
Noname manuscript No.
Autonomous Robots 2020, to appear. This is the manuscript of the authors.

Planar Max Flow Maps and Determination of Lanes
with Clearance

Renato Farias and Marcelo Kallmann
Computer Science and Engineering Dept.
University of California, Merced, CA
{rfarias2,mkallmann}@ucmerced.edu

Received: date / Accepted: date

Abstract One main challenge in multi-agent navigation is to generate trajec-
tories minimizing bottlenecks in environments cluttered with obstacles. In this
paper we approach this problem globally by taking into account the maximum
flow capacity of a given polygonal environment.

Given the difficulty in solving the continuous maximum flow of a planar
environment, we present in this paper a GPU-based methodology which leads
to practical methods for computing maximum flow maps in arbitrary two-
dimensional polygonal domains. Once a flow map representation is obtained,
lanes can be extracted and optimized in length while keeping constant the flow
capacity achieved by the system of trajectories. This work extends our previ-
ous work on max flow maps by presenting a clearance-based flow generation
method which takes into account the size of the agents at the flow generation
phase. In this way we ensure that the maximum possible number of lanes with
the needed clearance is always obtained, a property that was found to not be
always obtained with our previous method.

As a result we are able to generate trajectories of maximum flow from
source to sink edges across a generic set of polygonal obstacles, enabling the
deployment of large numbers of agents utilizing the maximum flow capacity
of a continuous description of the environment and eliminating bottlenecks.

1 Introduction

The problem of optimally deploying multiple agents traversing a polygonal
environment has important applications in many areas, as for example, to
control multiple robots in warehouses, to coordinate autonomous cars across
narrow streets and to evaluate evacuation scenarios. While optimality can
be defined by taking into account different parameters such as energy, time,

Address(es) of author(s) should be given

2 Renato Farias Marcelo Kallmann

or distance traveled, in all cases the problem is difficult to be solved in a
planar domain and is usually addressed in a discrete representation of the
environment.

In this paper we present a method for agent deployment among obstacles
based on computing the continuous maximum flow of a 2D environment. In this
case we address computing solutions based on disjoint lanes which are optimal
with respect to the maximum flow of agents traversing the environment. Our
overall approach is based on GPU rasterization techniques which allow us
to compute maximum flows from polygonal representations and to represent
them in a max flow map discretized in a frame buffer in the GPU.

Our overall approach was recently introduced [5] and in this extended de-
scription of our methods we include an alternative type of max flow map,
a clearance-based max flow map, which generates max flows specifically for
achieving the maximum possible number of lanes with a given clearance. We
present examples showing that this property is not always observed with
our original, clearance-insensitive, max flow map method. The new method
achieves this property by incorporating during the flow generation a tech-
nique suggested for generating integer max flows [12]. We therefore describe
in this paper two types of max flow maps: one insensitive to the clearance
needed by agents, and another specific for a given clearance. We also include
definitions for the types of flows that are represented in each method.

Fig. 1: Example max flow map from a source edge to a sink edge. While
this flow map has optimal flow capacity, path lanes are subsequently extracted
taking into account the required agent clearance and then optimized in length.

Our methods produce bottleneck-free lanes which can be used to safely
deploy and guide agents across a cluttered environment. If a large quantity of
agents is deployed, the system of lanes will optimally guide all agents to reach

Planar Max Flow Maps and Determination of Lanes with Clearance 3

the destination region. Here optimality is related to the maximum number of
agents that can be deployed across the environment from a source polygonal
entrance to a sink polygonal exit without creating bottlenecks. See Figure 1
for an example. Once a flow map is computed, lane trajectories are extracted
according to the size of the agents, and optimized in length while keeping
constant the maximum flow achieved by the system of trajectories.

As a result our methods are able to generate lanes of maximum flow from
source to destination edges among a generic set of polygonal obstacles. When
the system of lanes is fully occupied by agents, no more agents can fit the
environment without eventually creating bottlenecks. Agents can safely follow
our computed lanes without having to employ any complex local behavior
strategies in order to reach the destination region. In terms of length, our
lanes are locally-optimal with respect to the total length of all lanes.

Simulations are also presented demonstrating the superior performance of
our method in deploying large quantities of agents across environments with
obstacles, when compared to having agents following their shortest paths to
the destination.

2 Related Work

Our work develops a new approach to address multi-agent navigation in clut-
tered environments which is based on finding the maximum number of valid
disjoint lanes that can be routed from an initial polygonal source segment to
a polygonal target segment.

The addressed problem has some resemblance to the well-known k-disjoint
shortest paths problem in graphs [2], which seeks to find the k pairwise dis-
joint shortest paths connecting given initial graph nodes to corresponding
target graph nodes. Our formulation however is quite different in which it ad-
dresses a continuous polygonal environment, with polygonal edges considered
as entrances and exits, and addressing required clearance constraints. Another
difference is that there is no labelled target per agent, and instead agents can
be routed to any point in the exit segment. Our proposed approach solves this
problem by computing the continuous max flow of the input environment and
then extracting paths from it. While our solution is of max flow, the total path
length is optimized only locally.

The literature review below makes an overview of the more generic Multi-
Agent Path Planning (MAPP) problem, analyzes previous uses of max flow
algorithms in MAPP problems, and finally reviews the continuous max flow
problem which is the approach taken in this work.

2.1 Multi-Agent Path Planning

The Multi-Agent Path Planning (MAPP) problem is related to planning paths
for agents from their initial positions to target positions. It is an important

4 Renato Farias Marcelo Kallmann

problem for a variety of applications and the problem has been extensively
studied in different contexts.

One important characteristic of methods to solve the MAPP problem is
that, in order to find a solution when one exists, time has to be discretized and
the employed search procedure has to take into account the time component.
Our approach however focuses on finding disjoint paths such that searching in
the time component is not needed. While our approach can be seen to be less
generic in the sense that it does not solve agent coordination to reach specific
goal points, the proposed method addresses the spatial reasoning problem of
maximizing the flow of agents across an environment, and is better suited for
optimizing areas with high traffic of agents among obstacles. Once paths (or
lanes) of maximum flow are computed, an arbitrary number of agents can
be deployed by simply following the lanes in order to optimally traverse the
environment.

