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Abstract Many approaches have been proposed to generate the shape interpolation or morphing of two polyhedral 
objects given in a facet based representation. Most of them focus only the correspondence problem, 
leaving the interpolation process to just an interpolation of  corresponding vertices. In this  article we 
present a new approach which uses  fields of directions defined on triangulations(FDTs) to treat  both the 
problem of getting an homeomorphism between the models and that of morphing them. Consider that an 
scaled version(P1) of one of the objects, has already been adequately  placed in the interior of  the 
other(P2).   The objective of  the  first part of the approach,  is to obtain  a field of unit  vectors defined on  
a  triangulation of the space between P1 and P2.  This field must have no singularities  and the 
trajectories determined by it will be later used to get warping and morphing  transformations between P1 
and P2. The morphing transformations obtained have the good property of being  topology preserving 
ones but  it can be hard to get  an FDT defined on a triangulation of P1 - P2  and the intermediate models  
can have a very large number of  faces. To illustrate those aspects,  transformations between  simple 
models are  presented. 
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1 Introduction 

 Morphing two objects A and B, consists in obtaining a 
sequence of intermediate objects which describes a 
continuous transformation between A and B.  Morphing is 
also known as shape blending, shape interpolation and 
metamorphosis. 

Morphing animations have achieved widespread use in the 
entertainment industry. In this context, the main goal is to 
generate good-looking transformations. Morphing techniques 
are also used in simulations of biological evolution processes 
and in the development of new products in industrial 
designing, as shown in [10]. In these cases,  it is particularly 
desirable that all the intermediate objects generated are 
topologically consistent. This can really simplify some tasks, 
like the manufacture of  prototypes from the computer 
generated models. 

In a common approach to get a morphing of an object A  
into another(B), the problem is divided into two parts. The 
first one consists in obtaining an homeomorphism H:A → B.  
The first step in the process of obtaining H is to solve the so 
called correspondence problem, what consists in matching 

the most prominent features of one object with those of the 
other. 

The objective of the second part is to get a continuous 
transformation T: A×[0,1] → R2,3 which takes every point a 
∈ A into H(a) . This part is sometimes referred as the 
interpolation problem. 

Several approaches to the morphing problem when the 
objects are polyhedral  models have already been published. 
Some of them are based on the idea of refining the two 
models until they have a common topology and then 
interpolating  the positions of corresponding vertices, either 
linearly or in other simple way.  These approaches differ 
however, in how they try to obtain common topology 
refinements of the original models: 

 
i)Hong et al. [12]   tries to match the faces of one  model 

with those of the other taking into account the distance 
between the  centroids of the faces. To make a complete 
matching possible, degenerated faces are included to equalize 
the number of them in the two models. In each pair of faces 
matched, the number of vertices is also equalized to simplify 
a posterior interpolation process. 
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ii)Bethel & Uselton [5] also add  vertices and faces to two 
polyhedral models until a common topology is achieved. In 
this case,  however, this is done by using  adjacency graphs of 
the models.  

iii)Kent et al. [7] describe a method for the case where the 
models represent polyhedra of genus zero. Both models are 
initially projected onto a sphere. Then,  the arrangement of 
the edges of the two models projections , is determined. By 
projecting that arrangement back onto the polyhedra, one can 
obtain  two new models for them with the same topology. 

 
The strategy employed by other approaches is of a 

different kind  
 
i)Kaul & Rossignac [1] constructs the Minkowski sum of 

gradually scaled versions of two given polyhedra to obtain a 
continuous transformation between them. This is done by 
scaling one model gradually from 100% to 0% while 
simultaneously scaling the other from 0% to 100%. Since the 
Minkowski sum of two polyhedra is always another 
polyhedra, it is possible to obtain consistent intermediate 
models. However, this is not an easy task in a surface based 
representation. Moreover, it is not possible to guarantee the 
preservation of the topology during the transformation. 
Intermediate polyhedra can have more genus than the 
originally given ones. 

ii).Others approaches use models based in a volumetric 
representation, avoiding a lot of geometric difficulties the 
precedent ones have. However, in most cases, a heavier 
computation is required. Also, additional difficulties arise 
when one wants to retrieve topological information from 
those models. Some works that make use of volumetric 
objects can be found in [2], [6] and [11]. 

None of the proposals listed above can guarantee that only 
intermediate models without self-intersecting faces will be  
generated . This confirms the intricacy of the morphing 
problem, and shows that finding a general solution  for the 
problem is a very difficult task. 

In this paper, it is proposed a new approach to obtain 
homeomorphisms and morphings of a class named continuous 
dilatations, between two polyhedral models of genus 0. That 
approach guarantees topology preserving transformations and 
consistent intermediate models for a considerably greater set 
of cases when compared with   precedent works. 

Related theoretical results for the 2-dimension case can be 
found in [3] and [13]. 

The article is organized as follows. Some fundamental 
definitions and notations are given  in section 2. Formal 
definitions and other considerations about  field of directions 
defined on triangulations(FDTs) are presented in section 3. 
Section 4  presents an algorithm to get an homeomorphism 
between  two models and outlines two morphing processes 
using FDTs. Section 5 focuses on the problem of  shelling a 
triangulation while section 6 analyzes specifically that  of 
preserving the topology during the transformations. Section 7 
discusses the results obtained and  suggests some topics for 
future research. 

