations.

1 Introduction

The necessity to have interactive objects in virtual
environments appears in most applications of the
computer animation and simulation field. The need to offer
interactivity is growing, especially due to the increasing
popularity of many standard graphical file formats. Users
want to easily control the behavior of objects. As an
example, we can consider the evolution of the Virtual
Reality Modeling Language graphical file format [23] from
the first version to the version 97 containing already
options to write script commands to route user events to
scene actions.

More complex situations arise when applications need
to control interactions between objects and virtual human
agents (here after just referred to as an agent). Some
examples of such applications are: autonomous agents in
virtual environments, human factors analysis, training,

education, virtual prototyping, and simulation-based
design. A good overview of such areas is presented by
Badler [2]. As an example, an application to train
equipment usage using virtual humans is presented by
Johnson et al [11].

We have modeled interactive objects following the
smart object conception described in a previous work [13].
The adjective smart has been used in different contexts, as
for instance, to refer to computers that can understand
human actions [19]. In our case, an object is called smart
when it has the ability to describe its possible interactions.

The key idea in the smart object concept is that objects
are able to propose a detailed description of how to
perform each possible interaction with them. This is done
by using pre-defined plans specified through scripted
commands. Such commands describe the object behaviors
and have access to important 3D parameters defined
during the modeling phase of the object, by means of a
friendly graphical user interface application. As an
example, special locations where the agent can put its
hands are 3D parameters that are specified using modeling
tools and saved together with the object description.
Then, during the simulation phase, such parameters can
be retrieved in order to feed the many available motion
generators to animate agents [6, 7].

When providing pre-modeled information, we are
releasing the simulation program of many difficult
planning and reasoning tasks. As the real time requirement
is often present in nowadays systems, we are interested in
minimizing all time-consuming operations during the
simulation.

For example, by giving the location of a usual graspable
site of the object, an inverse kinematics algorithm can be
directly used to move the agent arm in the correct
direction. We adopt such solutions of having pre-defined
data to gain simplicity, greater user control and real time
performance, even if we may end up with some loss of
individuality in interactions.

In addition, deformation algorithms that can generate
parameterized data can be used to display shape changes

Owner
In Proceedings of Computer Animation, IEEE Computer Society Press, 1999, Geneva, 138-146

in real time. Some examples are some morphing algorithms
[12, 14] and smooth multi-resolution shape changes [10].
Deformations are included as object properties, so that we
can define, for example, that some agent action will trigger
an object shape change.

Some proposed systems in the literature already use
similar ideas. In particular, the object specific reasoning
[15] creates a relational table to inform object purpose and
specific data of each object graspable site. Such
information is then used to perform, mainly, grasping tasks
[9].

In our framework, we are interested in modeling objects
that may have a complex functionality, and that might
interact with more than one agent at a same time. A good
example of such objects is a smart lift that can deal
simultaneously with many agents during a crowd
simulation [16, 21] inside a virtual city environment [8].
This lift example (figure 1) was shown in a previous work
[13] together with other objects such as automatic doors
and escalators.

Figure 1. A smart lift that has all necessary
pre-modeled information to be able to take
control over agents that want to enter from
one floor and go to the other floor.

Once we have connected a script language with object

movements and state variables, we are able to program
complex object functionality. Using script languages to
control human agents is a versatile solution, as shown for
example by the IMPROV system [20]. On the other hand, it
is important to maintain few and intuitive script commands
in order to help designers to use them. To achieve such
simplicity, we designed a dedicated script language to
describe a set of behaviors that can be of different types.
For example, it is possible to define that an object with
level of details information has the behavior to change its
own current display resolution. Other behaviors can
change the speed of some moving part, or can take control
of an agent and make it perform some interaction.

In such a concept, during the simulation, each object
has its own module of control. This leads to a virtual

environment where the knowledge of how objects work is
dispersed in the scene. In this case, it is also possible to
have autonomous agents learning objects’ purposes by
retrieving the information contained inside objects.

