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Optimal Path Maps on the GPU
Renato Farias and Marcelo Kallmann

Abstract—We introduce a new method for computing optimal path maps on the GPU using OpenGL shaders. Our method explores
GPU rasterization as a way to propagate optimal costs on a polygonal 2D environment, producing optimal path maps which can
efficiently be queried at run-time. Our method is implemented entirely with GPU shaders, does not require pre-computation, addresses
optimal path maps with multiple points and line segments as sources, and introduces a new optimal path map concept not addressed
before: maps with weights at vertices representing possible changes in traversal speed. The produced maps offer new capabilities not
explored by previous navigation representations and at the same time address paths with global optimality, a characteristic which has
been mostly neglected in animated virtual environments. The proposed path maps partition the input environment into the regions
sharing a same parent point along the shortest path to the closest source, taking into account possible speed changes at vertices. The
proposed approach is particularly suitable for the animation of multiple agents moving toward the entrances or exits of a virtual
environment, a situation which is efficiently represented with the proposed path maps.

Index Terms—Graphics data structures and data types, path planning, shortest path maps, navigation, GPU programming.
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1 INTRODUCTION

Fig. 1: Example of a multi-source Optimal Path Map computed
on a polygonal scene with obstacles. There are three source points
in the upper half of the scene, and two line segment sources in
the lower half. The contour lines represent equal distances to
their closest source. Contour lines are directly extracted from a
distance field which is stored in the Z-Buffer as a result of our
method. The blue cylinders are agents and each has a polygonal
line representing its shortest path to the closest source.

A T its core, global navigation often depends on efficient path
planning, which is therefore crucial in various applications

from planning motions for robots to controlling autonomous
agents in virtual environments. This paper focuses on the computa-
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tion of optimal path maps, which allow for the efficient extraction
of optimal trajectories for agents in virtual environments.

While several approaches have been introduced in recent years
for computing paths among obstacles, the focus has mostly been
on the efficiency of computing collision-free paths without global
optimality guarantees. No recent advancement has been achieved
on practical methods for computing globally optimal shortest
paths, which in regular planar environments are also known as
Euclidean shortest paths. This situation reflects the fact that com-
puting optimal paths efficiently is not a trivial task. One popular
way of computing Euclidean shortest paths is by constructing
a visibility graph of the environment and then running graph
search on it [1]. Unfortunately in the worst case the number of
edges in the visibility graph is Θ(n2), where n is the number
of vertices describing the obstacles, which can significantly slow
down path queries based on search algorithms running on the
graph. Furthermore, each path query requires a new search.

Euclidean shortest paths can however be computed in O(n log n)
time with Shortest Path Maps (SPMs). SPMs are constructed with
respect to a “source point”, and like Voronoi diagrams, SPMs par-
tition the space into regions. Whereas regions in Voronoi diagrams
share the same closest site, regions in SPMs share the same parent
points along the shortest path to the source, which means that an
SPM encodes shortest paths between a specified source and all
other reachable points in a particular planar environment.

While SPMs have been studied in Computational Geometry for
several years, they have not been popular in practical applications.
This is because their computation involves several complex steps,
even when considering non-optimal construction algorithms. The
proposed GPU computation approach greatly simplifies the pro-
cess of building SPMs, allowing them to be easily computed with
rasterization procedures triggered from OpenGL shaders without
any pre-computation needed. We call our maps Optimal Path Maps
(OPMs) because they contain all of the functionality of SPMs
and in addition address important extensions: maps with multiple
sources of different types and maps representing velocity changes
at vertices. See Figures 1 and 6 for examples.
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Our approach introduces several advantages. While most represen-
tations require a point localization technique in order to determine
the region containing the query point, in the proposed approach
point localization is reduced to a simple constant time grid buffer
mapping. After this mapping, since every point in the OPM has
direct access to its parent vertex along the shortest path to the
closest source, agents have direct access to the next point to aim
when executing their trajectories. In addition, if the entire shortest
path is needed, it can be retrieved only in linear time with respect
to the number of vertices along the shortest path.

Our approach is based on the idea of cone rasterization from
sources and obstacle vertices. Unlike our initial work in this
area [2], in the present method we do not require pre-computation
of the shortest path tree of the environment and we also do not
need to create any geometry for the rasterized cones. Instead we
use dedicated fragment shaders to simply fill in the pixels that have
direct line-of-sight to the vertices, improving computation speed
and also eliminating errors that were introduced from discretizing
cone geometry into triangles.

Our shaders operate on the original coordinates of the input
vertices for all distance computations; therefore, when the buffer
resolution is appropriate (as discussed in Section 6.2), our maps
produce exact results not affected by the grid resolution. In
addition, our approach allows us to introduce a new type of map
not addressed before: maps with weights at vertices, which allow
accounting for speed changes at vertices, an interesting situation
leading to new types of optimal path maps. Our method can
produce relatively complex dynamically-changing OPMs at real-
time rates and several examples and benchmarks are presented.
Our method can compute paths faster than many competing
approaches.

2 RELATED WORK

Our work is related to different areas, from GPU computing and
path planning to the computation of distance fields. The related
work review below is organized according to these areas.

Approaches to Path Planning Researchers in AI usually ap-
proach path planning with discrete search methods on grid-based
environments, sometimes making use of hierarchical representa-
tions. Several advancements on discrete search methods have been
proposed such as heuristic search, dynamic replanning, anytime
planning [3], etc.; however, with few attempts to approximate
Euclidean shortest paths. One exception is the work on “any-angle
path planning” [4], which significantly improves paths computed
on grids with respect to getting close to a global optimal; however,
not guaranteeing to achieve globally-shortest paths.