2 Definitions and Notation 

A set P ⊆ Rn  is a kD-manifold, k ≤ n, iff  any  p ∈ P  has 
a neighborhood  Vp such that Vp  ∩ P is homeomorphic to the 
k dimensional open sphere. 

 
Let S be a set of points in ℜd and H the convex hull of S. 

A triangulation T of S is a set of non-degenerated simplices 
of dimension d which additionally satisfies the following 
properties: 

• A simplex in T has all vertices in S. 
• Two different simplices in T have disjoint interiors. 
• A facet of a simplex in T is either on the boundary of H, 

or is shared by exactly two simplices. 
• A simplex  in T contains no points of S other than its 

vertices. 
      Our interest is limited to 2 or 3D triangulations., the last 
ones also called tetrahedralizations. Moreover, although  the 
concepts of model  and polyhedron given below, can be 
defined in  an arbitrary dimension, we will  do that  only in 
R3. 2D versions of that concepts can be straightforwardly  
obtained from the 3D ones.  
      We call a model a  finite set of non-degenerated triangles 
in R3 such that every edge of a triangle  is shared by exactly 
another triangle and no subset of  triangles has the same 
property.  We are only interested in models such that the 
union of its triangles is a 2D-manifold. In this case, that union 
will be called  a simple  closed polyhedral surface and the set 
it delimits a simple polyhedron. Since all polyhedral surfaces 
and polyhedra referred hereafter are simple, we will not 
mention that fact explicitly anymore.  

 The term “mesh” is sometimes used to refer to a model. 
According to the definitions above, a model is a boundary 
representation(B-Rep) scheme for a polyhedron. 

The topology of a model is described by its simplicial 
complex vertex/edge/face. The geometry of a model is the 
instance of its topology determined by the coordinates of  its 
vertices. Vertices, edges and faces are called topological 
elements. 

Two models are said homeomorphic if  there exists an 
homeomorphism. between the closed polyhedral surfaces 
defined by them.  

Two models will be called equivalent if they represent the 
same object, even though their vertex/edge/face simplicial 
complexes are different. For example, if some faces of a 
given model M are sub-divided into smaller co-planar faces,  
another model, equivalent to M, is generated. That model is 
said a refinement of M. 

Let MT  be the set of all models with the topology induced 
by the Hausdorff metric. The problem of determining a 
morphing between two given models Mi and Mf ∈ MT, 
consists in obtaining a continuous function m:[0,1]→MT, such 
that, m(0) and m(1) are equivalent to Mi and Mf., respectively.  
m(0) will be called here the initial model and m(1) the final 
model. If t∈(0,1), m(t) will be said an intermediate model. 

Given a model M and a triangulation T, T is said to be  
constrained by M if every face of M is also a face of a 
simplex in T. Given a model M, it may not be possible to 
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obtain a triangulation constrained by it(See [8])..However, 
there is always a refinement of  M for which this is possible. 

.  
If in the definition of a triangulation of  a finite set of 

points, we replace the convex hull H by the boundary of a 
polyhedron P containing all the points, we will define a 
triangulation of   P. 

A non-oriented polygonal line whose sequence of vertices 
is v1,,v2,…,vk  will be noted [v1,,v2,…,vk]. To refer to the 
oriented version of it  we will write [v1,àv2,à…àvk].  
int(S) will refer to the  interior of  a set  S.  

3 Fields of Directions Defined on a 
Triangulation 

 
A field of directions defined on a triangulation (FDT) is 

simply a function that associates each simplex of  a 
triangulation T⊆ ℜd with a direction in ℜd. 

. Let D be a FDT defined on a triangulation T of a set U⊆ 
ℜd, t a simplex of T and  p some point in t. Also let [pb , pe ] 
be the intersection of t with the line parallel to D(t) passing by 
p. If pb ≠pe  assume that pb  - pe  has the direction of D(t). In 
this case, the trajectory in t through p  is the oriented segment 
pb → pe . Otherwise it is only the point p and is called 
degenerated. At most one of the trajectories in t through its 
vertices is non-degenerated. 

Consider the case where  d=3. If a tetrahedron t has a 
vertex v such that the trajectory in t through v is non-
degenerated, then t  can be classified as: 

i) A vertex-face tetrahedron when the trajectory in t 
through v begins at v and ends at some point on the face 
opposite to v. 

ii) A  face-vertex tetrahedron if f the t-trajectory through v 
starts at some point on the face opposite to  v and ends at v.  

 If the trajectory in t through all its vertices is a single 
point, then there is a point p on an edge e of  t such that the  t-
trajectory  starting at p ends on the edge opposite to e. For 
thar reason, in this case, t  is said an edge-edge tetrahedron. 

If d=2, there are only two classes of triangles: vertex-edge 
and edge-vertex ones. The definition of those classes is 
similar to those of vertex-face tetrahedra and face-vertex 
tetrahedra, respectively. 

Figure 1 illustrates the three types of tetrahedra in relation   
to the trajectories through their vertices. 

 

  
Figure 1 - From left to right: a vertex-face tetrahedron, a face-vertex 
one and an edge-edge one.  

Given, two subsets of T, V and V’, we will note V <D V’ 
if  there exists a trajectory induced by D that meets V prior to 
V’.  If V <D V’ or all trajectories intersecting both V and V’ 
meet them at the same time we note V ≤D V’. 

