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ABSTRACT

We address the problem of efficient navigation planning for virtual
characters with multiple locomotion behaviors. One main difficulty
in this problem is the need to rely on expensive collision detec-
tion computations which typically lead to methods unsuitable for
real-time applications. At the same time, the alternative of using
reactive path following methods lead to characters less capable
of addressing cluttered environments. In this paper we propose a
locomotion planning approach that incorporates the behavioral
capabilities of the character during the path planning stage without
the need to rely on expensive collision detection computations. Our
approach is based on computing paths and clearance tests in layered
navigation meshes, where layers are positioned at different body
heights in order to reduce 3D collision checking to fast 2D clear-
ance determination per layer. The proposed approach significantly
improves the overall planning time making our method suitable
for real-time applications while successfully addressing tradeoffs
between path length and selection of narrow passages according to
preferred locomotion behaviors.
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1 INTRODUCTION

One main difficulty faced by full-body motion planners is the need
to rely on expensive collision detection computations in order to val-
idate the execution of locomotion behaviors in narrow passages of a
given environment. The character and the environment commonly
need to be represented with significant detail and the involved
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Figure 1: Two layers are used in our method. The bottom

layer (bottom images) represents all obstacles while the top

layer (top images) only represents the tall obstacles which

are mostly important to detect torso collisions.

collision checks often make these planning methods unsuitable for
real-time applications.

The typical alternative for character navigation in virtual envi-
ronments is to decouple the problem in two stages: first, a path is
planned in the free portion of the environment, and second, steer-
ing behaviors are used to follow the path while reactively selecting
locomotion behaviors according to the encountered constraints.

Unfortunately, when environments are cluttered with obstacles
reactive approaches are less capable of addressing narrow areas
and they can easily lead to difficult maneuvers in narrow passages
while much more comfortable paths just slightly longer may be
available. In decoupled approaches the path planning stage does
not take into consideration the behavioral choices of the character.

We follow the approach of performing successive path planning
queries in a navigation mesh in order to plan paths incorporating
the behavioral capabilities of the character, as introduced in our
recent previous work [Juarez-Perez and Kallmann 2016a]. The ap-
proach however requires determining the feasibility of performing
different locomotion behaviors in the environment, what is usually
performed with expensive 3D collision detection computations. In
this paper we improve the approach and we replace 3D collision
checking by layered 2D clearance tests significantly improving
computation times. See Figure 1.
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Our approach significantly improves the overall planning time
making our method suitable for real-time applications and at the
same time achieving paths addressing the trade-off between path
length and using preferred locomotion behaviors instead of han-
dling narrow passages with high-cost behaviors. Our benchmarks
demonstrate a 20-fold computation time speed-up in comparison
to relying on full 3D collision checking.

2 RELATEDWORK

Different approaches are possible for full-body locomotion. For
instance, physics-based methods are capable of achieving realistic
motion adaptation to different events in the environment [Zim-
mermann et al. 2015] and to facilitate the coordination between
concurrent upper-body motions [2012]; however, requiring expen-
sive physics simulators and not addressing path planning taking
into account different behaviors.

Data-based approaches are also very popular for locomotion
planning. The first methods designed to re-use data from a motion
capture database [Arikan and Forsyth 2002; Kovar et al. 2002; Lee
et al. 2002] gave rise to motion graphs, which can be used to sup-
port concatenation planning of the motion clips in the graph in
order to achieve navigation in a given environment. Many variants
were developed, as for instance to improve connectivity [Mah-
mudi and Kallmann 2013; Zhao et al. 2009; Zhao and Safonova
2008] and to structure motions as parameterized behaviors, lead-
ing to pre-computed navigation behaviors [2006] able to support
motion search at interactive performances. Pre-computed motion
maps have also been introduced [Mahmudi and Kallmann 2012] to
achieve interactive motion search and synthesis in an unstructured
motion capture database. While these methods represent powerful
approaches for achieving high-quality animations, they require
pre-computation procedures that are time-intensive and memory-
consuming, and still involve significant computation at running
time.

A number of methods are based on other types of motion plan-
ning techniques. For example one approach is to deform animation
data to cope with constraints while searching for paths using a prob-
abilistic roadmap [Choi et al. 2003]. A more recent approach uses
specialized motion deformation techniques that are used during
navigation planning [Choi et al. 2011]. A large number of additional
full-body motion planning techniques have been proposed from
researchers from both the robotics and computer animation areas.
While these methods are able to achieve impressive results, their fo-
cus is on the motion synthesis generation in complex environments
and not on achieving a real-time solution for the underlying nav-
igation trajectory selection. Our method focuses on this problem
and on how to significantly improve the overall planning time.