In Computer Animation, while several approaches have been
introduced in recent years for efficiently computing paths among
obstacles, the state-of-the-art has focused mostly on the efficiency
of computing collision-free paths. For instance, recent work has
addressed new definitions of navigation meshes [5] [6] [7] but
mostly addressing contributions related to speed of computation
and computing paths with clearance. Given the complexity of the
problem and the high computational cost of the simple approaches
to it, global optimality is simply not addressed.

One way to compute globally-optimal Euclidean shortest paths is
to first build the visibility graph [8] [9] [10] of the environment

and then run a graph search algorithm on it [11] [1]. Previous
work [12] has presented specific cases where the problem can
be solved with O(n log n) time algorithms without explicitly
building the entire visibility graph. However, a visibility graph can
have Θ(n2) edges, where n is the number of vertices describing
the environment, making it expensive to be computed, updated and
queried. In addition, a new graph search is needed for each path
query. It is therefore difficult to develop efficient methods based
on visibility graphs.

Shortest Path Maps The first proposed method based on
Shortest Path Maps (SPMs) has worst-case time complexity of
O(kn log2 n) [13], where k is a parameter called the “illumina-
tion depth”, which is bounded above by the number of different
obstacles touching a shortest path. Later, the first worst-case sub-
quadratic algorithm for Euclidean shortest paths was proposed ap-
plying the continuous Dijkstra expansion, which naturally leads to
the construction of SPMs [14]. The continuous Dijkstra technique
simulates expanding wavefronts, which are the set of all points
equally distant from a given source point. The expansion requires
solving various events such as wavefront self-collisions forming
hyperbolic boundaries. The result of the wavefront propagation is
a spatial partition which is the SPM.

An algorithm for computing SPMs has been proposed taking
O(n log n) time to preprocess the environment, allowing distance-
to-source queries to be answered in O(log n) time, and paths
to be returned in O(log n+ k) time, where k is the number
of turns along the path [15]. Unfortunately, these methods and
all the known algorithms with good theoretical running times
involve complex techniques and data structures that overburden
their practical implementation in applications and prevent the
development of useful extensions. In contrast, our GPU-based
approach is relatively simple and is less affected by typical ro-
bustness difficulties encountered in many geometric computations
for building spatial subdivisions relying only on floating point
operations.

Alternative GPU approaches have also been explored in previous
work. The first attempt to compute SPMs in GPU was designed to
take advantage of the GPU’s massive parallelization capabilities
[16]. The method first pre-computes in CPU the visibility graph
and the shortest path tree (SPT) of the environment. Afterwards, a
brute-force but parallelized GPU computation is used to determine
the SPT vertex to connect to each pixel in order to produce a
subdivision of the discrete screen space in SPM regions.

The approach of using shader rasterization as an efficient way to
propagate wavefronts in the GPU was introduced in our previous
work [2] and in this work we present a completely re-designed
method incorporating several extensions and significantly improv-
ing the approach in multiple ways: 1) we eliminate the need to
precompute the visibility graph and SPT, 2) in doing so we are
able to address segment sources and speed changes at vertices, and
3) we no longer have to construct actual geometry for the rendered
cones simulating wavefront expansions; instead we simply employ
a dedicated fragment shader to directly fill in the relevant pixels,
simplifying the process and most importantly eliminating error
accumulation from cone discretization.

Other GPU Methods Previous work has investigated computing
geodesic distances in parallel on GPUs [17] [18] as well as
rasterization-based GPU techniques for related applications such
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as for computing Voronoi diagrams [19]. Although we also employ
rasterization techniques to accumulate distances, our approach
introduces the significant insight of placing clipped primitives
at accumulated heights in order to compute a SPM. Further-
more, we employ new techniques taking advantage of modern
programmable shaders without discretizing geometry during the
process, thus eliminating errors from geometry discretization.

GPU methods have also been explored for path planning from
grid-based searches, for example by performing multiple short-
range searches in parallel [20], by parallelizing expansions per-
pixel on uniform grids [21] and by relying on a quad-tree
scheme [22]. However, grid-based approaches do not address op-
timality in the Euclidean sense. We nevertheless compare reported
times from some of these works with our approach (Table 2) and
show that in addition to global optimality our method is also faster
in many cases.

Beyond path planning, GPU methods reported in the literature
have also addressed Delaunay triangulations [23], local collision
avoidance [24], shortest path trees on graphs [25], and breadth-first
search (BFS) on graphs [26] [27]. In particular, the BFS method
of Merrill et al. [26] is highly efficient and, although not directly
applicable to computing Euclidean shortest paths or SPMs, we
also include it in our comparative table (Table 2).

Distance Fields on Meshes Computing distance fields is a
problem closely related to computing SPMs. While these methods
do not represent the boundaries of a SPM decomposition, many of
the methods could be extended to do so. Previous work including
methods for computing geodesic distances and distance fields are
numerous and we include here an overview of the area.