The vast majority of MAPP approaches developed to date are based on
grid representations. In this case, the problem consists of finding trajectories
for agents from given initial cells to given target cells in the environment
grid, while avoiding cells marked as obstacles [10]. A popular approach to this
problem is to plan paths individually for each agent and subsequently solve
all conflicts. Different strategies for solving conflicts exist. For example, one
approach is to recursively solve conflicts between pairs of agents [14]. Another
is to have agents to follow paths which may have conflicts, and to let each
agent address the conflicts reactivelly in response to the local environment
and nearby agents [19]. A number of variations and extensions exist, such
as integration with roadmaps for scalability to higher dimensional problems
including articulated structures [4]. While finding optimal solutions for several
versions of the multi-agent path finding problem is known to be NP-hard [22,
17], unlabeled variations can be solved in polynomial time [20, 15].

2.2 Use of Flow Algorithms in Multi-Agent Path Planning

Discrete flow algorithms have clear applications to multi-agent path planning
and the problem of computing maximum flows in a capacitated network graph
has been an important problem in combinatorial optimization. The problem is
commonly studied in textbooks and many polynomial-time algorithms exist.
The connection between network flows and path planning has started to be
investigated in a number of works; however, to date all previous works have
been limited to investigations performed in discrete versions of the problem.

A Conflict-Based Min-Cost-Flow algorithm has been proposed to address
the combined target assignment and path finding problem, where a min-cost
max-flow algorithm on a time-expanded network graph is used to assign all
agents in a single team to targets [9]. Yu and Lavalle [21] study the problem of
computing minimum last arrival time and minimum total distance solutions
for multi-agent path planning on graphs. Their formulation relies on discrete
multi-commodity flow algorithms which address the problem of flowing differ-

Planar Max Flow Maps and Determination of Lanes with Clearance 5

ent types of commodities through a graph network. Heuristics for search-based
algorithms that systematically explore the state space have also been proposed
based on commodity flows [18, 8], and multi-agent path planning for goals that
are permutation invariant has been addressed with graph network flows [20].

In the area of multi-agent simulation, crowd-flow graphs have been devel-
oped to distribute agents in an environment according to capacity information
extracted from a harmonic field computed in the environment [1].

While these works clearly show that solving flow problems represents a
powerful approach to address multi-agent path planning, previous work has
used discrete max flow algorithms applied to a time-expanded representation.
No previous work in multi-agent navigation has explored the use of a continu-
ous flow formulation in order to directly generate lanes and at the same time
address planar environments described by polygonal boundaries. Such an ap-
proach is important in order to reach optimality guarantees in the Euclidean
sense, and furthermore, to take into account specific geometric constraints
(such as agent size) without simplifications.

2.3 Continuous Max Flows

While the generalization of the maximum flow problem to a continuous domain
is clearly interesting, its computation is not obvious. Strang [16] describes an
extension of the max-flow min-cut theorem to continuous flows, showing that
the maximum flow from sources to sinks in a planar domain is determined
by the minimal cut, just like the discrete version of the problem. This result
opens a direction for computing max flows in continua.

Mitchell [11] addresses the problem of actually constructing the min cuts
and max flows in a clever approach based on the computation of Shortest Path
Maps (SPMs) [13]. While no implementations are presented, polynomial-time
algorithms are given for varied max flow scenarios involving source edges and
sink edges in simple polygons. Similar to the calculation of SPMs, a continuous
Dijkstra paradigm forms the basis for the algorithms, but in a specific form
which solves the so-called 0/1/∞-weighted regions problem. In this paper we
follow this approach in order to achieve our proposed flow maps.

While it is not straightforward to generate max flows and SPMs via CPU-
based methods, our GPU-based techniques represent a practical approach to
achieve implementations solving these problems. Our underlying GPU-based
approach takes advantage of the built-in rasterization features of the OpenGL
rendering pipeline in order to propagate costs during the construction of our
maps. While in this paper we focus on the generation of max flow maps, we also
describe SPMs and we include in the Appendix a self-contained description
of our SPM construction method. A complete description with additional de-
tails, extensions and benchmarks against other approaches for building SPMs
is available in our previous work [6]. We are not aware of any other implemen-
tations to compute maximum flows.

6 Renato Farias Marcelo Kallmann

2.4 Contributions

This paper proposes two main contributions. First, we introduce methods to
compute maximum flow maps for polygonal domains relying on the insight of
applying GPU rasterization techniques previously used for computing short-
est path maps. We then address the new problem of extracting paths with
clearance from max flows, presenting a specific flow construction method that
takes into account clearance, and addressing methods for lane extraction and
total length minimization.

3 Definitions and Overview

Let the input polygonal environment be delimited by a polygon P containing
all obstacles of interest in its interior. The set of polygonal obstacles is denoted
by O. We are considering the situation where agents will enter P from given
source edges Psrc and exit the environment by crossing sink edges Psnk, while
not colliding with any obstacles in O. In our formulation Psrc and Psnk are
polygonal lines which are pieces of the boundary of the domain P. We also
consider that Psrc and Psnk are connected polygonal lines.

Assuming Psrc is left of Psnk, as in the example of Figure 1, there are two
additional polygonal boundaries between Psrc and Psnk which appear at the
bottom and top of the domain. We call these additional polygonal lines as Pbot

and Ptop. In this case the concatenation of Psrc, Pbot, Psnk and Ptop completely
covers the domain boundary in counter-clockwise order.

With source and sink edges defined it is possible to define the max flow
problem in P. A few variations on the definitions have been presented in the
literature. Mitchell [11] defines the max flow problem as computing a vector
field σ : P → R2 that maximizes v =

∫
Psnk

σ · n ds, subject to: div σ = 0 and

|σ| ≤ c in P.

In the above definition, vector n is the outward unit vector normal to Psnk,
v is the value of the flow σ, and c is a capacity constraint function that can
be defined to limit the magnitude of the vector field. Flow conservation comes
from the divergence-free constraint, which also implies that flow-in equals flow-
out. A variation of this definition includes the additional constraint σ · n = 0
on the boundary of obstacles [12]. There might be different maximum flows
for one given environment.

For our navigation applications we have found that having directions at
the sink edges orthogonal to the sink edges is not necessary for maximizing
the number of outgoing agents that can exit the environment. It is enough
that directions are outgoing, i.e., that σ · n > 0. Considering a more generic
setting, we would also only be interested in maximizing the flow with respect
to outgoing directions at the sink edges which are reachable, by following
the flow, from a point in a source edge. These adaptations are addressed by
function f in our proposed Definition 1. This definition also specifies that the

Planar Max Flow Maps and Determination of Lanes with Clearance 7

magnitude of the vector field is always 1 when it is defined, or 0 in regions
where the flow is not useful.