The motion planning methodology proposed in this paper can be
applied to any given locomotion controller able to follow paths with
different navigation behaviors. Our motion controller is data-based
and has the advantage of relying on only one deformable animation
clip per behavior. There are however a number of possible data-
based approaches relying on a larger number of motion clips [Heck
and Gleicher 2007; Lee et al. 2010] which could be employed and
which have the potential to generate better-quality results. Motion

controllers can also be based on learning methods, such as rein-
forcement learning. For instance, Treuille et al. [2007] and Levine et
al. [2011] have employed learning for achieving powerful real-time
character controllers.While these methods are time-consuming dur-
ing learning and controllers have to remain in a low dimensional
space, these methods could also be controlled by our proposed
multi-behavior path planner.

With respect to path planning techniques on navigation meshes,
most of the methods have been developed independently from
full-body locomotion behaviors, and only considering clearance on
the 2D floor plan of a given environment [Kallmann and Kapadia
2016a,b]. In contrast we plan paths incorporating the behavioral
capabilities of the character, following the method introduced in our
previous work [Juarez-Perez and Kallmann 2016a]. The approach
requires determining the feasibility of performing different loco-
motion behaviors in the environment and, instead of performing
expensive 3D collision detection computations, in this paper we
introduce the concept of using clearance tests in layered naviga-
tion meshes, significantly improving computation times, up to 20
times according to our benchmarks. Our layers are represented
with an efficient navigation mesh called a Local Clearance Triangu-
lation (LCT) [Kallmann 2014], which allows efficient path queries,
clearance tests, and dynamic mesh changes during the process of
searching for a path suitable for multi-behavior execution. While
popular solutions used in many applications will typically build
a mesh specifically for only one clearance value [Mononen 2018],
a growing number of methods are being developed supporting
arbitrary clearance queries [van Toll et al. 2016].

In summary, while powerful behavioral planning approaches
have been proposed in the past for planning multi-behavior naviga-
tion in cluttered environments, they quickly become too expensive
for interactive applications. On the other hand efficient methods
based on path planning with navigation meshes have not been ex-
tended to take into account constraints or trade-offs emerging from
multi-behavioral locomotion. The method proposed in this paper
addresses these issues in an efficient way with the introduction
of layered clearance tests, which replace full collision checks and
achieve significant computation time improvements.

3 METHOD

The first step of our method is to determine the clearances required
by each locomotion behavior to be considered.

3.1 Locomotion Behaviors

Our locomotion controller relies on a set of deformable motion cap-
ture clips and is implemented based on the techniques presented in
[Juarez-Perez et al. 2014; Juarez-Perez and Kallmann 2016b]. The
controller requires annotated transition points between data-based
behaviors and as well the general direction of motion. Motion de-
formations are performed with small motion modifications applied
incrementally at each frame of the motions, allowing us to precisely
parameterize behaviors for achieving smooth path following.

In our current implementation we employ three locomotion
behaviors: regular frontal walking, arm-constrained frontal walking
and lateral walking. The motion capture set contains annotated
clips of each of the behaviors as well as the necessary transition



Symposium on Interactive 3D Graphics and Games (I3D) 2018 - this is the manuscript of the authors. I3D ’18, May 4–6, 2018, Montreal, QC, Canada

clips between each behavior. The arm-constrained frontal walking
behavior is implemented by modifying the trajectory of the arms
during the regular frontal walking so that the arms remain close to
the body making the character require less clearance.

The controller can be instructed to switch to a different behav-
ior at any time and the necessary transition will be automatically
applied. Motion blending is applied to smooth out any possible
misalignment introduced by the deformations. At each behavior
concatenation point it is possible to start following a new path
starting at the current position and orientation and/or to switch
to a different behavior. The goal of the behavioral path planner
(described in Section 3.3) is to generate a multi-behavior path that
can be executed by the locomotion controller.

Since in the proposed approach collision detection is reduced to
layered clearance tests, the locomotion behaviors taken into account
are analyzed in order to determine their clearance requirements. For
each frame of each motion we analyze the required clearances at
several layers parallel to the ground plane. Clearances are computed
as the minimum diameter completely enclosing the character in the
direction orthogonal to the motion direction. A few representative
layers are then selected for use during the path planning stage.