A popular method to compute distance fields is to rely on window
propagation on meshes. The approach of Mitchell et al. [28]
propagates front windows in unfolded triangles while solving front
events during propagation, taking O(n2 log n) time to compute
geodesics. Implementations of the approach are available [29]
and extensions addressing arbitrary polygons on a mesh have
also been explored [30]. It is also possible to perform window
propagation without handling all events [31] reaching O(n2)
time but in practice processing a high amount of overlapping
windows. Window pruning techniques have then been investigated
to improve practical running times [32] [33], making window
propagation an efficient approach for computing exact geodesics.
We have compared our GPU approach against the window prop-
agation method of Xin and Wang [32] as implemented in CGAL.
Our results show that while our approach was slower to com-
pute our SPM representation versus their sequence tree, it was
faster in querying paths (see Table 3). Efficient front propagation
methods based on the Fast Marching Method have also been
proposed [34] [35] [36]; however, unlike the window propagation
methods discussed above, they are limited to producing approxi-
mate geodesics.

Among other related methods, previous work has already ad-
dressed multiple types of sources, for instance when computing
geodesic Voronoi diagrams with multiple sources [37] as well
as polyline-sourced Voronoi diagrams [38] [39]. Such concepts
however have not been applied to shortest path maps.

Summary While several algorithms exist for computing shortest
path maps, available methods are either too complex for practical
use or too expensive for real-time applications. The proposed

method is the first to be implemented entirely with GPU shaders, it
does not require any pre-computation, it addresses new capabilities
not explored by previous navigation representations, and it enables
multi-agent navigation based on paths with global optimality, a
characteristic which has been neglected in simulated virtual envi-
ronments developed to date. While powerful related methods in
the geometry processing area are available for computing distance
fields, they have not been applied to represent SPM boundaries
or to compute paths with speed changes. To our knowledge our
work has produced SPM diagrams of complexity not seen before
in previous work. See for example Figure 17.

3 MULTI-SOURCE OPTIMAL PATH MAPS

We first describe the base OPM case with multiple source points.
Let ns be source points {s1, s2, ..., sns

} in the plane, such that
si ∈ D, i ∈ {1, 2, ..., ns}, and where D ⊂ R2 defines a
polygonal domain containing all sources. In all our examples D is
a rectangular area delimiting the environment of interest, and the
GPU framebuffer will be configured to entirely cover D. A set of
polygonal obstacles O, with a total of n vertices, is also defined
in D such that shortest paths will not cross any obstacles in O.

Given source points the respective OPM will efficiently represent
globally-shortest paths π∗(p), which are optimal collision-free
paths from any point p ∈ D − O to its closest source point si,
in the sense that si = minjλ

∗(p, sj), where λ∗(p, sj) denotes
the length of the shortest path π∗(p, sj), j ∈ {1, 2, ..., ns}. Our
OPM also efficiently represents the values of λ∗ for all pixels of
the framebuffer by storing them in a dedicated buffer created in the
OpenGL pipeline. This representation gives us direct access to the
distance field of the environment and allows us to easily draw the
white isolines that can be seen in most of the figures in this paper.
Depending on the situation source points can represent the start or
the end point of a path. In most of the presented examples sources
will represent goals to be reached by agents placed anywhere in
the environment.

The plane represented by the framebuffer is located at z = 0. The
basic idea of our method is to rasterize “clipped cones” with apices
placed below source points and obstacle vertices, at the correct z
heights, so that the final rendered result from an orthographic top-
down view is the desired OPM (see Figure 2).

The process is implemented as follows. An array containing the
ns source points and n obstacle vertices is stored in the GPU. At
each iteration one point or vertex is copied into a reserved position
of a data array where it will be used to rasterize a clipped cone.
The point or vertex that is selected to generate the clipped cone
at each iteration is referred to as that iteration’s “generator.” Each
point and vertex is processed once, such that the result is given
after ns + n iterations.

Important to our approach is the fact that we do not actually need
to create discretized geometry for representing and then drawing
cones. Instead, we simply fill in pixels that have direct line-of-
sight to the generator, which is an equivalent operation. A cone
apex is located below the generator relative to the z = 0 plane.
The depth values of the affected pixels increase proportionally to
their Euclidean distances to the apex, as with the slope of a cone.
Because the depth is accumulated over iterations, it represents
the distance back to the source point along the shortest path, λ∗.
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Fig. 2: Top row: example steps for computing a single-source SPM. Bottom row: corresponding 3D perspective view of each step.

When all clipped cones are drawn at their respective heights, the
GPU’s depth test will maintain, for each pixel, the correct parent
generator point, which is the immediate next point on the shortest
path from that pixel to the closest source point. We say that a
cone “loses” to another at a given pixel when its depth at the pixel
is greater than the depth generated from another cone. The GPU
depth’s test automatically discards pixel associations to cones that
lose to other cones.

3.1 Method Description

Given polygonal obstacles O with n vertices and ns source
points, ns ≥ 1, the total number of vertices to be processed is
ntotal = n+ ns. These vertices are stored in array DATAARRAY

of size ntotal + 1. The extra position is reserved for storing at
each iteration the current generator that will be used for cone
rasterization. By convention this is the first position in the array,
DATAARRAY[0], and will be referred to as gcur . Once DATAAR-
RAY is constructed, it is stored in the GPU as a Shader Storage
Buffer Object. Each of the ntotal + 1 positions in DATAARRAY

stores:
• x, y: The original coordinates of the point or vertex in D.
• STATUS: A flag that can be equal to SOURCE for sources,
OBSTACLE for obstacle vertices, or EXPANDED for points or
vertices which have already generated a cone.
• DISTANCE: The current known shortest path distance to the
closest source point, λ∗. This will always be 0 for source points
and is initially undetermined for obstacle vertices.
• PARENTID: Array index into DATAARRAY of the current parent
point, which is the next point on the shortest path back to the
closest source point. Since sources have no parent point, by
convention they simply store their own index.