Definition 1 (Max Flow.) A max flow in P is a vector field σ : P → R2,
that maximizes

∫
Psnk

f(p) ds, subject to: div σ = 0 in P and |σ| ∈ {0, 1} in
P, where:

f(p) =

{
1, σ · n > 0 and p is reachable from a source,

0, otherwise.

Point p in Definition 1 is the point in a sink edge at which normal vector n
is computed. Function f ensures that only the useful flow to route agents from
source to sink is considered in the maximization. Function f will lead to a max
flow insensitive to the outgoing angles at sink edges, and to the possibility that
parts of the flow encode arbitrary directions not useful to routing agents from
source to sink.

The computational methods proposed in this paper are based on GPU-
based rasterization techniques that will generate a max flow according to Def-
inition 1, but will represent it in a discretized form, in a frame buffer grid in
the GPU. The result will be a max flow map, as defined below.

Definition 2 (Max Flow Map.) A max flow map for P is a discrete vector
field v : G→ R2, where G is a 2D grid covering P, and:

v(x) = σ(x),∀x : |σ(x)| = 1, where σ is a max flow in P.

Definition 2 captures the types of flow that our computational method
produces. Basically a max flow map represents a max flow and also allows
for additional directions to exist in parts of the environment that are not
useful to route agents from source to sink. In both cases the flow value, or
the capacity of the flow, for routing agents from source to sink is the same.
The flow value can also be determined as the length of the polygonal min cut
of the environment [11], which captures the narrowest space constraining the
flow capacity. See Figure 2.

Our flow map generation method requires the computation of Shortest Path
Maps (SPMs) to accumulate the values of a max flow. Next we define SPMs
and we provide a self-contained description of our SPM construction method
in Appendix A. A complete exposition of the method including additional
details and extensions is available in our previous work [6].

SPMs are structures constructed with respect to one or more source points
or source segments, and that partition the space into regions that share the
same sequence of points along the shortest collision-free path to the closest
source. An SPM therefore encodes shortest paths from all points in a given
planar environment to the closest point in a source. For any given point x, its
shortest path π(x) to the closest source is reconstructed by retrieving parent
points along π(x) until a source is reached. A “source” here refers to a source
of the SPM and is not related to a source edge of a max flow.

8 Renato Farias Marcelo Kallmann

Fig. 2: Left: this max flow routes agents from source to sink edges and is
illustrated with flow lines following the flow directions. The non-useful parts
of the environment have directions with magnitude 0 and are shown as gray
regions. Right: our equivalent max flow map includes non-null directions for
the non-useful parts of the flow. While in this work our flow maps present
directions as they are generated by our computational method, it would also
be possible to design directions for the non-useful portions that lead agents to
a useful portion of the flow. The min cut of the environment is represented by
the 3 illustrated segments. The sum of their lengths is equal to the max flow
value.

Let source points and source segments be defined inside polygonal domain
P, which also contains the set of polygonal obstacles O. Our SPM representa-
tion encodes lengths and parent points of shortest paths, and can be defined
as follows.

Definition 3 (Shortest Path Map.) A shortest path map (SPM) in P is
a grid-based representation s = (sd, sp), sd : G→ R, sp : G→ R2, where G is
a 2D grid covering P, sd(x) = length of π(x), and sp(x) = parent vertex of x
along π(x). If x is a non-reachable point (sd(x), sp(x)) = (−1,x).

An SPM therefore encodes, for each reachable point in P−O, 1) its geodesic
distance to the closest point in a source, and 2) the next “parent point” to
reconstruct the shortest path to the closest point in a source, which is always an
obstacle vertex or a point in a source. Fig. 3 shows an example SPM computed
for a single segment source at the bottom of the environment.

Our max flow maps are obtained by composing SPMs computed for source
polygonal lines from P and O. This process will be described in Section 4.
However, obtaining a flow map only partially solves the navigation problem
of routing multiple agents to traverse P. After a flow map is obtained, we still
need to determine where to direct agents to enter Psrc, a process we address by
determining lanes in the map. In addition, we are also interested in minimizing
the length of the lanes such that the overall travel time is reduced when agents
follow the lanes. Our overall approach is illustrated in Figure 4.

While the process illustrated in Figure 4 represents a complete method-
ology for routing agents using max flows, an alternative max flow map con-
struction method is needed in order to guarantee that the final system of lanes

Planar Max Flow Maps and Determination of Lanes with Clearance 9

Fig. 3: Shortest Path Map (SPM) example. Contour lines represent points
equidistant to the SPM’s source segment (highlighted bottom segment. Discs
represent agents whose polygonal shortest paths are also shown. Each region
of the SPM, denoted with a same color, shares the same vertex to be taken
when reconstructing a shortest path to the source segment.

(a) (b) (c) (d)

Fig. 4: Overview of the main steps of our overall approach. (a) Max flow map of
the input environment. (b) Lanes extracted from the flow map. (c) Optimized
lanes. (d) Using lanes to guide agents from source to sink.

utilizes the optimal maximum capacity of the environment. This alternative
method is needed because the max flow map encodes a flow without observ-
ing clearance constraints. The capacity of the max flow can therefore be only
guaranteed to be optimal for particles of infinitesimal size. If a max flow uses
corridors in the environment with less clearance than the clearance required
by an agent, that portion of the flow will not be useful for that particular
agent.

We therefore introduce in this paper (in Section 5) an alternative method
for generating a max flow map that takes into account the size of agents.

10 Renato Farias Marcelo Kallmann

The approach is to contract the corridors of the environment such that the
minimum width of the flow passing by each corridor becomes a multiple of the
agent size. In this way the generated flow will allow agents to fully utilize the
maximum capacity of the environment. We define this clearance-based max
flow map below.

Definition 4 (Clearance-Based Max Flow Map.) A clearance-based max
flow map for paths with clearance c in P is a max flow map vc : G→ R2, where
∀x : |σ(x)| = 1, the minimum width of the flow passing by x is a multiple of
2c.

In the above definition the minimum width of the flow passing by x is
restricted to be a multiple of 2c, such that the generated flow can always be
fully utilized by paths of clearance c, and the restriction is limited to the flow
lines that go from Psrc to Psnk. If a disc agent has radius r, the path clearance
needed is r, and the width of a lane is 2r. The construction of clearance-based
max flow maps is presented in Section 5. An improved lane determination
method is also presented based on points evenly spaced along segments used
to determine the flow width, which are called gates.

