
In Proceedings of SIGGRAPH 2016 Course Notes, Anaheim, CA. This is the manuscript of the authors and not the final publication.

Geometric and Discrete Path Planning for Interactive Virtual Worlds

Marcelo Kallmann∗

University of California Merced
Mubbasir Kapadia†

Rutgers University

Abstract

Path planning and navigation play a significant role in simulated
virtual environments and computer games. Computing collision-
free paths, addressing clearance, and designing dynamic represen-
tations are examples of important problems with roots in computa-
tional geometry and discrete artificial intelligence search methods,
and which are being re-visited with innovative new perspectives
from researchers in computer graphics and animation. This course
provides an overview of algorithms and navigation structures for
achieving real-time dynamic navigation for the next generation of
multi-agent simulations and virtual worlds. Building on top of clas-
sical techniques in computational geometry and discrete search, we
review recent developments in real-time planning and discrete en-
vironment representations for the efficient computation of paths ad-
dressing different constraints in large, complex, and dynamic envi-
ronments.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Navigation Meshes, Path Planning, Path Finding,
Shortest Paths, Navigation, Discrete Search, Anytime Dynamic
Search.

1 Overview

This course reviews planning techniques and navigation structures
for the next generation of real-time simulated virtual worlds and
computer games. Building on top of classical techniques in com-
putational geometry and discrete search, we review recent devel-
opments in real-time planning and environment representation for
achieving efficient and robust computation of paths addressing dif-
ferent constraints in large, complex, and dynamic environments.
The covered topics target the growing needs for efficient navigation
methods in today’s increasingly complex simulated virtual worlds.
The material of this course is designed for both basic and interme-
diate level attendees, and is organized in three modules.

Module I: Discrete and Geometric Planning (Section 2) We start
reviewing classical Dijkstra and A* discrete search algorithms, the
Euclidean Shortest Path problem, and the related main algorithms
and data structures from classical Computational Geometry. This
introduction motivates and justifies methods recently developed for
computing Shortest Path Maps with GPU shaders, and for devel-
oping navigation meshes handling clearance and robustness during
dynamic updates.

∗mkallmann@ucmerced.edu
†mubbasir.kapadia@rutgers.edu

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). c© 2016 Copyright held by the owner/author(s).
SIGGRAPH ’16, July 24-28, 2016, Anaheim, CA
ISBN: 978-1-4503-4289-6/16/07
DOI: http://dx.doi.org/10.1145/2897826.2927310

Module II: Advanced Planning Techniques (Section 3) Depart-
ing from classical A* we review anytime and incremental varia-
tions of search algorithms for efficiently computing paths in dy-
namically changing environments while meeting strict time limits
and preserving optimality guarantees. We describe extensions that
incorporate different types of spatial constraints and that use GPU
hardware to provide orders of magnitude speedup. Finally, we de-
scribe how the discussed techniques can be put together to solve
navigation problems in more complex domains, including behavior
planning and multi-agent coordination.

Module III: Planning Techniques for Character Animation
(Section 4) In this final part we present examples of how planning
algorithms can be applied to solve animation problems beyond path
planning. We discuss approaches for multi-agent navigation and for
crowd dynamics using different domain representations including
triangulations, grids, and bio-mechanically based locomotion mod-
els for footstep selection. We then present an overview of planning
techniques for whole-body character motion synthesis, including
approaches for planning with motion capture data and for address-
ing locomotion coordination with upper-body actions.

The first version of this course was organized in SIGGRAPH
2014 [Kallmann and Kapadia 2014] in Vancouver, Canada, where
it had 199 attendees. Following the good reception of the first ver-
sion, its original material was significantly revised and expanded
into the book “Geometric and Discrete Path Planning for Interac-
tive Virtual Worlds” published by Morgan & Claypool in January
2016 [Kallmann and Kapadia 2016].