The framebuffer stores similar information for the pixels. For each
pixel, its red and green components store the x and y coordinates
of its parent point (equivalent to DATAARRAY[PARENTID].xy),
its blue component stores λ∗ (equivalent to DISTANCE), and its
alpha channel stores either 0 if the pixel has yet to be reached
by a cone or >0 otherwise. When the buffer is drawn, the color
of each pixel is mapped in the following way: x is used as the
red component, y is used as the green component, and the blue
component is zeroed. Although this mapping is arbitrary, it allows
to visualize the location of a region’s parent from the red and green
intensities.

The OPM generation consists of four steps which repeat ntotal
times such that each point and vertex is processed once. The steps
are presented in Procedures 1-4. The hat notation (e.g., n̂) denotes
unit vectors.

Step 1 is a search in DATAARRAY where the position with
the smallest DISTANCE is copied into the reserved position of
the array, index 0. Only points or vertices which have not yet
generated a cone (STATUS 6=EXPANDED) are considered in this
search, and once one is chosen its status is updated to EXPANDED

so that it cannot be processed again. The point that is chosen
becomes gcur , the current generator. This step can be skipped in
the first iteration of the algorithm as we can just start with one of
the source points.

Procedure 1 Search Compute Shader

Input: DATAARRAY

1: int generatorId← −1;
2: float generatorDist←∞;
3: for ( ∀i, i ∈ 1, 2, ..., ntotal ) do
4: if ( DATAARRAY[i].STATUS 6= EXPANDED ) then
5: if ( DATAARRAY[i].STATUS = SOURCE or

generatorId = −1 or DATAARRAY[i].DISTANCE <
generatorDist ) then

6: generatorId← i;
7: generatorDist← DATAARRAY[i].DISTANCE;
8: end if
9: end if

10: end for
11: DATAARRAY[0]← DATAARRAY[generatorId];
12: DATAARRAY[generatorId].STATUS← EXPANDED;

Step 2 is to generate a shadow area in order to solve visibility
constraints. Using a geometry shader, we draw into a stencil buffer
three triangles behind every obstacle line segment that is front-
facing with respect to gcur , in a manner illustrated in Figure 3.
Any pixel covered by one of these triangles is considered to be
in shadow. The resulting buffer is used as a stencil buffer in the
next step. Three triangles is the minimum number of triangles
needed to cover all possible shadow shapes. We use constant
csvf > 0, which stands for shadow vector factor, when computing
the points that make up the triangles. This constant must be large
enough to handle shadows of all sizes. Since our coordinates are
OpenGL normalized coordinates in the [−1, 1] range, a value of
4 is always enough. Note that limiting shadows to front-facing
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segments is merely for efficiency; generating triangles behind
back-facing segments would not affect the shadow area.

Step 3 draws a clipped cone with the generator gcur directly
above its apex along the z axis. As previously stated, we do
not actually create geometry for the cone but instead simply run
a fragment shader over every pixel on the screen. The pixels
that are not in shadow have direct line-of-sight to gcur , so they
calculate their Euclidean distance to gcur and add it to gcur’s
accumulated distance, DISTANCE. If this sum is smaller than the
current DISTANCE of the pixel (from the cone of a previous gcur),
then its DISTANCE is updated and its PARENTID is set to gcur’s
index.

Finally, step 4 is to update the DISTANCE of all vertices visible
from the current generator, in a way similar to step 3. Each
vertex not in shadow calculates its distance to gcur plus gcur’s
DISTANCE, and if that sum is smaller than its previous DISTANCE

it stores the new DISTANCE and gcur’s index in its PARENTID.
The reason steps 3 and 4 are separate is because step 3 is updating
the framebuffer, while step 4 is updating DATAARRAY. The end
of this step is a synchronization point in our GPU implementation.

After all points and vertices have been processed, which means
ntotal iterations of steps 1-4, the result in the framebuffer will be
the desired OPM. Examples of OPMs with a single source point
are shown in Figure 15 and with multiple source points are shown
in Figure 16.

Procedure 2 Shadow Area Geometry Shader

Input: DATAARRAY

Input: gcur // Current generator point/vertex
Input: e // One of the sides of a scene obstacle

1: vec4 p1 ← first endpoint of e;
2: vec4 p2 ← second endpoint of e;
3: vec4 pm ← (p1+p2)/2;
4: vec4 pg ← project and normalize vec4( gcur.xy, 0, 0 );
5: float dx← p2.x − p1.x;
6: float dy ← p2.y − p1.y;
7: vec4 ĝ← normalize( pm − pg );
8: vec4 n̂← normalize( vec4( dy,−dx, 0, 0 ) );
9: float d← dot( ĝ, n̂ );

10: if ( d < 0.1 ) then
11: vec4 v̂1 ← normalize( p1 − pg );
12: vec4 v̂2 ← normalize( p2 − pg );
13: vec4 p1s ← p1 + csvf v̂1;
14: vec4 p2s ← p2 + csvf v̂2;
15: vec4 pms ← pm + csvf ĝ;
16: EmitPrimitive( p1, pms, p1s );
17: EmitPrimitive( p2, p2s, pms );
18: EmitPrimitive( p1, p2, pms );
19: end if