Overall, our presented methods are able to produce lanes among obstacles
that achieve maximum flow, minimize total length, and can ensure a given
clearance r.

4 Computing Max Flow Maps

We compute max flow maps following the approach described by Mitchell [11]
which is based on applying Shortest Path Maps (SPMs) [13] to accumulate
distances across the environment. The distance accumulation however requires
to compute the SPM for the special case of considering 0/1/∞-cost regions.
This is a limited case of the general Weighted Region Problem where only
three weights exist: 0 (no cost), 1 (cost proportional to distance traveled),
and ∞ (impassable region) [7]. Figure 5 illustrates the difference between a
traditional shortest path considering an obstacle of ∞ cost, and a shortest
path considering a 0-cost obstacle.

Given the polygonal domain P, its obstacles O, source edges Psrc and sink
edges Psnk, the max flow map from Psrc to Psnk will be obtained by computing
the SPM with source as Pbot or Ptop, and considering the obstacles to be 0-cost
regions. We will denote the target SPM considering obstacles to have cost 0
as the SPM0.

SPM0 will accumulate distances from one boundary of the domain to the
other without considering distances across obstacles. The distances that are
accumulated will only encode the width of the free corridors in the environ-
ment, which will specify how much flow can pass by each corridor. The vector
field defining the max flow map will then consist of the vectors orthogonal to
the isolines of the obtained SPM0.

Planar Max Flow Maps and Determination of Lanes with Clearance 11

Fig. 5: Shortest pats for obstacles of infinite (left) and zero (right) cost. When
an obstacle has zero cost it means that the portion of the path passing through
the obstacle does not add any amount to the total cost of the path.

In order to compute SPM0 we will apply our SPM method for regular re-
gions multiple times, updating distances at each stage according to information
obtained by first building the so-called critical graph of the environment.

4.1 Critical Graph

The critical graph of a polygonal domain captures key visibility information
in the environment [11, 7]. Our critical graph is comprised of the shortest line
segments connecting every pair of obstacles, every pair of obstacle and bound-
ary, and Pbot and Ptop, such that each segment does not cross an obstacle. In
our representation these segments become the edges of the critical graph, and
the obstacles become the nodes. The source and sink edges do not need to be
considered for the purpose of computing SPM0.

Figure 6 illustrates all shortest segments that are considered in order to
identify the shortest ones composing our critical graph.

Fig. 6: Segments considered (left) in order to identify the shortest segments
connecting pairs of obstacles and boundaries that compose our critical graph
(right).

12 Renato Farias Marcelo Kallmann

The critical graph encodes the width of all the corridors in the environment,
and as well the pairs of obstacles and boundaries that delimit the narrowest
parts of corridors. This information will be used to compute SPM0.

4.2 Main Algorithm

Once the critical graph of the environment is available we start by computing
the SPM for segment sources which are either Pbot or Ptop. In this section we
choose Pbot as the starting polygonal line source. The process consists of the
steps described below, which use Figure 7 as reference:

1. First, the segments of Pbot are set to be the initial SPM segment sources
and the SPM of the scene is computed. The result is shown in Figure 7a.

2. For each obstacle Oi in the domain, the set Ei of the edges of the critical
graph that connect to Oi is determined. Let pij be the points that the
edges in Ei connect to Oi. These are the narrowest corridor points in Oi.
At each point pij the accumulated distance sd(pij) from the current SPM
generation can be obtained from the SPM buffer. Considering all the edges
in Ei, let di be the smallest sd(pij). Each value sd(pij) is compared against
di. If di is not found to be smaller than any sd(pij), then no shorter path
to Oi was found. If this is true for every Oi, the algorithm stops and SPM0

has been obtained. Otherwise, proceed to the next step.
3. Here di has a smaller distance than some sd(pij), because the 0-cost of the

obstacle has not been considered. The boundary of Oi is included in the list
of line segments to be used as segment sources for the SPM construction
of the next iteration, with the modification that di is used as the initial
distance for the segment sources generated from Oi. The same is performed
for every other obstacle Ok which is found to have a smaller dk and is
thus contributing to the new set of segment sources. Once all segment
sources are identified, a new SPM is generated. However, the new values
sd(pij) generated will only go to the current buffer if they represent smaller
distances than the values already in the buffer. Figure 7b shows the result
obtained after the second SPM execution in the illustrated environment.

4. Go to step 2.

The iterations will stop when no more updates are needed. At this point
SPM0 will be obtained. Figure 7c shows the final result for the illustrated
environment.

Once the process above is completed each direction of the max flow map
is set to be the unit vector orthogonal to the final distance field, i.e., the max
flow map vector field will store vectors parallel to the white isolines of the
SPM0 shown in Figure 7c.

Planar Max Flow Maps and Determination of Lanes with Clearance 13

(a) SPM generated with lines sources taken from Pbot. The red line is the source and
the blue line is the sink.

(b) Obstacles A and B have shortest distances than the ones accumulated by the pre-
vious SPM, and a new iteration was performed with the boundaries of A and B as
sources, altering the map.

(c) Obstacle C had a shortest distance, through obstacle B, and generated one additional
iteration, finalizing the max flow map.

Fig. 7: Example steps to generate a max flow map.

14 Renato Farias Marcelo Kallmann

4.3 Lane Extraction from a Max Flow Map

The max flow map as computed in this section can be directly used to route
agents to traverse the environment. However, depending where each agent
enters a source edge, it may arrive or not at the sink edge, and it is also useful
to know how many agents can be deployed at the same time without creating
collisions between agents. It is therefore useful to extract lanes from the flow
so that agents can quickly select a free lane to use.

Lanes are represented with paths originating at Psrc and following the
flow field until reaching Psnk. By following lanes agents will move towards
the sink in an orderly fashion without any bottlenecks. Agents always have a
certain size, and although the max flow map described in this section does not
consider agent size, lanes can still be determined with the needed clearance so
that agents following lanes will not collide with obstacles or with other agents
in adjacent lanes. We consider that each agent is represented by a circle of
radius r and a lane determination process for clearance value r is therefore
necessary.