The previous work [13] showed in detail how smart
objects are modeled, gave some examples of object
behavior definitions, and discussed some applications
based on smart objects. In this paper, we present some
important solutions adopted by our current behavioral
language, showing how far we can describe interactions
still maintaining simplicity. In addition, we present how we
use some concurrent programming techniques to be able
to synchronize more than one agent interpreting an object
behavior at the same time.

We also show new integrated behavioral options that
permit creating a new class of objects, like birds and
fishes, and also objects that can change their shape by
using pre-calculated parameterized deformation data that
do not comp romise our real time requirements.

The remind of this paper is organized as follows:
Section 2 gives a brief overview of how we model smart
objects. Section 3 describes the solutions adopted by our
current script language to define object behaviors, along
with some examples. Section 4 depicts our approach to
concurrently interpret behavior scripts when controlling
more than one agent at the same time. Finally, section 5
presents what class of shape deformation algorithms is
being considered and section 6 concludes and presents
some future work considerations.

2 Modeling Smart Objects

We follow a Feature Modeling approach that is a vast
topic in the engineering field [4]. The basic idea is to
identify and define, during the modeling phase, all
interesting features of the object.

In the scope of our applications goals, we define four
classes of different interaction-features:

• Intrinsic object properties, for example: the movement

description of parts, a semantic key text description of
objects purpose or intent, etc.

• Interaction information: like positions of interaction
parts (knobs, buttons), hand shapes to use and so on.

 • Object behaviors, that are available depending on
objects state. For example, an automatic door has the
behavior close available only if there are no agents
passing through the door, and the door is open.

• Expected agent behaviors: are associated with object
behaviors in situations that need to describe: when the
agent should walk, which location it should reach with
its hand, etc.

Intrinsic object properties and interaction information
are modeled using a graphical user interface. Figure 2a
shows a modeling section of a slot machine where the
usual locations to get closer and grasp the handle are
specified. Figure 2b shows a desk with many interaction-
features identified.

Figure 2a and 2b. Two modeling sessions
of smart objects: by using an interactive
user interface it is possible to define
moving parts of the object, and specific
information to control agents as: key
positions and hand locations which are
important for most interactions.

Once we have modeled all 3D information for an object

interaction, we have to describe how and when such data
will be used. That means, we need to synchronize object
movements with agent movements also taking into
account the possibility to have many agents interacting
with the same object.

In order to do this, we use a dedicated script language,
following a common trend in many commercial products.
In the next section we show how this language is
designed.

3 Defining Object Behaviors

In order to specify how the object will behave during
the simulation phase, we use a script language that
consists of keywords grouped into behavior definitions.

These keywords are able to trigger movements of the
object, give instructions to agents, change state variables
and call sub-behaviors.

This approach has shown to be easy and
straightforward to describe objects with common
behaviors, but when objects become more complex (as the
lift of figure 1), we can observe that simplicity is no longer
present. To overcome this, we classify the most used
behavior definitions in templates that can be used to
compose behaviors that are more complex. It is always a
challenge to achieve a simple, yet powerful, set of
keywords. That’s why we find that it is important to keep a
format that can be generated directly by a user interface.
This is essential if we want designers to program the
behaviors of objects and not only their geometry.

Another principle that we have in mind is to be able to
provide high level behaviors. The fact is that in our
current applications for simulating virtual city
environments, the demands are always for complex
behaviors. Users rarely want to have only a graspable
object, but want to have a complex automatic machine to
buy train tickets. And such machine would have only one
main behavior to make the agent walk close to the
machine, make it put the money inside, press a sequence
of buttons and take the ticket.

Listing 1 shows the behaviors definitions used to
model a smart table for a party simulation. The table
contains many graspable fruits and has two behaviors: the
main one takes an agent to the nearest fruit to grasp it and
eat it. A second behavior puts back on the table all fruits
that were eaten. Figure 3 shows a scene of a simulation
done with this table.