A topological element e of a simplex  t is said an input 
element if e <D   int(t) and an output one if int(t) <D  e. If e is 
neither an input element of t nor an output one, it is said to be  
tangent to t. We observe that,  in this case,  the trajectories in 
t through the points on e are entirely contained in a facet of t. 

For example, a vertex-face tetrahedron has three input 
faces and one output face. A face-vertex tetrahedron has one 
input face and three output faces while an edge-edge 
tetrahedron has two input faces and two output faces. We will 
represent the union of  all input facets of a simplex t by IN(t)  
and that of all output faces of  t by OUT(t). 

 A trajectory induced by D or D-trajectory is a maximal 
element of the set of  oriented polygonal lines γ ⊆ U having 
the property that if γ intercepts a simplex t of T then γ ∩ t is a  
trajectory in t .  

In the remainder of this section, our interest will be 
limited to FDTs  defined on three-dimensional triangulations. 
Let S0 and S1 be two closed polyhedral surfaces delimiting 
polyhedra P0 and P1 respectively. Assume that int(P0) ⊇ P1 . 
Hereafter  U will refer to P0 - int(P1) and will be called  the 
region between S0 and S1.  

A FDT D defined on a tetrahedralization T of U is said to 
be admissible, iff it satisfies the following properties: 

• All  D-trajectories start on S0 and end on S1. 
• Two D trajectories have no common points. 
 
The following lemma gives another way of characterizing 

an admissible FDT.. 

Lemma 1 : 

 If a FDT D satisfies conditions i-iii below, D is 
admissible. Conversely, if D is admissible and   ∀ t ∈ T, D(t) 
is not parallel to a face of t, then  i-ii  are implied. 

i) Each vertex and edge in the interior of U is an input 
element for a unique tetrahedron and an output element for 
only another one.. They are tangent elements to all other 
tetrahedra containing them. 

ii) Each vertex and edge on S0 (alternatively: on S1) is an 
input (output, respectively) element of a single one 
tetrahedron and tangent to all the others containiing it. 

iii)The relation ≤D is a partial order on the set of 
tetrahedra in T. 

 
 

Proof: 
(⇒) 
Two D-trajectories can only  intersect on a topological 
element of T.  If they meet at a point on the relative interior 
of a face in int(U), let t1 and t2  be the tetrahedra adjacent to 
that face. One of the trajectories reaches the face from t1 and 
and the other from t2 . Hence, we have simultaneously that t1 
≤D t2  and  t2 ≤D t1  contradicting  iii. Clearly, two D-
trajectories cannot meet in the relative interior of  a face on U 
border . 
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Also, conditions i and ii avoid that a trajectory meets at a 
vertex or on an edge of T. In view of all that,  any  two D-
trajectories must be disjoint.   

Condition  iii  determines that a D-trajectory cannot 
intersect a tetrahedron twice. In consequence, all D-
trajectories cannot be closed  and must have a  finite number 
of  segments. Thus, any trajectory must have an initial and a 
final point. Then, condition i determines that these extreme 
points cannot be  vertices or  edge points in int(U). Also, 
condition  iii  percludes that these points are  in the relative 
interior of a face in int(U).  Finally condition ii  determines 
that  all  D-trajectories go from  points on Uout  to points on 
Uin. and not the opposite 

 (⇐) 
         Let D be an admissible FDT, v a vertex of  T in the 
interior of  U and  Γv  the  D-trajectory through v.  Let t1 and 
t2  be respectively,  the last tetrahedron traversed by  Γv  
before it reaches v  and the first tetrahedron crossed by it  
after v. As ∀ t ∈ T, D(t) is not parallel to a face of t, t1 and t2 
are well defined.  v will be an output element of t1 and  an  
input element of t2. If it is a non-tangent element of any other 
tetrahedron there will be two D-trajectories meeting at  v what 
contradicts the fact that D is admissible.  
      If e is an edge in int( U), a similar argument can be 
applied  considering that all D-trajectories intersecting  the 
relative interior of e come from( or leave to) the same 
adjacent tetrahedron.•  
 

An admissible  FDT which satisfies condition iii above 
will be called acyclic. Hereafter we will assume that an 
admissible FDT is also acyclic. In fact, all the results  that 
will be presented in the following sections require that 
condition. Also, for sake of simplicity  we will suppose that 
the direction assigned to a tetrahedron is not parallel to any of 
its faces.  

 

Let  Πt: IN(t)àOUT(t) be the function which takes  every 
starting point of a trajectory in t  into the end point of that 
trajectory. Πt  will be referred as the D-projection through  t  
and  Πt

-1 , the inverse D-projection  through t. 
Let s=[abc], be a triangle contained in an output face of t 

and Tt
-1(s) a 2d-triangulation of  Πt

-1(s). 
Figures 2 and 3 illustrate some possibilities of the 

triangulation Tt
-1(s). In those figures, the direction assigned to 

the tetrahedron is always that of the vector y-x. 

 
Figure 2 - The inverse projection of  triangle [abc] in a face-vertex 
tetrahedron t where D(t) is vertical. This projection generates a 
single triangle [abx]. 