3.2 Time Complexity

Given that the number of sources ns can be considered to be
constant, steps 1-4 are repeated Θ(n) times in our overall method.
Step 1 is a loop where the next generator among the input vertices
is searched, taking time O(n). Step 2 renders the shadow area for
each generator, and in the worst case an area covering most of
the framebuffer is generated, taking time O(nr), where r is the

pg

p1s

p2

pm
p1

p2s

pms

v1 v2g

e n

Fig. 3: Example of a shadow area. The line segment e represents
the side of an obstacle. The red point pg is the generator, points
p1 and p2 are the endpoints of e, and point pm is the middle
point of e. Vectors v̂1, v̂2, and ĝ are the normalized vectors from
pg to p1, pg to p2, and pg to pm, respectively. Points p1s, p2s,
and pms are calculated in the following way: p1s = p1 + csvf v̂1,
p2s = p2 + csvf v̂2, and pms = pm + csvf ĝ. The three triangles
are sufficient to cover the entire area behind the segment. Using
less than three triangles may not result in a correct shadow if the
generator is close to the segment because the area becomes wide
and thin. Value 4 is used for constant csvf such that shadows of
any size can be handled given that our obstacle coordinates are
normalized.

Procedure 3 Cone Fragment Shader

Input: DATAARRAY

Input: gcur // Current generator point/vertex
Input: fragCoord // xy coordinates of the pixel
Output: vec4 fragV alue

1: bool inShadow ← is the pixel in shadow or not?;
2: vec4 currentV alue← what’s currently stored in this pixel;

//texture fetch
3: vec4 fragV alue ← currentV alue; // If nothing else, pass

the current value on
4: if ( inShadow = false ) then
5: vec2 p← normalize fragCoord;
6: vec2 pg ← project and normalize gcur.xy;
7: float newDist← distance( p, pg ) + gcur.DISTANCE;
8: if ( there is no currently stored distance in the pixel or

newDist < currentV alue.z ) then
9: fragV alue← vec4( gcur.xy, newDist, 1 );

10: end if
11: end if

resolution (number of pixels) in the framebuffer. Step 3 renders a
clipped cone in a single rendering pass over the framebuffer, taking
time O(r). Step 4 updates the distances of all visible obstacle
vertices, taking time O(n). The overall SPM construction time
is therefore O(rn2). A discussion on the requirements for the
framebuffer resolution is given in Section 6.2. Note however that
steps 2, 3, and 4 are executed in parallel on the GPU, and thus the
final running time depends on the number of GPU cores available.
Step 4 in particular can be reduced to O(1) if the number of cores
is enough to process in parallel the maximum number of visible
vertices from a generator. Considering c to be the number of GPU
cores available the overall construction time will be O( r

cn
2).
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Procedure 4 Distance Compute Shader

Input: DATAARRAY

Input: gcur // Current generator point/vertex
1: int id← index of the vertex to be updated;
2: bool inShadow ← is the vertex in shadow or not?;
3: if ( inShadow = false ) then
4: vec2 p← project and normalize DATAARRAY[id].xy;
5: vec2 pg ← project and normalize gcur.xy;
6: float newDist← distance( p, pg ) + gcur.DISTANCE;
7: if ( there is no currently stored distance in DATAARRAY[id]

or newDist < DATAARRAY[id].DISTANCE ) then
8: DATAARRAY[id].DISTANCE← newDist;
9: DATAARRAY[id].PARENTID← gcur’s original index;

10: end if
11: end if

Once the OPM is constructed queries can be performed efficiently.
Query points are located in the framebuffer in O(1) time, path
length queries to the closest source are answered in O(1) time,
and paths to the closest source are reconstructed in time Θ(k),
where k is the number of vertices in the returned polygonal path.

4 SEGMENT SOURCES

Line segment sources are one natural extension to our method,
and are interesting as sources for what they can represent. Many
navigation goals in real-world scenarios are not single points but
segments, such as the finish line of a race, the thresholds of door-
ways or hallways, or the boundary of a coastline. Many of these
cases appear when planning evacuation routes from buildings.
Being able to compute OPMs with segments as sources allows
us to maintain global optimality in these practical situations.

Consider that we now have nl line segment sources
{l1, l2, ..., lnl

}, such that li, i ∈ {1, 2, ..., nl}, consists of two
endpoints ∈ D. The OPM will then efficiently represent globally-
shortest paths π∗(p), which are now optimal collision-free paths
from any point p ∈ D − O to the closest reachable point on a
segment source li.

Every line segment li can have nci critical points, nci ≥ 0.
A critical point denotes a point on the segment onto which at
least one obstacle vertex projects. The obstacle vertex must have
direct line-of-sight to the segment. Critical points are where the
visibility of the scene changes with respect to the segment and
are useful because in practice every path that passes through the
corresponding obstacle vertex will have its shortest path reach
the line segment on that critical point. See Figure 4. For each
li, first the two endpoints of the segment create two entries in
DATAARRAY which are treated identically to source points. Then,
nci + 1 further entries are created, where nci is equal to the
number of critical points segment li possesses. Every one of these
entries stores two pairs of xy coordinates rather than just one, with
STATUS set to SOURCESEGMENT, to represent the sub-segments
of li. If nci = 0, then the two endpoints are simply used because
the segment has no sub-segments. If nci > 0, then every adjacent
pair of points, including both endpoints and critical points, will
create an entry in DATAARRAY. Coincident critical points are not
added and have no effect on the method.