For the considered behaviors we have noticed that two layers
are enough to capture the most important clearance requirements.
One layer represents the clearance requirements of the legs and the
other takes into account the movement of the arms. These layers are
referred to as the legs and torso layers. Their respective clearances
are illustrated in Figure 2.

Figure 2: Left: the frontal walking behavior requires the

torso clearance larger than the bottom clearance. Cen-

ter: with arms constrained frontal walking requires only

slightly more torso clearance than legs clearance. Right: lat-

eral walking requires the least clearance and the torso and

legs clearances are the same because arm movement occurs

only along the motion direction.

We organize the available n = 3 locomotion behaviors as a set
{B1, . . . ,Bn }. Each behavior is associated with the values of the
clearances computed in the considered layers. In our current casewe
have the legs clearance c1i and the torso clearance c

2
i , i ∈ {1, . . . ,n}.

The behaviors are organized according to the preference in using
them. Our last behavior Bn is the preferred locomotion behavior
and in our case it represents regular frontal walking. Behavior B1 is
defined as the least preferred behavior, which is an uncomfortable
behavior to execute, but the most appropriate navigation behavior

for narrow passages. In our case B1 performs lateral walking (or
side-stepping). Any behavior in-between will represent a trade-off
between capabilities of navigation and preference of execution. In
our current setup, we only have one intermediate behavior, B2,
which is the regular frontal walking with the constrained arm
motion. A cost function will be later associated to each behavior in
order to quantify the “preference” of using a behavior.

It is possible to observe that the required leg clearance is the
same in all our behaviors while the torso clearance is higher in the
preferred behaviors, such that c1i = c

1
j , ∀i, j , and c2i < c2j when i < j ,

i, j ∈ {1, . . . ,n}. Our set of behaviors is therefore also ordered by
increasing torso clearance requirements.

3.2 Layers

For maximum efficiency our path planner only relies on layer
queries. The first layer (Figure 1-bottom) is a navigation mesh
where its 2D obstacles are the ground projections of all of the 3D
obstacles. This layer captures all the passages of the environment
and will be used to perform path queries.

The second layer (Figure 1-top) is used to validate, label and
select alternative behaviors that can be used to execute paths with
different clearances. This layer only contains as 2D obstacles the
polygonal sections obtained by the intersection of the layer plane
with the 3D obstacles. It therefore only represents the obstacles
that can generate a conflict with the torso of our character.

Additional layers can be incorporated as needed. The overall
approach is to first compute low-clearance paths on the lower layer
capturing all obstacles and then to check for additional clearance
on the other layers.

3.3 Behavioral Layered Path Planner

Our planner computes a free path from the current position of the
character to a given goal position, and returns it as a sequence
of concatenated sub-paths, each to be executed with a specific
locomotion behavior. A null path is returned if no path exists. The
overall solution is therefore a sequence of sub-path sections Π =
{π1, . . . ,πk }, where each section πi satisfies the needed clearance
value for its specific behavior.

The possibility of using different behaviors leads to several possi-
ble solutions. A cost value can be associated to each behavior such
that the overall cost of a solution can be defined as:

Cost(Π) =
∑
k

| |πk | | · costk (Bk ) ,

where | |πk | | denotes the length of the kth sub-path, and costk (Bk )

returns the cost of locomotion per unit length using behavior Bk .
While the goal of our planner is to find a solution that minimizes
this overall cost function, our current approach is heuristic-based
and does not attempt to guarantee a global optimum.

We rely on the local clearance triangulation (LCT) navigation
mesh [Kallmann 2014], which supports computation of paths with
arbitrary clearance, clearance checks at any position, and dynamic
insertion and removal of degenerate obstacles defined as single
points. This last feature is used to add constraints that block pas-
sages in the navigation mesh, forcing the path planner to search for
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alternative paths with new requirements in search for lower-cost
solutions.

Algorithm 1 summarizes the main steps of the layered path
planner. It starts by finding an initial annotated path in the bottom
layer using the smallest clearance c11 , which is obtained with a call
to function FindPath(c11, s,д). Without additional tests this path
can only be safely executed using our least preferred behavior B1,
which is the behavior of highest cost. c11 is the only clearance that
can guarantee that if a path is found, a solution with our available
behaviors exists. The algorithm will then seek to lower the overall
cost of this initial solution.