Figure 3. The smart table in a party simulation.

Doing so, a social behavioral simulation of groups of

agents [16] in a party can easily integrate the option to
have agents going to eat, for example, a fruit on the table.

Listing 1 shows how the two behaviors of this table
example are coded. We can observe that a simple script
like this can describe complex agent-objects interactions.

However, this script has to be carefully designed so that it
can correctly be interpreted by many agents at the same
time during the simulation. We explain how we deal with
such kind of parallel execution in the next section.

BEHAVIOR get(n)
 Subroutine
 ChangePos pos_to_go[n]
pos_very_far
 DecreaseVar var_num_fruits
 GotoPos pos_near_fruit[n]
 DoGesture gest_get_fruit[n] LeftHand
 MoveHand own_mouth LeftHand
END

BEHAVIOR get_closest_fruit
 GetNearestPos var_index
pos_to_go[]
 DoBehavior get(var_index)
END

BEHAVIOR replace_fruits
 ChangeAllPos pos_to_go[]
pos_near_fruits[]
 ShowAllParts fruits[]
END

Listing 1. Behavior definitions for the smart
table example.

An important point we have observed is that a script of

the kind of listing 1 is already complicated for designers to
create it. To try to minimize this difficulty we introduce a
kind of behavior template. The idea is to keep a collection
of pre-defined common behavior definitions that can be
included and connected in a new object from a simple
dialog box.

To illustrate this feature we show two examples we
have used: A first example is a simple button with the
behavior definitions to be pressed. Another example is the
behavior definitions of an object that can change the
speed of its moving parts.

Listing 2 shows how we can use such templates to
define a button behavior. During the modeling phase, the
designer can interactively model the shape of the button,
its movements, and a desired hand gesture to press it (this
specifies a location to reach and a hand shape). Then he
or she can select the template press_button that will open
a dialog box to ask for the needed names to correctly
merge the pre-defined behavior inside the list of already
modeled behaviors. In this button example, the user is
asked to enter four parameters.

The keyword CheckVar, that appears in the listing 2
makes the behavior press_button available or not,
depending on a variable state. This state control is
important for when many agents intend to press the same
button at the same time: only the first one will do it. After

that the behavior will be unavailable avoiding agents
pressing buttons that were already pressed. This kind of
consistency control is sometimes tricky to program and
that’s why the usage of such templates facilitates the
design process. The next section explains the usage of
state variables to synchronize controlled agents.

TEMPLATE press_button:
 “Enter the button press state variable
:”
 var_button_pressed
 “Enter the hand gesture name :”
 gest_to_press
 “Enter the hand to use (righ/left) :”
 hand
 “Enter the button movement name :”
 cmd_move_button

 BEHAVIOR press_button
 CheckVar var_button_pressed false
 SetVar var_button_pressed true
 DoGesture gest_to_press hand
 DoCommand cmd_move_button
 END # of behavior

END # of template

Listing 2. A behavior template for a button.

Listing 3 shows a template used to model birds and

fishes that have the behavior to move its parts
continuously to simulate flying and swimming.

TEMPLATE fly_movement:
 “Enter the command movement to open :”
 open_wing_mov
 “Enter the command movement to close :”
 close_wing_mov

 BEHAVIOR fly_movement
 DoAlways
 DoCommand open_wing_mov
 DoCommand close_wing_mov
 END # of behavior

 BEHAVIOR fly_change_speed(n)
 ChangeCmdInterpIncrem open_wing_mov n
 ChangeCmdInterpIncrem close_wing_mov n
 END # of behavior

END # of template

Listing 3. Behavior template definitions
used for birds and fishes.

The behaviors shown in listing 3 were made to model a

bird with moving wings. The designer can model the
geometry of the bird body and wings, and four rotational
movements to open and close each wing. The rotational

movements to open the wings receive a common name, so
that they are executed in parallel when triggered. The same
is done to the rotations used to close the wings. Doing so,
when the template is called, the designer has just to say
the names of modeled rotations and the behaviors
definitions can be correctly merged into the objects
design.