In this current SIGGRAPH 2016 version we follow the organization
adopted by the book, and we expand the presented topics in mod-
ule III with new results from our recent research work in the past
2 years. This includes new developments on mesh representations
for path planning [Berseth et al. 2015], on full-body motion plan-
ning for virtual demonstrators [Huang and Kallmann 2015], and on
detecting and embedding contact-rich navigation semantics in en-
vironment representations for enhanced character animation [Ka-
padia et al. 2016].

2 Discrete and Geometric Planning

Modern applications to path planning have become considerably
complex and a multitude of factors have to be addressed in com-
bined ways in order to meet with requirements. Nevertheless, some
of the underlying problems are still the same as classical well-
understood problems long studied by researchers in discrete search
and computational geometry areas. This section reviews classical
algorithms and data structures with the goal of exposing the nature
of the problems and the underlying concepts and solutions. These
concepts are important for understanding the properties and limita-
tions of modern approaches, and for designing effective approaches
when addressing complex versions of the path planning problem.

2.1 Discrete Search

Given a planar environment, the navigable space of the environ-
ment can be decomposed in cells such that the adjacency graph of
the cells can be processed by discrete search methods. The pro-
cess transforms the continuous path planning problem into a dis-

http://dx.doi.org/10.1145/2897826.2927310

crete graph search problem. For each node of the graph, there are
only a discrete number of choices to decide in which direction to
move next. The two most notable discrete search algorithms are the
Dijkstra and A* algorithms.

2.1.1 Dijkstra Algorithm

Edsger Wybe Dijkstra introduced his algorithm for computing the
shortest path between two nodes in 1959 [Dijkstra 1959]. The con-
cept is based on expanding a frontier of equal distance from the
source node, expanding outwards from it, step by step, until all
nodes are processed or until the goal node is reached. The algo-
rithm is elegant and effective, and when heuristics are not known or
not possible, it remains the algorithm of choice for many planning
problems.

An efficient implementation of Dijkstra’s shortest path algorithm
will rely on a priority queueQ able to efficiently maintain the nodes
in the expansion front sorted according to their cost-to-come values
computed so far. The cost-to-come value of a node n is the cost of
the lowest-cost path from the source node to n. The sorting ensures
that nodes are expanded in order, taking into account positive edge
traversal costs, until the goal node is reached and the shortest path
to it can be determined.

In the general case, priority queue Q has to process three key op-
erations: insertion, removal, and priority decrease of nodes. The
priority value of a node is its cost-to-come value. Let n be a node
being inserted in Q with associated priority cost c. The insertion
function Q.insert(n, c) will store node n with priority c in Q. In-
serted nodes should be kept well organized in Q such that, at any
time, a removal call Q.remove() will efficiently remove and re-
turn the node of minimal cost among all nodes in Q. Function
Q.decrease(n, c) will decrease the priority of n, a node already
in Q, to the new priority c.

Algorithm 1 provides an implementation of Dijkstra’s algorithm.
Priority queue Q sorts the nodes in the expansion frontier accord-
ing to their current cost-to-come costs, which are stored at the nodes
and retrieved with function g(n). Cost function c(v, n) retrieves
the positive cost to move from node v to node n. The algorithm
receives as input the start node s and the goal target node t. In prac-
tice path queries are in the Euclidean plane and will be specified by
points and not graph nodes. In this case the input points are con-
verted to their respective nearest graph nodes s and t in the graph,
such that Dijkstra (s, t) can be then called. See Figure 1 for an
example.

Algorithm 1 - Dijkstra Algorithm for Shortest Paths
Input: source node s and goal node t.
Output: shortest path from s to t, or null path if it does not exist.