Function ConflictSections() returns all points {pobs }, spaced
by the minimum behavior concatenation length along the current
annotated path Πcur , where the path only has enough clearance
for B1 to be executed. These points represent passages that are too
narrow for other behaviors to be executed. In order to evaluate
alternative solutions, a point subset {p̂obs } ⊂ {pobs } is selected
to be inserted as point-obstacles, forcing the planner to search for
a different path, which may have lower overall cost. While con-
sidering all sub-sets would lead to the evaluation of all alternative
paths, too many combinations would be generated and we limit
our search to every single point instead of every possible subset.

Overall, Algorithm 1 greedily explores the possible behaviors
that can navigate the path, using Conflict Sections() to detect
the narrowest path sections that will likely generate collisions if
the side-stepping behavior is not used. It then evaluates modifying
the path in order to be able to use preferred behaviors and to lower
the overall cost of the current solution. To force new paths to be
evaluated, Algorithm 2 adds 2D point-obstacles to the bottom layer
navigation mesh in order to block narrow passages and force new
paths to be found and evaluated.

If using the least desired behavior cannot be prevented by path
modification, the algorithm will eventually find a path that exceeds
the cost of the current one, at which point it will finish its execution
and return the current solution.

When Algorithm 1 succesfully terminates it returns a path anno-
tated with behaviors to be executed. The annotation procedure is
called for every path evaluated and it is described in Algorithm 2.

Algorithm 2 relies on TestClearance(Π,p,B) which veri-
fies the possibility from point p onwards, along path Π, to employ
behavior B. The function returns the first point that does not al-
low using B due clearance requirements. This procedure relies on
clearance tests performed on the upper layers as required by the
requested behavior. The upper layer doesn’t contain short obstacles
because they won’t cause collisions with the torso or arms, there-
fore the upper layer has more clearance in certain passages than
the bottom layer. Clearance tests are efficiently performed because
the navigation mesh provides an exact triangular decomposition of
the free space in the layer. This allows the quick verification if a
desired clearance value around a point in the path remains covered
by free triangles, which is executed by only locally checking the
triangles around the query point.

An example of a solution path obtained is shown in Figure 3.
While the available leg clearance is the same inside the corridor,
due to the difference in height of the obstacles, different preferred

Algorithm 1 - Behavioral Layered Path Planner

Input: initial position s , goal position д and the number of
available behaviors n (3 in our current work.)
Output: path from s to д with annotated behavior, or null path if
a feasible path does not exist.
1: procedure BhPath(s,д,n)
2: costold = ∞;
3: Πcur = FindPath(c11 ; s,д);
4: Πcur = AnnotatePath(Πcur , s,д);
5: costmin = Cost (Πcurr )

6: while ( costmin < costold ) do
7: costold = costmin ;
8: {pobs } = ConflictSections(Πcur );
9: Πmin = ∅;
10: for each {p̂obs } ⊂ {pobs } do

11: Add {p̂obs } as a point obstacle in first layer;
12: Πnew = FindPath(c11 ; s,д);
13: Πnew = AnnotatePath(Πnew , s,д);
14: if (Cost(Πnew ) < costmin ) then

15: costmin = Cost(Πnew );
16: Πmin = Πnew ;
17: Remove {p̂obs } from the environment;
18: if (Πmin , ∅) then
19: Πcur = Πmin ;
20: return Πcurr ;

Algorithm 2 - Path Annotation

Input: Path Π, traversing the environment from s to д
Output: Annotated path.
1: procedure AnnotatePath(Π, s,д)
2: p = TestClearance(Π, s,Bn );
3: Πcur = FindPath(cn ; s,p);
4: while ( p , д ) do
5: for (i = n to 1 ) do
6: q = TestClearance(Π,p,Bi );
7: if ( p , q) then
8: Append FindPath(c2i ;p,q) to Πcurr ;
9: break; //exit for loop
10: p = q;
11: return Πcurr ;

behaviors with larger required clearance are selected along the path.
The solution path in this example has the minimum possible cost.

Figure 3: Example solution path found by our method. The

blue path sections can be executedwithB3, the cyan sections

with B2, and the red sections with B1.
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Figure 4: Apartment scenario.

After successful completion the overall algorithm returns a path

Π = {π1(c j1 ;a1,b1), . . . ,πn (c jn ;an ,bn )},

where bi = ai+1, i ∈ {1, ...,n − 1}. The path sequence implicitly
defines a solution path with behavior transition in the following
way: if ji = 3 regular walking is used for that section; if ji = 2,
constrained walking is used; otherwise lateral walking is used.