Using this same template, it is possible to define similar
objects, for example, a fish. For that, the designer only
needs to define different rotation movements that are
linked to the fishes’ fins. And then the same behaviors are
correctly merged.

Figure 4a shows a flock of birds in a real time
simulation. In this simulation, the application controls the
velocity to move the wings and the position and
orientation for each bird. Figure 4b shows the modeling
phase of the fish that can be inserted in the same type of
simulation as it has the same behavioral interface as the
bird.

Figure 4a and 4b. The upper figure (4a)
shows a simulation of birds that have their
wings movement controlled as behaviors.
The lower figure (4b) shows the modeling
phase of a fish that has the same
behavioral control.

4 Concurrently Interpreting Object Behaviors

Regarding agent-object interactions, when we have
more than one agent interacting with a single object at a
same time, we have to correctly synchronize the
interpretation of the behavioral scripts. Moreover, we
have to deal with problems like having simultaneous
access to more than one resource. Such difficulties are
well studied in the areas of concurrent and parallel
programming [1].

Let’s use as an example the behavior get_closest_fruit
(listing 1) of our party table (figure 3). Each time the
simulation program sends an agent to perform this
behavior, a new process is created that will interpret the
behavior script, triggering agent actions, and objects
commands (that is the shared resource). Figure 5
illustrates this process creation.

Figure 5. When each agent starts to perform
some interaction with an object, a new process
(simulated in the same executable) is created to
interpret the behavioral script. Synchronization
is done by checking state variables global to all
processes.

Although we talk here about processes, we simulate
such concurrent interpretation of scripts in the same
executable program. This is done by calling a perform
function for each process from an infinite main loop of the
application. So, the solutions we describe here are used to
correctly decide, for each time step, if the process’s
perform function keeps going interpreting its script or not,
allowing other processes to advance their script
interpretation.

If we take no special care in interpreting the scripted
commands, serious problems arise. Consider that we

BEHAVIOR
x
…

AGENT
1

SMART OBJECT

 BEHAVIOR
x
…

AGENT
N

BEHAVIOR
x
…

AGENT
2

BEHAVIOR
x
…

execute one line of each script being processed, in each
time step of the simulation. In this way, at time t, an agent
a1 may interpret the command GetNearestPos (listing 1).
This command will search for the pos_to_go that is closer
to a1 current position. At the same time t, we can have
another process controlling agent a2 that may also execute
the same command and can find that the nearest position
to go is the same. If this happens, we will have a1 and a2
colliding each other when they arrive in the same position.
Worse results will happen when a2 will try to grasp a fruit
that was already taken by a1.

To avoid such problems, we could use special
keywords to specify when a process should stop
interpreting its script to leave others processes work. For
example, by placing such a keyword after the ChangePos
instruction, we would force that the process of agent a1
would execute ChangePos before leaving the control to
agent a2. Doing so, when the process of a2 interprets
GetNearestPos, it will certainly find a different pos_to_go,
because the process of a1 has already invalidated its used
position by changing it to pos_very_far.

However, a simpler solution was adopted. Each
keyword of the script has a fixed property to either stop
the execution to allow other processes to run, or to jump
directly to the following command of the same script.

In general, when a keyword that triggers some long
action is found, the process sends the related action to
the agent or object and leaves the control to other
processes until the action is not completed. These long
actions are all agent-related actions (walk, arm gesture,
etc) and also object movements. All other keywords
(check states, call sub-behaviors, compare positions, etc)
are executed in sequence, locking the main loop until a
long action is found again or the script is finished. This
criterion has shown to solve all conflicts of our current
objects.

This way of synchronization relies mainly on sharing
global variable states with all processes. Another example
of synchronization is shown in the button example of
listing 2. In this case, the global variable
var_button_pressed is used to avoid an agent pressing a
button that can be already pressed by another agent.