We employ a simple lane determination procedure that is implemented as
follows. We take points along Psrc from an extreme endpoint towards the other
extreme endpoint in order to determine candidate starting points for lanes. If
the current candidate lane is found to be invalid, due lack of clearance or not
reaching Psnk, we advance by a small increment ∆ along Psrc and try again. In
our scenarios we have set ∆ to be the height of a pixel, such that we consider
lanes starting at every center of a cell in our grid representation G of the flow
map. If a valid candidate lane is found, we advance by 2r because we know
adjacent lanes must be spaced by at least 2r. Because of this, and the fact
that lanes run aligned with each other, we do not need to check for collisions
with previously-accepted valid lanes.

The lanes that are produced simply follow the flow and they can often
display unnecessary turns in the environment. Section 6 describes a length op-
timization procedure that can greatly improve the overall system of lanes that
is obtained. Although the lane determination procedure described in this sec-
tion already incorporates clearance, the underlying flow may pass by corridors
that are too narrow for a lane to pass. This may lead to a sub-optimal number
of lanes generated. In order to achieve the maximum number of possible lanes
with a given clearance, it is possible to generate the flow already taking into
account the clearance value. This leads to a clearance-based max flow map, as
described in the next section.

5 Clearance-Based Max Flow Maps

Given a pair of disjoint obstacles, it is possible to capture the narrowest passage
between them with the shortest segment that connects them without crossing
any obstacles. We will refer to this segment as the gate of the corridor between

Planar Max Flow Maps and Determination of Lanes with Clearance 15

Fig. 8: Left: because of how the clearance-insensitive flow winds up in this
example, a lane with clearance that simply follows it might close off a space in
a way that a corridor is blocked and the maximum number of possible lanes in
the environment is not extracted. Right: In this environment, when the max
flow map is generated from the bottom boundary, the maximum number of
lanes is correctly extracted. To ensure that generated flows always generate the
maximum number of lanes the desired clearance is taken into account during
the flow construction.

the two obstacles. Such segments will be directly available from the critical
graph of the input environment (Figure 6-right).

The length of a gate determines the maximum number of lanes that can
pass between those two obstacles. Most of the time a gate will not exactly
accommodate a whole number of lanes, but rather will have some “leftover
space” when a given number of lanes cross the gate. For a lane candidate
to be considered valid, all gates it crosses must have enough clearance for
it. However, in some cases the leftover space may be still used by the flow
instead of using other corridors that might still have space for lanes to pass.
This means that a clearance-insensitive max flow may flow through unpassable
narrow corridors instead of larger ones. See Figure 8 for an illustration of the
problem.

In order to address such situations we need to eliminate the leftover space
of all corridors in the environment by forcing all gates to only fit a whole
number of lanes. In this way we prevent the creation of flow portions that
cannot fit a lane, and obtain the correct maximum capacity of the environment
when considering lanes with clearance. The approach of contracting edges of
the critical graph has been already suggested for solving integer flows, which
addresses the equivalent case of routing wires that need to be spaced by 1
unit. The implementation of this approach in our max flow map methodology
requires that we alter the boundary of the obstacles in a way equivalent to
contracting gates.

First, by using the critical graph we are able to determine all the gates in
the environment between obstacles and P. We then contract every gate such
that its new length is equal to a whole number of lanes based on the needed
agent clearance. To do this we pick one of the endpoints of the gates, point
p, and displaced it along the gate, in the direction of the gate mid-point, by

16 Renato Farias Marcelo Kallmann

distance l = lg mod 2r, where l is the leftover space, lg is the original gate
length, and r is the radius of the agent. In doing so we obtain the contracted
point pc. We then add the original point p as a vertex of the obstacle along its
boundary, in case it is not already a vertex, and replace its coordinates with
pc. In this way we locally enlarge the obstacle only enough such that the new
gate will fit the same number of lanes as before, but exactly. See Figure 9.

The eliminated leftover space will force any remaining flow to be generated
in different corridors. An alternative method for gate contraction would be to
displace each gate endpoint by l/2, leading to a corrected flow with space l/2
at both sides of the corridor.

Fig. 9: The gates, or shortest segments, between the boundary and obstacles,
and between pairs of obstacles, are contracted by displacing vertices of the
obstacles such that corridors will fit an exact number of lanes. Here, as an
additional optimization, the convex hull of the obstacles is adjusted. Because
gate contraction is only important to distribute flows in corridors, there is no
need to contract the gate between Pbot and Ptop.

5.1 Improved Lane Extraction using the Min Cut

Given that the gates of the critical graph for a clearance-based max flow
map are contracted, an improved lane determination method can be generated
based on the min cut of the environment.

The min-cut of the environment can be found with a Dijkstra search on the
critical graph. We consider the critical graph where each obstacle or boundary
is a node, and the edges are the gates connecting pairs of nodes. We then
consider Pbot (or Ptop) to be the graph’s initial node for the Dijkstra search,
and Ptop (or Pbot) to be the goal node. The result of the search will be the min
cut, which consists of the collection of gates capturing the narrowest length
to cross the environment from source to sink. Its length also determines the
maximum number of lanes that can travel from source to sink.

Planar Max Flow Maps and Determination of Lanes with Clearance 17

Once the min cut of the environment is determined, we simply place lanes
in the contracted gates of the min cut, with starting points evenly spaced
along the contracted gates, with 2r space between them and with r space to
obstacles or boundaries. We then follow the flow both ways from each starting
point, to Psrc and Psnk, in order to create the initial set of lanes. Since all
gates can now fit a whole number of lanes, there is no longer a need to check
if a lane has sufficient clearance. Note that because the final number of valid
lanes depends also on the length of Psrc and Psnk, lanes still have to be tested
to reach them before being accepted, which is a trivial check.

This improved method can also be employed with the clearance-insensitive
flow maps, however, the full validity tests will still have to be executed for
each candidate lane.

Figure 12 shows examples where the maximum number of lanes were
achieved by the clearance-based flow maps while some lanes were missed when
using clearance-insensitive flow maps.

6 Length Optimization of Flow Lanes

Utilizing the max flow maps described in the previous sections and assigning
agents to the extracted lanes provides an effective methodology to route agents
through an environment. However, depending on the layout of the scene and
the relative sizes of the source and sink, the generated lanes may be ineffi-
cient with respect to the path they take through the scene, taking extremely
long detours when shorter, more direct paths are available. A post-processing
optimization process to reduce this inefficiency can then be applied.