Fig. 4: The circled points on the segment sources are the critical
points, which are projections of obstacle vertices.

Fig. 5: Line segment source examples. Left: SPM of two segment
sources intersecting at the center. Right: Several paths from agents
represented as blue triangles to their closest points in a segment
source. In both cases the white contours represent the distance
field from the sources.

The distance calculation of the OPM generation process is dif-
ferent when the generator’s STATUS is marked as SOURCESEG-
MENT. It is necessary to determine whether the point being
updated is closer to one of the endpoints of the sub-segment,
or somewhere inbetween. If it is closer to one of the endpoints,
the distance is simply the distance to that endpoint. Otherwise,
the distance is equal to the distance between the point and its
projection on the sub-segment.

The described changes are sufficient to handle both segments and
points as sources. Figure 5 shows additional examples of OPMs
with line segment sources.

5 VERTEX WEIGHTS

Another useful extension is to consider weights assigned to the
vertices of the scene. A weight w on a vertex signifies that when
an agent passes by the vertex its speed is changed according to w,
implying that the distance calculation for that particular genera-
tor’s cone will be altered by a certain multiplicative factor which
is given by the value of w. This is the equivalent of changing
the slope of the cone being rasterized, which is also equivalent to
changing the speed at which that wavefront propagates.

As with segment sources, vertex weights allow our maps to rep-
resent practical scenarios that have not been explored previously.
As an example, consider a virtual character that needs to arrive at
a certain destination. One option is to walk directly there; another
is to take a more roundabout path that at a certain point lets the
character get on a bicycle or another vehicle, speeding up the
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traversal of the remaining distance. This scenario is illustrated in
Figure 6. A shortest path map cannot answer which option is faster
because it cannot represent the change in speed, but an optimal
path map considering vertex weights can.

Fig. 6: Top: an agent on foot plots a constant-speed shortest path.
Bottom: the top-left vertex of the long rectangular obstacle has its
weight increased representing the possibility of using a bicycle to
speed-up traversal time. That possibility leads to the fastest path.

Given two points, pi and pj ∈ D − O, the Euclidean distance
between them, d(pi,pj), and a weight w, w > 0, let the weighted
distance be equal to dw(pi,pj) = d(pi,pj)/w. When all
vertices have w = 1, a regular OPM is generated. When any
vertex has w 6= 1, the OPM is altered. For example, if a vertex
has w = 2, agents that pass through the vertex would move twice
as fast. It represents the agent switching to a faster mode of travel.

If a generator with w 6= 1 becomes the parent of another vertex
with w′ 6= 1, then the weight stored in the vertex will be
max(w,w′). This symbolizes the agent always preferring to stick
with the fastest mode of travel that it comes across.

For every unique weight that exists in the scene, we must store
an extra copy of each of the obstacle vertices in the data array.
In a regular OPM it is impossible for a cone to lose to another in
close distance but win over a long distance, so there is no need to
propagate any but the closest cone for each vertex. In a weighted
OPM this is however possible. A cone with a wider slope (higher
w) may eventually poke out from under a cone with a narrower
slope (lower w). It is thus necessary to propagate the closest cone
for every unique weight, otherwise the resulting map may generate
incorrect discontinuities.

In the example of Figure 7 the highlighted circled vertex (on
the lower-left image quadrant) has a weight of 1.3, making it a
more attractive option for optimal paths and thus distorting the
OPM towards it. However, as can be seen in (a), it generates a
discontinuity on the other side of the map (region highlighted with
an arrow) because it was unable to propagate to the area behind
the upper-right obstacle. By giving an extra space for the uniquely
weighted vertex to propagate (b), an extra cone is drawn and the
wavefronts line up correctly.

Interestingly the isolated green region, the one which is not
adjacent to a generator vertex as indicated with the arrow in
Figure 7, still appears in the correct version of the map. This

(a) Incorrect (b) Correct

Fig. 7: If generators with different weights are not allowed to
propagate, they may generate inconsistencies in the OPM. It is
necessary to store an extra copy of the data array for each uniquely
weighted vertex in the scene, otherwise situations such as the
above arise.

indicates that if the agent is located in that region, the shortest
path to the source first goes to the parent point of the green region,
which is disconnected from the isolated region. Therefore OPMs
with speed changes do not have anymore the property that each
region associated with a parent generator is singly-connected.

The inclusion of vertex weights requires additional solutions for
the correct visualization of the obtained OPMs. Consider the
example shown in Figure 8. Although the selected goal points (red
crosses) in both (a) and (b) have the same parent, the paths that
they generate are not the same; one passes through the weighted
vertex and the other does not. Here we use dashed lines to
differentiate regions with paths altered by the weighted vertex. The
inclusion of additional weighted vertices would require additional
patterns in the visualization. Because weighted vertices change the
speed at which an agent traverses, white isolines no longer denote
equal distance to the source but rather equal time intervals. Figure
9 shows the resulting OPM when the weight of the same vertex as
in Figure 7 is set to increasing values.

Fig. 8: The weight of the highlighted vertex is increased. Paths
to regions with cyan dashed lines pass through the “faster vertex”.
With vertex weights, ambiguity is introduced because while pixels
in the same region still have the same parent, their paths after
the parent may be different. This happens because if the goal is
sufficiently distant it becomes advantageous to take a detour to
pass through the weighted vertex and gain faster travel mode.