1: Dijkstra (s, t)
2: Initialize Q with (s, 0), set g(s) to be 0, and mark s as visited;
3: while (Q not empty) do
4: v ← Q.remove();
5: if (v = t) return reconstructed branch from v to s;
6: for all (neighbors n of v) do
7: if (n not visited or g(n) > g(v) + c(v, n)) then
8: Set the parent of n to be v;
9: Set g(n) to be g(v) + c(v, n);

10: if (n visited) then Q.decrease(n, g(n));
11: else Q.insert(n, g(n));
12: Mark n as visited, if not already visited;
13: return null path;

Textbooks will often present the Dijkstra algorithm by first inserting

Figure 1: Example of Dijkstra’s algorithm in an 8-connected grid
representation. The black segments depict the search tree that was
explored until the highlighted solution path was found. The nodes
marked as yellow disks represent the nodes in Q at termination
time. In this environment brown cells represent obstacles and blue
cells have a traversal cost higher than gray cells.

in Q all nodes in the graph with an infinite cost, and then costs are
gradually reduced as the algorithm progresses. Cost reduction is an
operation called relax [Cormen et al. 2009], which is equivalent to
lines 7–9 in Algorithm 1. Here we rely on marking nodes to distin-
guish non-processed nodes from already visited ones, eliminating
the need to insert all nodes in Q, and having Q to only contain the
active frontier being expanded. Once a node is removed from Q its
cost will be final because all its predecessors will have been already
processed.

The overall running time of the Dijkstra algorithm depends on the
time taken for each operation in Q, which is usually implemented
with a self-balancing binary search tree or with a binary min-heap.
Overall the algorithm calls insert() and remove() once per vertex,
while decrease() is called up to m times, where m is the number
of edges in the graph. Since insert() is called once per vertex,
Q will have at most n elements, where n denotes the total num-
ber of vertices in the graph. The total running time is therefore
O((n+m) logn), which reduces to O(m logn). With the excep-
tion of algorithms seeking for Euclidean shortest paths using vis-
ibility graphs (Section 2.2.2), our navigation structures of interest
will have m = O(n) and discrete search will take O(n logn).

A good simplification that works well for navigation graphs is to
not decrease the key of already inserted nodes and instead just in-
sert a duplicate of the node in Q with the updated cost, eliminating
the decrease-key call in line 11. The duplicate nodes in Q with
non-updated values can be detected at removal time (line 4) and
simply not processed. During the performance of the algorithm the
number of elements in Q may become larger; however, the overall
running time remains O(m logn) and the simplification obtained
by not having to perform a decrease-key operation makes the queue
implementation simpler and faster.

Another relevant consideration to make is that finding the optimal
shortest path in a navigation graph most often does not translate
into finding the Euclidean shortest path in the continuous plane the
graph represents. Therefore it is worth to consider optimizations
even if finding an optimal shortest path in the graph cannot be guar-
anteed anymore. A useful optimization to the Dijkstra algorithm is
to simply not test for the cases that may lead to a decrease-key or
duplicate node insertion operation. In this way the algorithm be-
comes even simpler and the number of elements in Q is reduced.
Further analysis and examples are presented in [Kallmann and Ka-
padia 2016].

2.1.2 A* Algorithm

The A* algorithm [Hart et al. 1968] is an extension of Dijkstra’s
algorithm which uses heuristics based on knowledge about the spe-
cific problem being solved. Because of this strategy, it belongs to
a class of algorithms known as heuristic search or informed search.
The idea is to expand nodes taking into account their estimated dis-
tances to the goal, instead of maintaining a frontier of equal cost
from the source node.

A* sorts nodes inQ using a cost function f composed of two parts:
f(n) = g(n) + h(n), where g(n) is the same cost-to-come cost
of Dijkstra’s algorithm, and h(n) is the heuristic cost that estimates
the cost of the lowest-cost path from n to the goal node. While im-
plementing an accurate estimate for function h would be difficult,
the estimate just needs to be admissible; that is, it must not overes-
timate the cost to reach the goal. For navigation applications a pop-
ular simple approach is to encode in h(n) the straight-line distance
from n to the goal. Although this estimate is often not accurate, it
is admissible, simple to implement, and already provides a useful
heuristic. Figure 2 shows an example run using such a heuristic.
The heuristic cost is often referred to as the cost-to-go cost.