 
Figure 3 - The inverse projection of   triangle [abc] in an edge-edge 
type tetrahedron t where D(t) = y - x. This projection consists of 
three  triangles [abx], [adx] e [cdx]. 

Figure 3 shows the inverse D-projection of a triangle in an 
edge-edge type tetrahedron. The part of this projection on one 
of the faces is the quadrilateral [abxd] which must be 
triangulated in the construction of Tt

-1([abc]) 
Let S0 and S1   be as defined above and M0 and M1 be 

models representing S0 and S1  respectively.  Let s1  be a 
triangular face of M1 and t1  the tetrahedron incident to s1. 
Make M*(s1) =  ∅ , apply Πt1

-1 to s1  and obtain Tt1
-1(s1). 

Then, for each triangle s’ in Tt1
-1(s1) and not on S0 , let t’ be 

the other triangle containing it, apply Πt’
-1 to s’ and obtain   

Tt’
-1(s’). If Tt1

-1(s1) has triangles on M0 add them to M*(s1). 
Repeat the process above for every triangle in Tt’

-1(s’) and so 
on. At the end of that process M*(s1) will be  a 2D triangular 
mesh covering a connected region of S0 . The union of all the 
meshes obtained by applying the process above to all faces of 
M1, is a mesh M* covering  S0. That is, M* and M0  are 
equivalent.  

Let v be a vertex of M* and H(v) the end of the D 
trajectory that starts in v. Determining the set  {H(v) : v is a 
vertex of M*} can be made by incorporating to the process 
described above a projection/interpolation procedure. Having 
the correspondence function H, one can get an 
homeomorphism between S0 and S1  by  interpolation.  

That process gives a natural way to obtain a 
metamorphosis between S0 and S1. of a  kind called a 
continuous dilatation . A continuous dilatation has the  good 
property of preserving the topology during the 
transformation. However it has also some major 
inconveniences. One of them is the fact that it  requires that 
an object is contained in the other. Of course, it is always 
possible to scale one model so that it fits inside  the other. 
However, this must be done in a way that transformations of 
satisfactory blending quality can be obtained what is not 
trivial at all.  Another major drawback is the fact that it can be   
hard to obtain a transformation which takes a predefined set 
of features of  the first object into one of the second. The 
more sophisticated sketch described in section 4 has to be 
employed to  deal  with this problem. 

Hereafter, For the sake of  commodity, we will identify a 
model with the polyhedral surface it represents So, a model 
will be both a set of triangles and the union of them. 
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4 Obtaining Homeomorphisms and 
Metamorphosis.  

Let Mi and Mf be two models representing polyhedra of 
genus zero. The following sequence of steps obtains a 
homeomorphism between them: 

 
Algorithm 1 - “Obtaining an Homeomorphism between  

two Models” 
STEP 1. Apply a rigid motion TR followed by a scaling 

transformation TS to Mf , making the resulting model Mf’ be 
properly enclosed by Mi. 

STEP 2. Obtain a triangulation T of  the region U between 
Mi and Mf’, where an admissible FDT D can be defined. This 
may require the insertion of additional vertices. In this case, 
refine Mi and Mf’  to include these new vertices. Call the 
resulting models M0 and M1. 

STEP 3. Let T0  be a copy of  T and for each face f of M1, 
make M(f) = f. Also, for each vertex v of M1, make H(v)=v. 
Then execute :  

While T0 ≠ ∅: 
      {Let t be a tetrahedron which is ≤D -maximal in T0. 
         For each input face fi  of t do:  
              {For each output face fo  of t do:  

{∀ vertex v of M(fo) such that Πt
-1(v) ∈   fi,        

make H(Πt
-1(v)) = H(v) ; 

                         Make M’(fo ) = Πt
-1(M(fo)) ∩ fi. ;  

 ∀ vertex  v’ of M’(fo )  such that H(v’) 
has not  yet been determined do:  

                                 {Find v’’ = Πt
-1(v’).  

Determine the triangular face of 
M(fo ) where v’’ lies; 
Let {ui, i=1,2,3} be the vertices of 
Ψ and {αi, i=1,2,3}  the baricentric 
coordinates of v’’ relative to Ψ. 
Make H(v’)=ΣαiH(ui), i=1,2,3; 

   } end-for 
     }end-for                        

 Obtain M(fi) by aggregating  the models 
M’(fo),  obtained for every output face fo of t. 

   } end-for 
 Remove t from T0. 

 } end-while 
 
STEP 4. Obtain M by aggregating all M(f) where f is a 

face of  M0. M will be called the unified model. It is 
equivalent to M0  but  replacing every vertex v of it by H(v), it 
becomes equivalent to M1.  

STEP 5. By linear interpolation  extend H to the whole 
M0. That extension defines a homeomorphism between M0 
and M1. 

 
The following paragraphs analyze each task performed by 

the algorithm above.  
1. A lot of articles have been published about optimally 

positioning a 2 or 3d-object in relation to another (See, for 
instance, [14]). However, in the specific case of  the 
algorithm above, we consider that it is not worthwhile to 

automate this task. It is clear that better results can be 
obtained if similar features of the objects are placed close to 
each other. But measuring that similarity and weighting the 
importance of each feature in the quality of the final result is 
not so simple,specially considering that there are some 
subjective aspects involved. For that reason we have assumed 
that adequately choose the transformations TR and TS is the 
user's responsibility. 