For each lane, we randomly choose a pair of points p1 and p2 along its path,
and check to see if the segment p1p2 is a valid “shortcut.” This is only true
if p1p2: does not intersect with any other occupied lane or obstacle segment,
keeps its minimum distance to all obstacles and P as at least r, and keeps its
distance to all other lanes as at least 2r.

This optimization can be applied individually to any lane, in any order,
and repeated any number of times. In practice, we start the process with the
last assigned lane and work our way backwards to the first. This is because if
Psrc’s length is less than the min cut of the environment, the lanes will not be
able to use all available space up to the side opposite of the one that initiated
the generation of the max flow map, and therefore the last lane tends to have
the most open space to be optimized. As shortcuts are accepted and lanes are
shortened, they also free up new space for subsequent lanes.

The optimization does not change the original lane assignment, it only
shortens the lanes instead of searching new ways through the environment, so
this optimization does not guarantee a globally-optimal configuration of lanes
length-wise nor does it alter the maximal flow. However, by iterating enough
times, it converges to a locally-optimal solution. The effect of this process on
the lanes of our test environments is illustrated in Figure 10.

18 Renato Farias Marcelo Kallmann

(a) original lanes

(b) optimized lanes

Fig. 10: Scenarios 1 (left), 2 (middle), and 3 (right).

7 Results and Discussion

Our methods have been evaluated by producing several max flow maps and
lane systems for a variety of environments. We have also produced simulation
examples comparing the benefits of using our max flow trajectories versus
having agents simply following their shortest paths.

7.1 Efficiency for Flowing Agents

In order to illustrate the benefits of using our max flow trajectories we have
produced multi-agent simulations employing our generated lanes. One simu-
lation is illustrated in Figure 11 and the results obtained are summarized in
Table 1. In each simulation we define Psrc at the top of the domain boundary
and Psnk at the bottom, then proceed to construct three types of navigation
environments:

1) The first type is based on the SPM computed with Psnk as source,
such that agents will follow their shortest paths to Psnk. We call this SPM as
SPMsnk. Paths are the shortest possible but several bottlenecks occur which
are handled with simple collision avoidance between the agents. This SPMsnk

Planar Max Flow Maps and Determination of Lanes with Clearance 19

Fig. 11: Snapshots of simulations on scenario 3. Despite both having the same
amount of space and 8 lanes to start with, the SPMsnk only permits 4 agents
to reach the exit at a time, while the max flow map permits all 8 to do so.

Scenario 1 Scenario 2 Scenario 3

min max avg n min max avg n min max avg n

S: 1.97 2.02 1.99 453 2.24 2.28 2.26 214 1.97 2.03 2.00 441

L: 2.57 3.92 3.06 1053 3.30 4.39 3.89 553 2.74 4.31 3.20 766

O: 1.97 2.52 2.39 1165 2.65 3.61 3.09 611 1.98 2.89 2.40 843

Table 1: The left-most column indicates the used method. S: shortest paths
to sink using SPMsnk. L: lanes from the max flow map. O: optimized lanes
from the max flow map. The simulations had the agents continuously spawn
at the source whenever there was space for them, and then the agents moved
towards the sink according to the used method. The simulated period was of
60 seconds. Columns min, max, and avg refer to the minimum, maximum, and
average path/lane lengths computed for the scene, respectively, and n is the
total number of agents that were able to reach the sink in the allotted time.
The three scenarios are illustrated in Fig. 10.

simply encodes shortest paths and does not include any flow information. The
first row in Table 1 presents the results.

2) The second type uses our max flow map of the environment, built start-
ing the underlying generation from the Pbot side. The flow map provides di-
rections to agents placed anywhere in the covered regions of the environment
but the retrieved lanes are used to guide the agents. The lanes are optimal
with respect to the flow capacity but their lengths can be further optimized.
The second row in Table 1 presents the results.

3) In the third type the lanes obtained from the max flow map are optimized
leading to a system of trajectories with minimized total length while still

20 Renato Farias Marcelo Kallmann

achieving the max flow of the environment. The results are presented in the
third row of Table 1.

In each environment type we repeatedly spawn agents at the source edge
whenever there is space for them, as the agents use either the SPMsnk, lanes,
or optimized lanes, to navigate towards the sink. Whenever an agent reaches
the sink, it is removed from the environment. The example in Figure 11 shows
a snapshot of the simulation running on scenario 3.

The simulations ran for 60 seconds, measuring the minimum, maximum,
and average lengths of the paths computed and the number of agents that were
able to reach the sink during that time, as can be seen in Table 1. The SPMsnk

consistently computed the shortest paths in every environment, which is to be
expected since it gives the globally shortest path for each point. However,
fewer agents were able to reach the sink during the simulation. When too
many agents try to follow their shortest paths to the sink, bottlenecks emerge
that slow down the majority of their progress.

The environment types relying on the max flow, as expected, despite hav-
ing longer overall lane lengths, were better for coordinating the movement of
agents throughout the environment. No bottlenecks were created, and so the
max flow map led to 2 or sometimes close to 3 times as many agents reach
their destination. Also, agents using the max flow map lanes did not require
collision avoidance behavior. In these examples both the used max flow maps
and the respective clearance-based max flow maps would lead to the same
number of lanes. While lanes were slightly different, and with slightly different
lengths, no significant difference on the reported values would be expected.

Our results clearly show the benefits of computing optimal flow trajectories
for deploying large numbers of agents across generic polygonal domains. Be-
cause the computed flow is optimal, no better solution can be found in terms
of number of agents that can reach the sink polygonal line at the same time
without bottlenecks.

7.2 Additional Results

Several additional results are presented in Figures 12, 13, and 14.

Figures 12 and 13 show the benefits of clearance-based flow maps. The
top rows of images in Figures 12 and 13 show clearance-insensitive flow maps
which lead to lanes being missed. The maps on the bottom rows are where
we apply clearance-based flow maps in order to find the maximum number of
lanes.

Figure 14 presents the results of our methods on two additional environ-
ments with higher number of obstacles. The lanes generated on the left images
are unoptimized, whereas the right images shows the same lanes after length
optimization.

Planar Max Flow Maps and Determination of Lanes with Clearance 21

Fig. 12: The top row shows a clearance-insensitive max flow map missing one
lane compared to the clearance-based max flow map in the bottom row. The
right column shows the same lanes after a length optimization process.