Algorithm 2 presents an implementation of A* following the nota-
tion of Algorithm 1. Only the prioritization cost is changed (lines
10-11), where function f(n) = g(n)+h(n) is used instead of g(n)
to sort the nodes in Q. This change will expand a frontier of equal
lowest-possible overall cost to reach the goal. This results in a fron-
tier where the portions nearest to the goal node twill progress faster
towards t, without loosing the optimality of the solution. When the
heuristic function is not used (h(n) = 0), the algorithm becomes a
Dijkstra expansion.

Algorithm 2 - A* Algorithm for Shortest Paths
Input: source node s and goal node t.
Output: shortest path from s to t, or null path if it does not exist.

1: AStar(s, t)
2: Initialize Q with (s, 0), set g(s) to be 0, and mark s as visited;
3: while (Q not empty) do
4: v ← Q.remove();
5: if (v = t) return reconstructed branch from v to s;
6: for all (neighbors n of v) do
7: if (n not visited or g(n) > g(v) + c(v, n)) then
8: Set the parent of n to be v;
9: Set g(n) to be g(v) + c(v, n);

10: if (n visited) then Q.decrease(n, g(n) +h(n));
11: else Q.insert(n, g(n) + h(n));
12: Mark n as visited, if not already visited;
13: return null path;

Intuitively, if h(n) = 0 for all n the algorithm reverts to the Dijk-
stra’s expansion, which uses no knowledge from the problem do-
main. It is like any node in the expansion frontier could get to the
goal by an arbitrarily low cost edge connection. For problems re-
lated to navigation we know that this is not possible and every node
will at least have a cost that depends on its straight line distance to
the goal in order to reach the goal at some point. Function h en-
codes that cost. If no more information from the problem domain is
available, A* expands no more nodes than any other algorithm that
can compute optimal paths. If information is available to improve
heuristic estimates, the performance of A* can improve.

In terms of worst-case run time complexity A* performance is
equivalent to Dijkstra’s algorithm. If the heuristic function h never
overestimates the actual minimal cost of reaching the goal, then an
optimal solution will be always found with A*. The possible sim-

Figure 2: Example of an A* run in an 8-connected grid represen-
tation. The black segments depict the search tree that was explored
until the highlighted solution path was found. The nodes marked
as yellow disks represent the nodes in Q at termination time. In
this example A* clearly expanded less nodes than the Dijkstra run
shown in Figure 1.

plifications and optimization discussed for Dijkstra’s algorithm are
also applicable to A*, meaning that equivalent versions not requir-
ing the decrease-key operation can also be implemented for A*. A
good well-informed heuristic can make a significant difference on
the performance of A*, and significant research by the AI commu-
nity has been devoted to heuristic search methods, which are often
applied to large grid-based environments. The use of a heuristic
cost makes A* outperform Dijkstra in most of the navigation prob-
lems encountered in practice, and is thus the algorithm of choice
in many applications. Further analysis and examples are presented
in [Kallmann and Kapadia 2016].

2.2 Euclidean Shortest Paths

Euclidean Shortest Paths (ESPs) are paths in the Euclidean plane
which have to enforce two properties: they have to be collision-
free and they have to be of minimum length. Let n be the number
of vertices used to describe a set S of polygonal obstacles in R2.
Given p and q in R2, we will say that a path π(p, q) exists if π
connects both points without crossing any edges of the obstacles in
S. If no shorter path exists connecting the two endpoints, the path
is then globally optimal, it will be here denoted as π∗, and it will be
the ESP between p and q.

2.2.1 Shortest Paths in Simple Polygons

The simplest version of the ESP problem is when S is reduced to a
single simple polygon and when p and q are given inside the poly-
gon. In this case, since there are no “holes”, all possible paths con-
necting the two points can be continuously deformed into the glob-
ally optimal path π∗. A good concept to use is that of an elastic
band that deforms itself to its minimal length state without crossing
any edges of S. The result will be π∗(p, q). This property elim-
inates the need for searching among different corridors that could
connect p and q, and the efficient Funnel algorithm [Chazelle 1982;
Lee and Preparata 1984; Hershberger and Snoeyink 1994] can be
employed to compute π∗ in optimal O(n) time.