Even using all solutions described above, we can still
find examples where avoiding a deadlock situation would
be difficult. For example, we could not solve all situations
during a simulation of the well-known example of
simultaneous access of resources that is called the dining
philosophers [1].

Nevertheless, we still can deal with some complicated
examples such as the lift shown in figure 1. In all agent-
object interactions we are modeling, we use two main
agent-related actions: an inverse kinematics control [3]
and a walk motor [5]. For each case, we have a script
command to trigger the motion motor.

The correct management of the motion control
techniques that can be applied to agents is guaranteed by
the agentlib environment [7]. The main task of the smart
object control module is so to synchronize objects
movements with agentlib actions.

All the parameters needed to initialize the motions are
specified during the modeling phase of the object. In
particular, the DoGesture command in the behavior script
will activate a main inverse kinematics action (called
reach) to make the hand move to the pre-defined location.
DoGesture will also activate two complementary actions:
LookAt to make the agent look at the reach goal position,
and a HandShape, that will interpolate the current hand
shape of the agent to the pre-defined one (figure 6).

Figure 6. When a behavior script is interpreted,
each agent-related command is converted into
agentlib [7] actions for a coherent management
and blending with other actions, as for example,
facial animation expressions controlled by any
other module.

5 Behaviors to Change Shape Appearance

In order to enhance the possibilities of a smart object,
some shape deformation capabilities are being
incorporated. The idea is to have the same behavior
interface to trigger also some deformation effects on the
object shape.

We do not want to have heavy deformation
calculations during a simulation. We are not interested in
incorporating, for example, some specific skin deformation
module [22] for our fish example (figure 4) to obtain a
smooth body motion simulation. Our target applications

SMART OBJECT
BEHAVIOR get
…
WalkTo
DoGesture
…
END

AGENT N

AGENT ACTIONS
Walk
Reach

HandShape
LookAt

BEHAVIOR get
…
WalkTo
DoGesture
…
END

Behavior
Selected

deal with complex scenes with many objects, and where it
is important to keep real time frame rates.

For such reasons, we are interested in deformation
algorithms that can be run offline to generate a data file
that will describe a parameterized result of the pre-
calculated deformation. For example, there is a huge
literature about algorithms to calculate smooth changes of
level of details (or multi resolution) that can be
parameterized. One example is the progressive mesh
representation presented by Hoppe [10].

Another deformation algorithm that can be
parameterized in most cases is a polyhedral morphing.
Commonly, morphing algorithms are divided in solving
two phases: the correspondence problem, and the
interpolation problem [14]. Once the correspondence is
solved, the interpolation can be parameterized between 0
and 1 and evaluated in real time.

Figure 7 shows a morphing result obtained in a
previous work [12]. The output of this algorithm is a set of
trajectories passing through the models vertices. Then, to
obtain the morphing effect, we make each vertex move
along the trajectories (together with a gradual global
scaling), giving the shape transformation effect.

Figure 7. A morphing transformation that can be
obtained by moving vertices along pre-
calculated trajectories, together with a gradual
global scaling.

Any other deformation algorithm that can be
parameterized can be easily integrated. As another
example, we took some models of muscles that were
deformed using a spring-mass system [17]. The muscle
deformation is calculated according to changes in the size
of the muscle main axis. So that we can get intermediate
models, and generate trajectories that passes through
corresponding vertices. Doing so, we just need to
parameterize the linear piece-wise trajectories to the
maximal and minimal axis length changes (figure 8).

These two examples illustrate some possibilities of
shape deformation that can be used at a very low
computational cost. During the simulation, we only need
to perform basic interpolation techniques to get an
updated position of the model vertices.

Figure 8. A deformable muscle that changes its
shape by moving its vertices along the pre-
calculated trajectories. The deformation is
parameterized in relation to the length of the
muscle main axis.