In summary, the overall procedure starts by finding theminimum
clearance path, which can be executed with lateral stepping, how-
ever since this behavior is slow and often unnecessary, path section
replacements accommodating preferred behaviors are performed
whenever the overall path cost can be lowered.

4 RESULTS AND DISCUSSION

We have evaluated the performance of our method and we demon-
strate results obtained in three different scenarios.

4.1 Scenarios

In the first scenario (Figure 4) the character has to find a path for
traversing an apartment cluttered with furniture. Multiple behav-
iors are required, for instance, the door is in a position that makes
it impossible to enter the room using the preferred regular walking
behavior.

The second scenario, illustrated in Figure 5, was created to trigger
all the behaviors. It consists of a narrow corridor with specific areas
designed to be traversed only by one of the available behaviors.
The first area of the corridor requires the arms to be constrained.
The second area has less clearance but because the obstacles do not
collide with the arms the system allows a switch to the regular front
walking behavior. The final section has the minimum acceptable
clearance and lateral side-stepping is required.

The third scenario is a randomized environment with obstacles
of varied dimensions (Figure 6). We can control the density of the
obstacles in the scene, going from easy to traverse with the nor-
mal behavior to highly cluttered and often requiring non-preferred
behaviors. Every time the user selects a reachable point in the envi-
ronment, the system computes and concatenates a new annotated
path to be executed in order to reach the new point. Smooth and re-
sponsive locomotion control is achieved and performed in real-time.
We use this environment in the evaluations described next.

Figure 5: Narrow corridor behavior selection. From left to

right: arm avoidance is employed in the first section, reg-

ular walking is correctly employed in the middle section

given the high clearance at the torso layer, and lateral side-

stepping is required in the last, narrowest, section.

Figure 6: Dense (left) and Normal (right) environments.

Table 1: Average times in milliseconds to compute paths

with layered queries versus full 3D collision checking.

Dense environment Normal environment
Layered 3D Collision Layered 3D Collision

20 Steps 9.70 189.40 6.14 110.65
10 Steps 10.62 105.26 6.48 61.15
5 Steps 9.67 28.21 6.16 22.23

4.2 Performance Evaluation

We evaluate the performance of our planner on two different ran-
domized environments, one with a normal density of obstacles and
the other with a denser configuration, as illustrated in Figure 6.

In order to test our environments, we have generated 100 differ-
ent goals at the same linear distance from the starting point of the
path queries. The length of the planned paths was equivalent to 5,
10 and 20 character steps using the normal behavior. We then ran
our layered locomotion planner and compared the results against
using full 3D collision detection with the environment geometry
as performed previously [Juarez-Perez and Kallmann 2016a]. The
results are presented in Table 1 and Figure 7.
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Figure 7: Average times, deviation and outliers when com-

puting paths of different lengths on a dense environment.

4.3 Discussion

The proposed layered approach clearly overcomes the collision
detection bottleneck, significantly speeding up computation times
and allowing us to plan considerably long paths in real-time.

Our system can be easily adapted to operate with a larger set of
behaviors and correspondent layers. While currently our approach
of projecting all obstacles to the bottom layer cannot capture more
complex movements such as crawling under a table, it is certainly
possible to design specific uses of layers in order to capture such
behaviors. Currently our layermechanism is used only for capturing
clearance along horizontal planes, which is appropriate for many
locomotion behaviors. Applying layers in generic orientations for
other types of movement planning is an interesting future work
direction.

It is also possible to explore improvements to the overall ap-
proach of our method. Our current greedy approach based on
blocking passages can be extended to evaluate all relevant pas-
sages and the underlying graph search can also be extended to
generate and evaluate all relevant paths [Eppstein 1999] without
requiring to block passages and to perform multiple independent
queries, possibly leading to faster final times. However a combina-
torial approach may generate too many candidates given that the
global optimum of our problem lies on the Euclidean plane and not
on the used adjacency graph representing the free space.

5 CONCLUSION

We have presented a path planning method that incorporates the
automatic selection of behaviors with different costs. Our method
computes paths which can be followed by locomotion behaviors
with different clearance requirements, achieving fast multi-behavior
navigation in cluttered environments. Our method introduces the
concept of applying layered clearance tests instead of full 3D colli-
sion checking, providing a significant speed-up in computation time.
The computed solutions adapt to dense environments with narrow
passages and our results demonstrate real-time performances with
solutions that represent natural behavioral choices.
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