The Funnel algorithm assumes that the polygon is first triangulated,
what can also be achieved in linearO(n) time [Chazelle 1991; Am-
ato et al. 2000]. In practice however, these optimal triangulation
algorithms are difficult to implement and they do not seek for a tri-
angulation of good quality. For these reasons, other triangulation
methods such as the Delaunay triangulation (Section 2.3.2) are of-
ten preferred even if the computational time increases to at least
O(n logn), depending on the chosen algorithm. Figure 3 exempli-

fies a triangulated simple polygon and the ESP between two points
inside it.

M. Kallmann

39
Funnel Algorithm
Result:

Figure 3: The Euclidean Shortest Path between two points inside a
triangulated simple polygon.

The Funnel algorithm determines the shortest path inside a simple
triangulated polygon in linear time. The original algorithm was
designed for obtaining shortest paths for points but we illustrate
here the extended version that has been more recently developed in
order to take into account a clearance distance r from the edges of
the polygon [Kallmann 2010b; Demyen and Buro 2006].

The algorithm performs a sequential expansion of the triangulation
edges while maintaining a funnel structure (see Figure 4). Let p be
the starting point of the path and u and v be the polygon vertices at
the extremities of the funnel (or its door). The notation πr is now
used to denote a path that is composed of circle arcs and tangents
of distance r to the polygon edges. Paths π∗r (p, v) and π∗r (p, u)
may travel together for a while, and at some vertex a they diverge
and are concave until they reach the circles centered at u and v. The
funnel is the region delimited by segment uv and the concave chains
π∗r (a, v) and π∗r (a, u), and a is its apex. The vertices of the funnel
are stored in a double-ended queue Q for efficient processing.

Figure 4 illustrates the insertion process of a new vertex w. Points
from the v end of Q are popped until b is reached, which is the
vertex that will maintain a concave chain to w. If the apex of the
funnel is popped during the process, it becomes part of the path
so far and the funnel advances until reaching the destination point
q. When q is reached it will be then connected to either the apex
or one of the boundaries of the funnel in order to finally compose
the shortest path, similarly to the original funnel algorithm. In this
version with clearance, when clearance values are relatively large
it is possible that a new internal turn collapses the boundaries of
the funnel. Such situation does not affect the overall logic of the
algorithm; however, a specific correction test has to be included
each time a new apex a is reached.

2.2.2 Visibility Graphs

While ESPs in simple polygons can be efficiently computed, the
generic case is harder because of the many corridors that may ex-
ist. Probably the most well-known approach for computing ESPs
in generic planar polygonal environments is to build and search
the visibility graph [Nilsson 1969; Lozano-Pérez and Wesley 1979;
De Berg et al. 2008] of the obstacles in S. The visibility graph
is composed of all segments connecting vertices that are visible to
each other in S. While simple implementations will often rely on
O(n3) or O(n2 logn) algorithms, visibility graphs can be com-
puted in O(n2) time [De Berg et al. 2008] and in the generic case
this time cannot be reduced because the graph itself has O(n2)
edges. Graph search algorithms can be then applied to the visibility
graph for finding the ESP from p to q after augmenting the graph

p
a

v

u

w

b

a

b

u

p

v

w

funnel.pdf
margins: 2.1, 2.82, 2.25, 3.35

c

Figure 4: The r-funnel algorithm. The red circles are centered at
the top vertices of the funnel and the blue circles are centered at the
bottom vertices.

with edges connecting all visible vertices to p and q (see Figure 5).

Figure 5: The Euclidean shortest path between p and q can be
found by searching the visibility graph of S (top-left) augmented
by the edges connecting all visible vertices to p and q (top-right).
The bottom diagrams show the added edges connecting the visible
vertices to p and q.