7.3 Limitations and Future Work

Our current lane determination algorithms evaluate lanes by considering posi-
tions at the source or min cut edges without considering any additional global
information from the environment. This may lead to a poor choice of lanes in
some specific situations. For example, the lanes shown in Figure 15 achieve the
maximum possible flow but miss the shortest path from source to sink. This
situation might be addressed by first assigning lanes in the gates containing a
shortest path from source to sink, and then proceeding to the remaining gates
of the min cut. Another possible improvement is to allow updating the end-
points of each lane to alternative positions, in Psrc or Psnk, in order to further
optimize their length. We have also noticed cases where the generated flow
wraps around it and comes to intersect again the source segment; however,
our lane determination procedures ensure that no lanes are generated in these
areas.

One promising direction for future work is to address crossing flows. For
instance, groups of agents may be defined as each group having its own goal
sink, and one specific flow map for each group can be then computed. Later, it
might be enough to deploy agents with the right timing such that they do not
collide with each other when following their on flow paths. Reactive behaviors
can also be used to avoid collisions at flow crossings. Such possible approaches,
among others, would allow the proposed methods to be used for agents with
different goal locations.

22 Renato Farias Marcelo Kallmann

Fig. 13: In the top row, the clearance-insensitive max flow map misses two
lanes compared to the clearance-based max flow map in the bottom row. The
right column shows the same lanes after a length optimization process.

It is also possible to address max flow maps with multiple disconnected
sources and sinks. In this case there are disconnected edges in Psrc and/or
Psnk and there is no longer just a pair of segments on the boundary that can
be divided into Ptop and Pbot, but rather many segments. By applying every
boundary segment that is not part of Psrc or Psnk to be the starting sources
of the underlying generation of SPM0, we can compute a map such as the
one illustrated in Fig. 16, which produces a flow routing multiple entrances to
multiple exits. This approach however has the limitation that any source may
be routed to any sink.

8 Conclusion

We have introduced in this paper new techniques to compute max flow maps
capturing the maximum flow capacity of given generic polygonal domains.

Planar Max Flow Maps and Determination of Lanes with Clearance 23

Fig. 14: Examples generating the maximum number of lanes before (left) and
after (right) length optimization.

The proposed methods are able to determine bottleneck-free lanes that are
able to optimally guide agents to reach a destination exit of the environment.
Optimality is addressed with respect to the maximum flow of agents across the
environment. The presented simulations demonstrate that our approach can
dramatically increase the number of agents that successfully navigate towards
the goal exit of the environment in a given time frame.

The proposed approach introduces a new methodology for taking into ac-
count continuous flows in polygonal domains, and exposes several promising
directions for future work, opening new research avenues in flow-based agent
navigation.

Acknowledgements This research was sponsored by the Army Research Office and was
accomplished under Grant Number W911NF-17-1-0463. The views and conclusions con-
tained in this document are those of the authors and should not be interpreted as repre-

24 Renato Farias Marcelo Kallmann

Fig. 15: In this environment lanes are inefficient in terms of length whether
the map is generated from both Pbot or Ptop.

Fig. 16: A flow map with multiple sources and sinks. The red lines are source
segments belonging to Psrc and the blue lines are sink segments belonging to
Psnk. Every segment on the boundary inbetween them is used in the SPM
generation process and thus the map is created such that agents from any
source may travel to any sink, preventing crossing lanes.

senting the official policies, either expressed or implied, of the Army Research Office or the
U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation herein. The authors also
thank Prof. Joseph S. B. Mitchell for several discussions on the topic of this paper.

Planar Max Flow Maps and Determination of Lanes with Clearance 25

References

1. Barnett A, Shum HPH, Komura T (2016) Coordinated crowd simulation
with topological scene analysis. Computer Graphics Forum 35(6):120–132

2. Berczi K, Kobayashi Y (2017) The Directed Disjoint Shortest Paths Prob-
lem. In: Pruhs K, Sohler C (eds) 25th Annual European Symposium on
Algorithms (ESA 2017), Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany, Leibniz International Proceedings in Infor-
matics (LIPIcs), vol 87, pp 13:1–13:13

3. Camporesi C, Kallmann M (2014) Computing shortest path maps with
GPU shaders. In: Proceedings of the Seventh International Conference on
Motion in Games, ACM, New York, NY, USA, MIG ’14, pp 97–102

4. Dobson A, Solovey K, Shome R, Halperin D, Bekris KE (2017) Scalable
asymptotically-optimal multi-robot motion planning. In: 2017 Interna-
tional Symposium on Multi-Robot and Multi-Agent Systems (MRS), Los
Angeles, CA, USA, December 4-5, 2017, pp 120–127

5. Farias R, Kallmann M (2018) GPU-based max flow maps in the plane. In:
Proceedings of Robotics: Science and Systems (RSS)

6. Farias R, Kallmann M (2019) Optimal path maps on the GPU. IEEE
Transactions on Visualization and Computer Graphics

7. Gewali L, Meng A, Mitchell JS, Ntafos S (1988) Path planning in 0/1/∞
weighted regions with applications. In: Proceedings of the Fourth Annual
Symposium on Computational Geometry, ACM, New York, NY, USA,
SCG ’88, pp 266–278

8. Karamouzas I, Geraerts R, van der Stappen AF (2012) Space-time
group motion planning. In: Workshop on the Algorithmic Foundations
of Robotics

9. Ma H, Koenig S (2016) Optimal target assignment and path finding for
teams of agents. In: Proceedings of the 2016 International Conference on
Autonomous Agents and Multiagent Systems, International Foundation
for Autonomous Agents and Multiagent Systems, Richland, SC, AAMAS
’16, pp 1144–1152

10. Ma H, Koenig S (2017) AI buzzwords explained: multi-agent path finding
(MAPF). AI Matters 3(3):15–19

11. Mitchell JSB (1988) On maximum flows in polyhedral domains. In: Pro-
ceedings of the Fourth Annual Symposium on Computational Geometry,
ACM, New York, NY, USA, SCG ’88, pp 341–351

12. Mitchell JSB (1990) On maximum flows in polyhedral domains. Journal
of Computer and System Sciences (40):88–123

13. Mitchell JSB (1991) A new algorithm for shortest paths among obstacles
in the plane. Annals of Mathematics and Artificial Intelligence 3(1):83–105

14. Sharon G, Stern R, Felner A, Sturtevant NR (2015) Conflict-based search
for optimal multi-agent pathfinding. Artif Intell 219(C):40–66