2. Constructing a tetrahedralization of a polyhedral 
region, is a complex problem which has several alternative 
approaches. The one of least worst case complexity is   Palios 
and Chazelle's  [15] which is O( (n + r2) log n), where n and r 
are respectively the total  number of  vertices and that of  
reflex ones. For practical reasons however we have 
implemented another approach. In that approach a Delaunay 
triangulation of the two models vertices is first obtained. 
After, this triangulation is refined until it becomes constrained 
both by M0 and M1. A detailed description of that approach  
is given  in [9]. 

3. Defining an FDT on a given triangulation T is in 
general not difficult, but can also be laborious and even 
impossible.  This problem is the object of section 5 presented 
next. 

4.  Let e and e’ be any two edges of T. Define µ(e,e’) as 
the number of connected components  of the intersection  of 
e’  with the set of points ≥D e. Let µ be the sum of µ(e,e’) over 
all pairs of edges of T and m be #(T). The number of triangles 
generated in step 3 is O(mµ) what can be very high even in 
examples of mild dimension. Although other tasks are also 
time consuming, the performance of the algorithm is 
considerably  related to the time spent in step 3. To reduce 
this time the mesh can be simplified after each projection  to  
avoid that every vertex that is encountered or created  gets 
mapped to a vertex of M*. 

5. The fact that we require that the models have only 
triangular faces do not increase the algorithm time 
complexity. Observe that the refinement made in Step 2 
consists in introducing in the models, triangles which are 
already faces of tetrahedra in T. Hence, all we need to get that 
refinement is to incorporate to the algorithm used to construct 
T, a procedure for identifying its triangular faces which are in 
Mi ∪ Mf . Of course that can be done in constant time per  
face. 

Hereafter tpm will stand for topology preserving 
morphing. 

Having the FDT D, continuous dilatation processes that 
morphs M1 into M0 can be obtained.  Let p be a point on M0  
and τp the D-trajectory starting at p and ending at H(p). Refer 
by L(p) to the total length of τp and  define Hw(p) as the point 
on τp whose distance to p along τp is wL(p). Finally, define 
M(w), w∈[0,1], as U{Hw(p), p∈S0}. M(⋅) is a tpm between 
M0  and M1.  A computational procedure to obtain M(w) is 
givien in section 6.  Define M’(w) as the model obtained from 
M0 by replacing each one of its vertices v by Hw(v). We must 
observe  that w∈[0,1]→M’(w) may not be a tpm. 

Now, let w∈[0,1]→N(w)  be any tpm between M0 and M1. 
Taking into account that Mf has been possibly moved, rotated 
and scaled in step 1, to get a tpm between the original  given 
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models define N*(w) = [(1-w)Id + wTR
-1TS

-1] N(w). If TS
-1 is 

replaced in that expression by an adequate scaling 
transformation, whose amplitude depends on w, volume 
preserving morphings can be obtained. 

Now consider the problem of obtaining a tpm between 
two models which takes features in one of them into 
corresponding ones in the other.  When these features are 
topological elements of the models, the approach described 
below can be tried.  

Without lack of generality we can suppose that M0 and M1  
have the same topology. It will be also assumed that a 
complete correspondence between the topological elements of 
them have already been established. 

First of all, the two models are  positioned  so that one 
intersect the other properly.  Then, let U be the region 
delimited by two convex approximately spherical polyhedral 
surfaces, one (Uout) enclosing both models  and the other (Uin) 
contained in the intersection of them. Get two triangulations 
of U (T0  and T1) such that Ti is constrained by Mi, i=0,1. To 
do that, possibly new vertices have to be inserted on the faces 
of  Mi, i=0,1. So, introduce in Mi, i=0,1, the topological 
elements that have to be created in function of those 
insertions. Additional elements can be necessary to make the 
resulting models M’0 and M’1 have the same topology. Obtain 
H’, a face-to-face homeomorphism between M’0 and M’1 

which also takes each face of M0  into the one of M1 
corresponding to it. 

Now, define on Ti, an admissible FDT Di which is 
transversal to Mi, i=0,1. Continuously transform D0 into D1, 
in such way that any intermediate FDT obtained (Dw, 
w∈[0,1]) is also admissible . Each Dw, w∈[0,1] induces  a 
system of reference for the points in U where the coordinates 
of a point p are the following: 

1)  The coordinates in a  parametrization of Uout of  the 
point sw(p),  where the Dw-trajectory through p starts. 

2)  dw(p), the distance along that trajectory between sw(p) 
and p divided by the total length of the trajectory. 

Define Hout : Uout  → Uout as the function which takes s0(p) 
into s1(H’(p)),∀ p ∈ U . A morphing between M0’ and M1’ 
can, thus, be obtained by defining M'w  as the set of points 
whose coordinates in the system induced by Dw  are : 

 ( Iout(w,s0(p)), (1-w)d0(p) + w.d1(H’(p))), 

 
where: 
i) p is a point on M’0. 
ii) Iout: [0,1]×Uout → Uout is a continuous function such 

that: 
 ii.1) Iout(w, . ) is a homeomorphism ∀ w∈[0,1]. 
 ii.2) Iout(0,p)=p and Iout(1,p)= Hout(p), ∀ p ∈ Uout.  
 