Dijkstra and A* graph search algorithms can then be applied to
compute the shortest path in the visibility graph. As previously
discussed, the typical running time is O(m logn) time, where m is
the number of edges in the graph. In the visibility graph case this
time becomes O(n2 logn). If Fibonacci heaps are used to speedup
priority queue operations, this running time can be reduced O(n2);
however, it is unclear if speed improvements would be observed in
practice for typical visibility graph problems.

A simple optimization for reducing the number of edges in the visi-
bility graph is to not include edges that lead to non-convex vertices.
These edges can be safely discarded because shortest paths will al-
ways pass by convex vertices. This optimization can significantly
reduce the number of edges, as shown in Figure 6, however the
number of edges remain O(n2).

Visibility graphs represent the most straightforward way to com-
pute ESPs, and extensions for handling arbitrary clearance have
also been developed [Chew 1985; Liu and Arimoto 1995; Wein
et al. 2007]. The limitation is that searching paths in a graph that
may contain a quadratic number of edges is in general too expen-
sive for interactive applications in large environments. This is a

Figure 6: A popular optimization to reduce the number of edges in
the visibility graph is to discard edges that lead to non-convex ver-
tices, both when processing the environment (left) and when aug-
menting the graph with the source and destination points (right).

consequence of the combinatorial complexity of the ESP problem.
The approach taken by the visibility graph is to capture all possible
segments that ESPs can have and let graph search algorithms de-
termine the shortest path between two of its nodes. Simpler graphs
capturing the free space withO(n) number of edges and nodes may
not lead to the ESP when computing the shortest path in the graph.

2.2.3 The Shortest Path Tree

The shortest path tree (SPT) is a structure that is specific to a given
source point p. The SPT is the tree formed by all ESPs from p to
each reachable vertex in the environment. The SPT is a subgraph
of the visibility graph and is usually computed from the visibility
graph by running an exhaustive Dijkstra expansion starting from p.
A typical implementation is illustrated in Algorithm 3, using the
same notation as in Algorithm 2.

Algorithm 3 - SPT Computation by Dijkstra’s Expansion
Input: visibility graph and source node s.
Output: shortest path tree rooted at s.

1: SPT(s)
2: Initialize Q with (s, 0), set g(s) to be 0, and mark s as visited;
3: while (Q not empty) do
4: v ← Q.remove();
5: for all (neighbors n of v) do
6: if (n not visited or g(n) > g(v) + d(v, n)) then
7: Set the SPT parent of n to be v;
8: Set g(n) to be g(v) + d(v, n);
9: if (n visited) then Q.decrease(n, g(n));

10: else Q.insert(n, g(n));
11: Mark n as visited, if not already visited;

The SPT is specific to a given source point p but it has the advantage
that it does not require a graph search to determine paths. Since it
is a tree, paths to vertices can be computed by tracing back the tree
branch from any given vertex until reaching the root p. See Fig-
ure 7. For a generic target point q, the set of visible vertices to q
is first computed, and then the shortest path to p can be easily de-
termined by connecting to the visible vertex v that is in the shortest
path to p. Vertex v can be quickly determined by storing at every
vertex of the SPT the length of its shortest path to the root point,
which is what g(n) does in Algorithm 3.

The set of visible vertices from a given point q can be computed
in O(n logn) time using a rotational plane sweep [De Berg et al.
2008]. It can also be computed from a triangulation of the envi-
ronment by traversing visible adjacent triangles outwards from the
one containing q. This is usually efficient in practice because large
non-visible areas can be pruned, however the general case will take
O(n2) computation time. A simple efficient variation is to just con-

Figure 7: The shortest path tree contains all ESPs from a source
point to each reachable vertex in the environment.

sider some of the visible points, however loosing the guarantee of
finding the shortest path.