Connecting such deformations is trivial: once they
can be parameterized between 0 and 1, a simple command
call in a behavior definition with the desired parameter can
trigger a shape change. With this feature, it is easy to
connect shape changes to agents movements or other
actions.

For example we can think about an object that
changes its shape after an agent touches it, and an object
that changes its resolution of appearance based on the
distance from the camera.

Of course this approach has its limitations. For
example, it is possible to “record” the shape deformation
of some soft surface after some force is applied to a region
of the surface. Then, we can parameterize this and “play”
it back whenever the agent touches that region. But this
will work only for that region, and the deformation will
always be the same. This is similar to having a keyframe
animation of the evolution of the surface vertices.

6 Conclusions and Future Work

We showed in this article the smart object approach to
model interactive objects for real time simulations. The
essential idea is that smart objects contain a series of pre-
programmed behaviors that can control complex agent-
object interactions, moving parts, and shape changes.
Also, the necessary details to control more than one agent
at a same time during an interaction were discussed.

This approach always provides a complete pre-defined
plan for each desired interaction with the object, and an

easy usage is obtained by means of a graphical interface
program to model objects interactions and to program
objects behaviors. Because behaviors can become
complex, we have adopted a template-based approach to
select pre-programmed sub-behaviors, allowing designers
to also define the scripted part of the model.

Although this approach seems to take out the
autonomous aspect of the agents because they are
basically following a sequence of pre-programmed
commands, two levels of autonomy can be explored. A
first level is not to directly interpret the proposed
sequence of commands, but to analyze them and decide
with external planning and reasoning algorithms what
actions to perform, for example, with the aid of synthetic
vision [18]. Another level is to use agents’ autonomous
capacity to decide which interactions to select and from
which objects, leaving only the low-level actions to be
described by the pre-programmed plans.

Our experience shows that when the simulation
environment grows we have an increasing number of
simulation parameters to control. And that is when it is
preferred to concentrate on the high-level parameters,
leaving the low level interaction information to the smart
objects. This situation commonly occurs in virtual cities
simulation applications [8] [21].

As future work, we are investigating in two main
directions:

To perform simulations with autonomous agents that
use their own perception modules to identify which
objects (and with which behaviors) they need to interact
with in order to achieve some high level given goal.

To extend this smart object conception for interactions
with a real human using VR devices, e. g., with a data
glove. In this case, the user would only place the hand
near pre-defined places in the virtual object to trigger
some scripted behavior.

7 Acknowledgments

The authors are grateful to Dr. L. P. Nedel, for
providing the data for the deformable muscle example, to
S. R. Musse for the simulations involving crowds and
smart objects, and to T. Michello for the fish model
design. This research was supported by the Swiss
National Foundation for Scientific Research and by the
Brazilian National Council for Scientific and Technologic
Development (CNPq).

8 References

[1] G. R. Andrews, “Concurrent Programming: Principles
and Practice”. ISBN 0-8053-0086-4, The

Benjamin/Cummings Publishing Company, Inc.,
California, 1991.

[2] N. N. Badler, “Virtual Humans for Animation,
Ergonomics, and Simulation”, IEEE Workshop on
Non-Rigid and Articulated Motion, Puerto Rico, June
97.

[3] P. Baerlocher, and R. Boulic, “Task Priority
Formulations for the Kinematic Control of Highly
Redundant Articulated Structures”, IEEE IROS’98,
Victoria (Canada), 323-329.

[4] S. Parry-Barwick, and A. Bowyer, “Is the Features
Interface Ready?”, In “Directions in Geometric
Computing”, Ed. Martin R., Information Geometers
Ltd, UK, 1993, Cap. 4, 129-160.

[5] R. Boulic, N. Magnenat-Thalmann, and D. Thalmann,
“A Global Human Walking Model with Real Time
Kinematic Personification”, The Visual Computer, 6,
344-358, 1990.