This approach is considerably more general than the 

previous one, but  its implementation in 3D has difficulties of  
different sorts. Before commenting these difficulties we must 
observe that the 2D version of that approach is plausible.  The 
main result supporting that assertion is the following: 

Lemma 2: 
 Let U be a polygonal bordered annular region in the 

plane and D0 and D1 two admissible FDTs defined, 

respectively, on  Triangulations T0 and T1 of U.  Assume that 
T0 and T1 have both n vertices and that those on the border of 
U are the same for the two triangulations.  Then, there is a 
continuous function D:[0,1]→{admissible FDTs defined on a 
triangulation of U} such that:  

i) D(0) = D0 and D(1) = D1 . 
ii) There is a sequence (Ik=[ak,ak+1), k=1,...,K) of O(n3) 

disjoint semi-open intervals covering [0,1], which satisfy the 
following conditions: 

  ii.a) Let Tw be the triangulation on which D(w) is 
defined. For all w in Ik, Tw has the same topology. 

  ii.b) Let w ∈ Ik. Knowing D(ak) and D(ak+1), we can 
determine D(w), by means of an interpolation process which 
is O(1) for triangle. 

 
The proof of Lemma 2 is quite long and can be found in 

[17]. It has not been possible up to now, to extend it to 3D. In 
fact, obtaining a morphing of two admissible FDTs even if 
they are defined on the same 3D-triangulation of U, is a hard 
problem whose complexity is unknown. Another specific 
difficulty of that approach is  the fact that obtaining Iout means 
to find a 2D tpm between the topological elements of two 
models equivalent to M0. Notice that this can be considerably 
more difficult than morphing two simple polygons. Moreover, 
in this case we have a time-varying systems of trajectories 
instead of a fixed one as in the continuous dilation case. Even 
in 2D, this determines that more complex intermediate 
models are eventually generated.  

Due to the high complexity of the 3D version of that 
approach we have not implemented it yet. Some experiments 
in  2D can be found in [17].  

5 Obtaining Admissible FDTs. 

Let, once more, M0 and M1 be two models representing 
the boundary of polyhedra P0 and P1, where P0 encloses P1. 
Also, let U be the region between them. The process of 
obtaining an admissible TFD defined on a triangulation T, if 
there is one, will be called here a topological excavation or a 
shelling of T. It can be implemented in the following way: 

Algorithm 2 - “Shelling T” 
1. First all tetrahedra in T are labeled as full. The label full 

indicates that  the field has not yet been defined in the 
tetrahedra . Those where the field has already been defined  
will be labeled  as empty. 

2. Make Ff = M0. Ff represents the boundary of the full 
tetrahedra region. 

3. While there are full tetrahedra, select those whose 
intersection with Ff is a  non-empty 2d-manifold. Call those 
tetrahedra removable.  

3.1. If there is no removable tetrahedron among the ones 
labeled as full then either apply a backtracking procedure or  
change the triangulation  locally.  That backtracking 
procedure can be a recursive enumeration one and the 
strategies for changing or refining the triangulation in order to 
create removable tetrahedra are predominantly heuristic and 



 7 
 

will not be presented here. A situation where a backtracking 
is necessary is shown in figure 4. 

3.2. Otherwise, choose a removable tetrahedron t, label it 
as empty and associate a direction D(t) to it. t will be a face-
vertex, edge-edge or vertex-face  tetrahedron, according to t  
has one, two or three faces on Ff. In any case D(t) will be the 
direction of an oriented  segment (pi, po) ,where: 

- pi is a point in the relative interior of the topological 
element of t which is common to all its faces in Ff. 

- po is a point in the relative interior of the opposite 
element.   

3.3. Update Ff,. When this is done,  it is possible that 
some removable tetrahedra become non-removable and vice-
versa. Thus, it is necessary to update  the classification of  all  
tetrahedra  labeled as full which have an element in common 
with t. 

   Suppose we have a shellable triangulation T  with n 
tetrahedra. To get  an O(n) algorithm to obtain a shelling of 
T, assuming that no backtracking is necessary, we have to 
slightly modify the algorithm above as follows. 

Consider that we have a list (L) which contains all 
removable full tetrahedra and possibly, some non-removable. 
To pick a removable tetrahedron, we take one (t) out of L and 
check if it is removable. This can be done in O(1) time if we 
have marked all topological elements of T which are 
contained in Ff. If  t is not removable, take another 
tetrahedron from  L, repeat the test and so on. 

Now, observe that if in the process to get a shelling of U  
there  no  backtracking is necessary, the classification of a full 
tetrahedron can change from  removable to non-removable at 
most twice. Hence, the number of times  tetrahedra are taken 
out of L is bounded by 2n. 

 For an empty or non-removable tetrahedron become 
removable when another (t) is made empty, it must be 
adjacent to that other. Thus, to  make L maintain the property 
of containing all removable tetrahedra  after  t is made empty, 
we only need to determine  which of  the  tetrahedra adjacent 
to t must be added to L. Hence, updating L after a triangle is 
made empty  takes O(1) time.  

  In view of the above, if no backtracking or re-
triangulating  is necessary,  the shelling algorithm  is O(n). 

Figure 5 pictures a 3D FDT obtained by employing the 
shelling algorithm given above. 