15. Solovey K, Yu J, Zamir O, Halperin D (2015) Motion planning for unla-
beled discs with optimality guarantees. In: Robotics: Science and Systems

26 Renato Farias Marcelo Kallmann

16. Strang G (1983) Maximal flow through a domain. Mathematical Program-
ming 26(2):123–143

17. Surynek P (2010) An optimization variant of multi-robot path planning
is intractable. In: AAAI

18. Svancara J, Surynek P (2017) New flow-based heuristic for search algo-
rithms solving multi-agent path finding. In: ICAART (2), SciTePress, pp
451–458

19. Van Den Berg J, Guy S, Lin M, Manocha D (2011) Reciprocal n-body
collision avoidance. In: Robotics Research - The 14th International Sym-
posium ISRR, no. STAR in Springer Tracts in Advanced Robotics, pp
3–19

20. Yu J, LaValle SM (2013) Multi-agent path planning and network flow.
In: Algorithmic Foundations of Robotics X, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp 157–173

21. Yu J, LaValle SM (2013) Planning optimal paths for multiple robots on
graphs. In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pp 3612–3617

22. Yu J, LaValle SM (2013) Structure and intractability of optimal multi-
robot path planning on graphs. In: Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence, AAAI Press, AAAI’13, pp
1443–1449

27

Appendix

A Computation of SPMs Based on GPU Rasterization

This appendix describes the method employed in this work for computing
SPMs. The full description of the method is available in our previous work [6],
which also includes several extensions. An earlier version of the approach,
limited to point sources, was introduced by Camporesi et al. [3].

A.1 SPMs for Point Sources

We first describe the approach considering only point sources. The approach
considers the input environment to be described in plane z = 0 of a 3D space,
and then rasterizes “clipped cones” with apices placed at specific depths below
the source points and obstacle vertices, relative to the z = 0 plane, such that
the final rendered result from an orthographic top-down view is the desired
SPM. Each apex’s z coordinate is equal to its distance to the closest source
along the shortest path (its geodesic distance). When a cone is rasterized,
meaning it is converted to the pixels which it occupies in a GPU buffer (placed
at z = 0 plane), the depth values of the affected pixels increase proportionally
to their Euclidean distances to the apex, and will thus contain the geodesic
distances to the closest point source. Furthermore, in cases of overlap, the
GPU’s depth test will only allow the smallest value to remain in the frame
buffer. Fig. 17 illustrates the steps of the process and the concept of clipped
cones.

Fig. 17: The steps of the SPM construction process for an environment with
one source point and an obstacle with four vertices [6]. The cones are “clipped”
by the visibility of the point that generated it. The top row shows the GPU
buffer at each step. The bottom row is a 3D view of the underlying cones for
illustration purposes.

An array containing points with the xy coordinates of the ns source points
and n obstacle vertices is stored in the GPU. These points are referred to as
“generator points”, or simply “generators.” A generator point will be a parent
point to the previous vertex along a shortest path reaching the generator.

28

The GPU framebuffer stores the following information for each pixel: 1) the
red and green channels store the xy coordinates of the pixel’s current parent
point in P; 2) the blue channel stores the current known shortest path distance
to the closest source; 3) the alpha channel is used as a flag to determine
whether the pixel has yet to be rasterized by a generator. When the buffer
is visualized, we zero out the blue channel so that we can visualize the xy
coordinates of each region. This representation encodes all the information
described in Definition 3.

The SPM generation process consists of choosing a generator from the
array and rasterizing its clipped cone. Each generator is processed once.

First we determine which generator will rasterize cone next by choosing the
one with the smallest distance to a source, among the ones that can become
generators. Source points will be the first ones to be picked because their
distance to sources is 0. Points which have already been chosen before are not
considered, and a non-source point cannot become a generator if it has not
been reached by a previous cone because its correct distance to source is not
yet known.

Second, we rasterize the cone. The cone apex is placed under the generator
at a depth equal to the geodesic distance of the generator. When the cone is
rasterized, only the parts of the scene which have direct line-of-sight to the
generator are to be affected, and therefore the cone is “clipped” against the
region visible from the generator. This visibility determination is part of the
construction of the clipped cones, and is done before the actual rasterization by
determining the visible set in a dedicated buffer, and using it for the clipping.
The pixels that are affected by the rasterization will thus have direct line-of-
sight to the generator point, so they can calculate their Euclidean distance to
it and add it to the generator’s geodesic distance. If this sum is smaller than
the current distance stored in the pixel (from the cone of a previous generator),
then its blue channel stores the new distance and its red and green channels
are updated with the generator’s coordinates, making the generator the pixel’s
new parent point.

After all generators have been processed, the result in the framebuffer will
represent the desired SPM.

A.2 SPMs for Segment Sources

There are two main modifications needed in the basic algorithm in order to
consider segment sources. First, segment sources have to be decomposed in
sub-segments at critical points which encode where the visibility of the scene
changes with respect to the segment. The other extension is to rasterize dis-
tances that come from “elongated” cones, instead of cones, when the associated
generator is a segment or sub-segment instead of just points.

Let li be a source segment with nci critical points, nci ≥ 0. A critical point
defines a point where the orthogonal projection of an obstacle edge to the
segment changes to a different edge of the same obstacle. Critical points are

29

only considered when obstacle vertices can be projected to a segment through
a projection line not crossing any obstacles. See Figure 18 for examples.

Fig. 18: The circled points on the segment sources are the critical points,
which are projections of obstacle vertices.

Since critical points denote points where the visibility of the scene changes
with respect to the segment, we must then consider each of the sub-segments
between the endpoints and the critical points independently. We then consider
that li is now composed of nci + 2 points: its two endpoints plus all of the
critical points along its length, if any. Each pair of adjacent points defines a
sub-segment that is included in the SPM generation process as an elongated
cone. The basic SPM generation algorithm then proceeds. Elongated cones
emanating from segment sources may reach visible obstacle vertices, which
will eventually generate new cones during the propagation process and all
generated costs are correctly merged in the final SPM representation. One
example SPM with a line segment source is illustrated in Figure 3.

	Introduction
	Related Work
	Definitions and Overview
	Computing Max Flow Maps
	Clearance-Based Max Flow Maps
	Length Optimization of Flow Lanes
	Results and Discussion
	Conclusion
	Computation of SPMs Based on GPU Rasterization