6 RESULTS AND DISCUSSION

We have produced several agent simulations taking advantage of
the new capabilities introduced in this paper. The presented results
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(a) Weight 1 (b) Weight 1.1 (c) Weight 1.2 (d) Weight 1.3

Fig. 9: Resulting OPMs as the highlighted vertex has its weight
increased. The region generated by the clipped cone at that vertex
gradually bloats outwards until it reaches both sides of the map.

are further demonstrated in the accompanying video to this paper.

Dynamically Changing Sources Figure 10 depicts the layout
of a subway, with the sources symbolizing train doors which
dynamically change from non-existent to points and then growing
line segments as the doors open. The OPM is updated in real-time
as this happens and the paths of the agents adjust accordingly.

Fig. 10: Simulation dynamically updating an OPM as its sources
change from points (left) to growing line segments (right).

Moving Segment Sources We add motion to the segment
sources in the simulation depicted in Figure 11. The segment
sources represent dynamic goals (trains) that agents attempt to
reach. The trains move either left or right on their tracks while the
map is continuously updated.

Fig. 11: Simulation where agents attempt to reach moving trains
represented by dynamic segment sources. As the trains move each
agent has direct access to a shortest path to the closest train.

Evacuation Analysis An OPM is used in Figure 12 to calculate
a distance field where a greener color indicates closer proximity
to a source while a redder color indicates greater distance from
a source. Sources are segments indicating road exits and the
illustrated map is a region of the roads in the northwest area
of Bodie, CA. Three segment sources represent the exits, one in
the northwest area and two in the northeast area. By varying the
number of passages leading out of the central area it is possible to
visually analyze differences in evacuation distances and the OPM
boundaries delimiting different directions towards closest exits.
The encoded optimal paths are readily available for simulating
autonomous agents.

Fig. 12: Evacuation simulation. Left: central area has 1 exit. Right:
3 exits.

Multiple Vertex Weights Multiple vertices of the environment
in Figure 13 had their weights increased due the availability of
faster transportation modes. Four agents with identical start and
end points navigate the environment, one at a time. Each time an
agent passes through a weighted vertex it uses the transportation
resource and the corresponding weight is reverted to regular,
altering the OPM and the fastest paths for subsequent agents.

Fig. 13: Simulation with multiple vertex weights.

Computation Comp.+Transfer
Map name P V Time (s) Time (s)
Concave1 2 12 0.0011 0.0207
Concave2 13 96 0.0088 0.0465

Spiral 1 38 0.0022 0.0274
SpmEx1 3 15 0.0016 0.0215
SpmEx2 13 91 0.0100 0.0470

Profiling0 4 16 0.0014 0.0221
Profiling1 16 64 0.0054 0.0404
Profiling2 36 144 0.0456 0.0858
Profiling3 64 256 0.1251 0.1680
Profiling4 100 400 0.2701 0.3099
Profiling5 196 784 0.8564 0.8863
Profiling6 400 1600 2.7371 2.8070

TABLE 1: Average time in seconds to compute a single-source
OPM on various maps (shown in Figure 15). P and V are the
number of polygons and vertices.
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Method CPU GPU Resolution O V Optimality Time (s)
Dynamic Search using uniform grid (1) – GF GT 650M 1024x1024 – – Average 32.93
Dynamic Search using uniform grid (1) – GF GTX 680 1024x1024 – – Average 21.25
Dynamic Search using uniform grid (2) – – 1024x1024 – – Average 14.12

Dynamic Search using quad-tree (2) – – 1024x1024 – – No 0.04
Breadth-first search (BFS) on grid-based graph (3) – GF GTX 280 1M – – Average 0.17

Shortest Path Map (4) i7 2.66 GHz GF GTX 580 1024x1024 64 256 Best 1.42
Optimal Path Map (5) i7 3.40 GHz GF GTX 970 1000x1000 64 256 Best 0.13

TABLE 2: A comparison of GPU-based techniques: (1) dynamic search using an uniform grid [21], (2) dynamic search using a quad-
tree [22], (3) breadth-first search on a grid-based graph [26] [27], (4) brute-force SPM [16], (5) our method. The number of obstacles
(O) and vertices (V) in the environment are included for the last three methods. Some hardware details were not specified in the papers.

6.1 Benchmarks

We evaluate the performance of our algorithm with several bench-
marks where we use a framebuffer resolution of 1000x1000 on a
Nvidia GeForce GTX 970 GPU and an Intel Core i7 3.40 GHz
computer with 16GB of memory.

Table 1 shows average execution times for computing 100 single-
source OPMs with random source points in D − O. The table
shows times both with and without transferring the resulting OPM
back to the host memory.

Figure 14 charts out computation times on the Profiling maps.
These maps are composed of uniform rows of square obstacles
(see Figure 15) with large visible areas from all points in the map.
This represents a worst-case scenario for our method because there
are large areas visible from all vertices. Still we observe that the
increase in computation time is not too distant from linear, given
the parallel execution of the GPU rasterization operations.

Table 2 shows that our method is able to compute an OPM
and return optimal paths faster than some previous GPU-based
methods which perform grid-based search and thus are not optimal
for polygonal inputs. For example, Kapadia et al. [21] gives times
to plan paths on a grid environment with similar resolution to the
buffer used in our benchmarks, 1024x1024, as follows: between
32.931 and 49.126 seconds for a GT 650M and between 21.246
and 30.778 seconds for a GTX 680. While it would be disingenu-
ous to directly compare these numbers to our benchmarks, which
used a newer GTX 970, we nevertheless believe that a new card
will not offer the significant speed up that would be required to
match even the 2.80 second running time we achieved on our

Fig. 14: The x axis represents the number of obstacle vertices
in the scene, and the y axis represents the computation time in
seconds.

most complicated map. In a later work they employed a quad-
tree to speed up the computation [22], but sacrificing even more
optimality in the process.