 

Figure 4 - A situation where a backtracking is necessary.  From left 
to right  in the first row, we have P1  and three instances of a 
shelling process. The second row presents three other  posterior 
instances of that process.  The tetrahedra labeled as full  in the 
situation depicted in the rightmost figure of that row are represented  
in the third row. They are all non-removable. 

Consider that P0 is a simple convex polyhedron. Even in 
this case we can choose P1 in such a way that no polynomial 
triangulation of U has a shelling. An example of that can be 
obtained from the trivial knot whose spanning disk has 
exponential size given by Snoeyink in [18]. This fact implies 
that the time complexity of the shelling algorithm  above, if 
backtracking or re-triangling is necessary, can be also 
exponential. Our experience, however, indicates that the non-
existence of a removable tetrahedra is not usual, although it 
occurs.  

 

 
 

Figure 5 - A tetrahedralization between a cube and a tetrahedron  
and the directions obtained by  an implementation of algorithm 2 

In contrast with the 3D case, any  triangulation of a 2D 
annular region with polygonal borders admits a topological 
excavation. Of course to prove that,  it is sufficient to 
consider the case where the vertices are on the border of the 
polygons.  Lemma 3 bellow, treats that case. 

Lemma 3 - Let P0 and P1 be two planar polygons such 
that P1 ⊆ int(P0) and U  the region  between P0 and P1. whose 
vertices are on P0 ∪ P1 Then it is always possible to obtain an 
admissible FDT defined on T. 

 
 Proof:  
Let S3 be the set of triangles which have all three vertices 

on the same polygon and S21, the set of those with vertices on 
both polygons. The triangles with vertices on S21 form a cycle 
(tk, k=0,...,m-1). 

 Let t be a triangle with all vertices on  Pj, j∈{0,1}. Define 
v as the only vertex of t which is not adjacent to any other 
triangle of  T. Assign to t the direction of (-1)j(v-p),  where  p 
is a point in the relative interior of  the edge opposite to  v. 

Define vk as the only vertex of tk which also belongs to  t(k-

1)mod m but not to t(k-2)mod m. Let Pi(k), i(k)∈{0,1} be the polygon 
containing vk and pk be any point on the edge of tk opposite to 
vk. Assign to tk the direction of  (-1)i(k)(pk -  vk).  

If  v is a vertex of a  single triangle t of T then t ∈ S3  and 
v is assigned to t. Now, suppose that v belongs to more than 
one triangle. Then: 
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i)v is adjacent to a sequence Sv = (ti ,ti+1,…,t(i+j)mod(m)) of 
three or more consecutive elements of(tk, k=0,...,m-1).  
According to the  rule given above to define D in the set  
S21,  among the triangles in Sv only ,t(i+1)mod(m) can be 
assigned to v. 
 ii) v cannot be assigned to one in S3.    
Thus, by Lemma 1, D is admissible.• 
 
Figure 6 presents a sequence of partial results obtained 

when a 2D version of the topological excavation algorithm is 
applied. Observe that a triangle is associated to an edge-
vertex direction if it has a single edge on the set of  full 
triangles  border at the moment it is made empty. Otherwise it 
will have two edges on that border and will be associated to a 
vertex-edge direction. 

 
Figure 6 - The 2-dimension version of the topological excavation 
algorithm. 

6  Obtaining M(w). 

Having the admissible FDT obtained in step 2 of 
algorithm 1, the simplest way to get a tpm between M0  and 
M1  is to include in the step 3 of that algorithm, a simple 
procedure to morph IN(t) into OUT(t), where t  is the 
tetrahedron picked from T0  to be processed . At any moment 
of the morphing process so obtained , the transformation 
happens in a single tetrahedron. Specially when the tetrahedra 
of T have very different sizes, this can make the 
transformation have a very poor blending  quality. In view of 
that, more “parallel” morphings, like  M(⋅)  defined in section 
4, where the transformation can occur simultaneously  in 
several tetrahedra, must be tried. The goal of this section is to 
present a computational process to  construct the intermediate 
models (M(w)) of that morphing. For sake of commodity we 
repeat here the definition of M(w) given in that section. 

“Let p be a point on M0 and τp be the trajectory induced 
by D which starts at p and ends at H(p). Refer by L(p) to the 
total length of τp and define Hw(p) as the point on τp  whose 
distance to p along τp is wL(p). We Define M(w) as 
∪{Hw(p),p∈M0}.” 

Now, let f be a face of the unified model M. Define  
tunnel of  f  as the set {p∈U, p ≥D  f } 

To get a more precise idea of how complicate an 
intermediate model must be to avoid containing topological 
artifacts let us consider the case where intermediate models 
M'(w) are obtained from M by replacing each one of its 
vertices v by Hw(v). Figure 7 illustrates why  the morphing 
obtained in that simpler way is not a topology preserving one. 

Figure 7-left shows an FDT D defined on a triangulation 
T of the region U between the borders of a triangle and a 
square. The unified model M in this case is the polygon 
[a,b,c,d,e,f,g] whose realization coincides with the border of 
the square. The D-trajectories starting at vertices of M are 
also represented in that figure. Dashed lines are used to 
represent these trajectories. The polygon 
M’0.5=[a’,b’,c’,d’,e’,f’,g’] is also pictured. Observe that the 
edge [g’,a’] intersects properly the trajectory through a’. That 
is, [g’,a’]  is not constrained to the tunnel of [g,a]. It is just 
that situation that must be avoided because it can determine 
the occurrence of self-intersections. The figure 7-right 
pictures a situation where this effectively happens. Observe 
that this occurs because [c,d] is not contained in the tunnel 
delimited by the trajectories through c and d. Differently, 
between c and d, Mw is the polygonal line [c,x,y,d] which is 
completely contained in that tunnel. 