[6] R. Boulic, T. Capin, Z. Huang, P. Kalra, B.
Lintermann, N. Magnenat-Thalmann, L. Moccozet, T.
Molet, I. Pandzic, K. Saar, A. Schmitt, J. Shen, and D.
Thalmann. “The HUMANOID Environment for
Interactive Animation of Multiple Deformable Human
Characters”, Proceedings of EUROGRAPHICS 95,
Maastricht, The Netherlands, August 28 - September
1, 337-348, 1995.

[7] R. Boulic, P. Becheiraz, L. Emering, and D. Thalmann,
“Integration of Motion Control Techniques for
Virtual Human and Avatar Real-Time Animation”, In
Proceedings of the VRST’97, 111-118, 1997.

[8] N. Farenc, S. R. Musse, E. Schweiss, M. Kallmann, O.
Aune, R. Boulic, and D. Thalmann, “One Step
towards Virtual Human Management for Urban
Environments Simulation”, ECAI’98 Workshop of
Intelligent Virtual Environments, 1998.

[9] C. W. Geib, L. Levison, and M. B. Moore, “SodaJack:
An Architecture for Agents that Search for and
Manipulate Objects”, Technical Report MS-CIS-94-
13, University of Pennsylvania, 1994.

[10] H. Hoppe, “Progressive Meshes”, Proceedings of
SIGGRAPH’96, 1996, 99-108.

[11] W. L. Johnson, and J. Rickel, “Steve: An Animated
Pedagogical Agent for Procedural Training in Virtual
Environments”, Sigart Bulletin, ACM Press, vol. 8,
number 1-4, 16-21, 1997.

[12] M. Kallmann and A. Oliveira, "Homeomorphisms and
Metamorphosis of Polyhedral Models Using Fields
of Directions Defined on Triangulations", Journal of

the Brazilian Computer Society ISSN 0104-6500 vol. 3
num. 3, april 1997, special issue on Computer
Graphics and Image Processing, 52-64.

[13] M. Kallmann and D. Thalmann, “Modeling Objects
for Interaction Tasks”, EGCAS’98 - 9th Eurographics
Workshop on Animation and Simulation, 1998,
Lisbon, Portugal.

[14] J. R. Kent, W. E. Carlson and R. E. Parent, “Shape
Transformation for Polyhedral Objects”, Proceedings
of SIGGRAPH’92, 1992, 47-54.

[15] L. Levison, “Connecting Planning and Acting via
Object-Specific reasoning”, PhD thesis, Dept. of
Computer & Information Science, University of
Pennsylvania, 1996.

[16] S. R. Musse and D. Thalmann, “A Model of Human
Crowd Behavior: Group Inter-Relationship and
Collision Detection Analysis”, EGCAS’97,
Eurographics Workshop on Computer Animation
and Simulation, 1997.

[17] L. Nedel and D. Thalmann, “Real Time Muscle
Deformations Using Mass-Spring Systems”,
Proceedings of CGI’98, IEEE Computer Society Press,
1998.

[18] H. Noser, O. Renault, D. Thalmann, “Navigation for
Digital Actors Based on Synthetic Vision, Memory,
and Learning”, Computer & Graphics, volume 19,
number 1, 7-19, 1995.

[19] A. Pentland, “Machine Understanding of Human
Action”, 7th International Forum on Frontier of
Telecom Technology, 1995, Tokyo, Japan.

[20] K. Perlin, and A. Goldberg, “Improv: A System for
Scripting Interactive Actors in Virtual Worlds”,
Proceedings of SIGGRAPH’96, 1996, New Orleans,
205-216.

[21] E. Schweiss, S. R. Musse, F. Garat and D. Thalmann,
“An Architecture to Guide Crowds using a Rule-
Based Behaviour System”, Proceedings of
Autonomous Agents’ 99, Whashington, May, 1999.

[22] X. Tu, and D. Terzopoulos, “Artificial Fishes:
Physics, Locomotion, Perception, Behavior”,
Proceedings of SIGGRAPH’94, July, 1994.

[23] VRML web address: http://www.vrml.org