The BFS method included in Table 2 is highly efficient given that
it was achieved on a GPU with significantly less cores. The 0.17
time is for running BFS on a 3D grid-based graph of 1M vertices,
which was reported as taking 0.678s by Luo et al. [27] and then
improved by a factor of 4.1 by Merril et al. [26]. These methods
are powerful; however, they are limited to BFS on graphs. In
addition to generating approximate results in terms of computing
Euclidean shortest paths, discrete search alone does not include
visibility tests from generators, which are needed to identify the
regions of an SPM. Although our method uses a grid of pixels
to represent produced OPMs, our search is essentially vertex-
based (not pixel-based), allowing us to achieve optimal paths in
the Euclidean plane for each pixel.

In addition to the informal comparisons described above, we have
also performed benchmarks against the CPU method of Xin and
Wang [32] available in CGAL, which is an efficient window
propagation method for computing geodesic paths on meshes.
Window propagation methods represent a popular approach to
generate distance fields and could be extended to build SPMs.
Table 3 summarizes our results in terms of path queries per second.
For both algorithms, one million points were randomly generated
on the map and then used as query points. As can be seen from
the table, in all cases tested our OPMs were able to answer
a significantly larger number of path queries per second. This
follows from the fact that point location is a trivial constant time
operation in OPMs, and after that, paths are constructed by simple
concatenation of parent points from the query point. The faster
query time basically follows from the grid-based representation of
our method.

We found that comparing construction times is not straightfor-
ward. Our method was slower in computing our per-pixel SPM
representation than the time taken by the CGAL method to com-
pute their sequence tree; however, a sequence tree only represents
paths to the vertices of the obstacles, and trivially querying the
structure to construct path information for every pixel would lead
to slower construction times.

6.2 Discussion

Although our method uses a framebuffer grid and thus samples
the environment at the level of pixels, the framebuffer is just used
as a representation of the produced map. All distances computed
during the method execution are calculated exactly using the
original coordinates of the sources and obstacle vertices. This
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Queries per second
Map name F AVP CGAL OPM Improv.
Concave1 18 2.80 1,530,456 9,678,293 6.3x
Concave2 124 3.47 723,589 7,958,298 11.0x

Spiral 42 6.48 1,152,206 5,435,787 4.7x
SpmEx1 23 2.68 1,301,066 9,669,309 7.4x
SpmEx2 119 3.24 720,928 8,278,968 11.5x

Profiling0 26 2.58 1,150,880 10,511,710 9.1x
Profiling1 98 2.95 704,423 9,273,255 13.2x
Profiling2 218 3.29 457,435 8,164,065 17.8x
Profiling3 386 3.55 373,985 7,815,736 20.9x
Profiling4 602 3.90 232,336 7,267,917 31.3x
Profiling5 1178 4.57 153,881 6,075,666 39.5x
Profiling6 2402 5.54 92,909 5,011,099 53.9x

TABLE 3: Number of path queries per second. F is the number
of faces (triangles) on each map and AVP is the average number
of vertices in the paths computed. The last column shows the
improvement obtained with OPMs.

means that there is no accumulation of error introduced by the
method when integrating lengths of solution paths.

Only the region borders formed by collision fronts are affected by
the pixel approximation since they decide the first parent point to
take when starting a shortest path to the closest source. After the
first parent point is selected, the next ones are not subject to any
approximations as they are determined only from floating point
computations with the coordinates of the input vertices. If a query
point is less than half of one pixel diagonal length away from a
region border, it is possible that its pixel is not associated with
the optimal parent. It is however still possible to guarantee global
optimality in such cases, by just testing among the neighboring
pixels which parent vertex is in fact leading to the shortest path
using their exact accumulated distances to the closest source.
Cases of multiple distinct shortest paths for a same query point
are possible; however, our representation does not provide a direct
way to reconstruct all such paths for a query point.

In all cases, a suitable framebuffer grid resolution is expected to
be chosen guaranteeing that every grid pixel contains at most one
source point or obstacle vertex, and no original free space between
obstacles or shadow regions disappear in the grid representation.
Under these conditions our method will provide correct minimum
shortest paths.

Besides being resolution-sensitive the main limitation of our
method is that it may only be suitable for real-time simulations in
environments of moderate size. Our method is slower than state-
of-the-art path finding solutions that focus on speed of computa-
tion instead of global optimality [7]. However, our performance
times have the potential to increase over time given the rapid
expansion of GPU-based computing hardware and techniques.

7 CONCLUSIONS

We have introduced in this paper a novel shader-based GPU
method for computing optimal path maps addressing multiple
types of sources and weights at vertices representing speed
changes. We also uncover the interesting property that speed
changes may lead to maps with disconnected regions associated
to a same parent generator, something that cannot happen in
traditional SPMs. The achieved capabilities have clear practical
applications and were not explored before in an optimal way.

Our benchmarks show that our method outperforms comparable
approaches in many cases.

Our approach opens new directions for incorporating navigation
mapping techniques within the graphics pipeline. Our maps can in-
stantly guide agents in multi-agent simulations from GPU buffers
storing distances to the closest target and the next point to aim for
from any position in the environment.
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