 
Figure 7 - A situation where connecting intermediate vertices 
without respecting the tunnels causes a self-intersecting intermediate 
polygon. 

Back to the problem of  constructing M(w), the following 
result will be needed: 

Lemma 4 - Let f be a face of M and t a tetrahedron of T . 
Then, Λ(f,t,w)=(tunnel of f ∩ t ∩ M(w)) is planar. 

Proof:  
As no trajectory can have more than one point in Λ(f,t,w) 

it cannot have interior.  Then,  it is sufficient to prove that for 
any pair of points, p1 and p2 ∈ Λ(f,t,w) and any  λ∈[0,1], λp1 
+ (1-λ)p2) is also in Λ(f,t,w).  Given a point p in U, let S(p) 
refer to the distance along the trajectory through p from its 
starting point to p. Then, as both S(.) and L(.) are linear in 
Γ(f, t) = tunnel of f∩t, we have that:                                                                           

S(λp1 + (1-λ)p2) = λS(p1) + (1-λ)S(p2) = λwL(p1) + (1-
λ)wL(p2) = w(λL(p1)) + (1-λ)L(p2) = wL(λp1 + (1-λ)p2), what 
means that λp1 + (1-λ)p2 ∈ Λ(f,t,w).• 

 
From that lemma it is possible to derive M(w) by means 

of  the non-optimized procedure given below: 
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Algorithm 3 - “Constructing M(w)” 
For each face f of the unified model M do: 
  { Choose a vertex v of f and determines Hw(v). 
   Let t0 be a tetrahedron containing Hw(v). 
   Label t0 as unsolved. 
   While there are unsolved tetrahedra choose one of 
   them (t) and do: 
    { Determine Γ(f, t) = tunnel of f ∩ t. 
     For each vertex ui, i=1,...,k of Γ(f, t),  
       find   S(ui) and  L(ui). 
     Determine Λ(f,t,w) by solving: 
       Σ(λi S(ui)) = w Σ(λi L(ui)) .  
              Label t solved. 
     For every unlabeled tetrahedra t’ adjacent to t 
     and intersecting Λ(f,t,w) label t’ unsolved. 
    } end-while 
   Erase the labels of all  tetrahedra . 
  } end-for 
 
A more detailed version of this algorithm for the 2D case 

is presented in [13]. 

7 Implementation Results and Future 
Research  

      Figure 8 shows the results obtained with the field and the 
tetrahedralization displayed in figure 5. Note the unified 
model obtained lying on the boundary of the cube. 

This unified model has its vertices coordinates changed, 
by  linear interpolation, until it gets the shape of the inner 
tetrahedron. 

Figure 9 shows an example obtained with the 2D version 
of the algorithm, where a polygon with the shape of a car is 
gradually transformed into a boat. 

Figure 10 compares between two  morphings. The one 
above is  obtained  by using a simple linear interpolation 
between corresponding vertices.  In the one below we have 
interpolated along the trajectories through vertices.  

Finally, figure 11 shows the concatenation  of many 
morphings  between some simple models. 

 In several cases, the intermediate models become very 
complicated, with many small faces. This occurs when many  
projections of faces have to be made,  in the step 3 of 
algorithm 1. When intermediate models are too wiggly, 
smoothing processes can be applied.  

More than simply introducing an approach to get 
homeomorphisms or tpms between polyhedral models, this 
article  intends to give a more precise idea about the 
complexity of these problems. They still require a lot of work 
to be fully understood.. Topics for future research are: 

1.  Determine the complexity of morphing  two  TFDs 
defined on 3D triangulations. 

2.  Establish conditions for a polyhedral region  have a    
shellable polynomial triangulation . 

3.  Reduce the complexity of the projection  process 
presented in the step 3 of algorithm 1. 

4.  Get efficient methods to obtain a tpm between two 
models representing the same convex polyhedral 
surface,  which takes each face of one into a  face of 
the other. 

5.  Answer the question: Is a triangulation whose vertices 
are on two parallel planes, always shellable ? 

______________________________________________ 
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Figure 8 - A morphing obtained  by interpolating between the 
vertices of the unified model and the end positions of their 
trajectories. 
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Figure 9 - An example of a morphing obtained by the 2D version of the algorithm. The first picture shows the directions generated and the 
trajectories that passes through  vertices. The second picture shows six instances of the  transformation obtained. 

 

 
Figure 10 - Comparison between the use of two different interpolation process. The first sequence was obtained using a simple linear 
interpolation, while the second one used a linear interpolation along the vertices trajectories. 
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Figure 11 - A composition of many metamorphoses of simple polyhedral models. In the first line, from left to right, a non-convex 
polyhedron is transformed into a cube. In the second line, from right to left, the cube is transformed until it gets the shape of a “sphere with 
planar faces” and then of a tetrahedron. In the last line, the tetrahedron is transformed into another non-convex polyhedron. 
 
 
 
 
 