2.2.4 Continous Dijkstra and the Shortest Path Map

Although visibility graphs may have O(n2) edges, the ESP prob-
lem can be solved in sub-quadratic time by exploring the planarity
of the problem. Mitchell provided the first subquadratic algo-
rithms for the ESP problem by introducing the continuous Dijk-
stra paradigm [Mitchell 1991; Mitchell 1993], which simulates the
propagation of a continuous wavefront of equal length to the source
point, without using the visibility graph. Hershberger and Suri later
improved the run time to the optimal O(n logn) time, while in-
creasing the needed space from O(n) to O(n logn) [Hershberger
and Suri 1997].

The result of the algorithm is the Shortest Path Map (SPM), which
is a structure that decomposes the free region in O(n) cells such
that it is sufficient to localize the cell of any target point q in order
to reconstruct its ESP to the source point p in time proportional
to the number of vertices in the shortest path. This is only possible
because the cells of the SPM are delimited by not only straight lines
but also hyperbolic arcs that result from the wavefront collisions
with itself during the SPM construction. See Figure 8.

The SPM can be seen as a generalization of the SPT to every reach-
able point in the plane, instead of only to the reachable vertices.
Although sub-quadratic algorithms exist for computing SPMs and
the approach can benefit several applications, the algorithms are
not straightforward to implement and they have not yet been much
experimented in practice. New GPU techniques recently devel-
oped [Camporesi and Kallmann 2014] offer a promising alternative
for computing SPMs in applications and were used to generate the
examples in Figure 8. Because SPMs encode shortest paths from a
source point to all points in the plane, they are in particular inter-
esting when several paths for a same source point are needed.

Figure 8: The shortest path map for a given source point p lo-
cated at the center of each environment. After the map is computed,
the ESP for any given point q in the environment can be found by
connecting q to the generator of its region, and then through each
parent generator until reaching p.

2.3 Spatial Partitioning Structures

Given the difficulty in obtaining a simple and efficient approach
for solving the ESP problem, practical approaches to path finding
have extensively relied on representations that efficiently decom-
pose the free region of the environment according to other useful
criteria. These structures however depart from the goal of finding
ESPs, and instead provide structures of linear O(n) size that sup-
port fast searches for collision-free paths, but which are not neces-
sarily globally shortest ones.

2.3.1 The Voronoi Diagram and the Medial Axis

Probably the most popular classical spatial partitioning structure
that is useful for path planning is the Voronoi diagram. The Voronoi
diagram is most well-known for a set of seed points in the plane. In
this case, the Voronoi diagram will partition the plane in cells and
for each seed there will be a corresponding cell consisting of all
points closer to that seed than to any other.

The Voronoi diagram can be generalized to a set of seed segments,
and in this case the Voronoi cells will delimit the regions of the
plane that are closer to each segment. Let’s now consider the seg-
ments which are the edges delimiting our input obstacles S. The
edges of the generalized Voronoi diagram of S will be the medial
axis of S, which is a graph that completely captures all paths of
maximum clearance in S. See Figure 9 for an example.

Path planning using the medial axis graph has become very popu-
lar. The medial axis is a structure of O(n) size and search methods
can therefore efficiently determine the shortest path in the graph
after connecting generic source and destination points to their clos-
est points in the graph. The medial axis does not help with finding
ESPs but it naturally allows the integration of clearance constraints.
Many methods have been proposed for computing paths with clear-
ance by searching the medial axis graph of an environment [Bhat-
tacharya and Gavrilova 2008; Geraerts 2010]. The medial axis can
be computed from the Voronoi diagram of the environment in time
O(n logn), and methods based on hardware acceleration have also
been developed [Hoff III et al. 2000].

At this point a clear distinction between locally and globally short-
est paths can be observed. Consider a path π(p, q) determined after
computing the shortest path in the medial axis of S. Path π has
maximum clearance and therefore it can become shorter with con-
tinuous deformations following our elastic band principle, without
allowing it to pass over an obstacle edge, and until it reaches its
state of shorter possible length. At this final stage the obtained path

will be the shortest path in its corridor (or channel) and it can be
said to be a locally shortest path, which is here denoted as πl(p, q).
This is exactly the case of finding the shortest path inside a given
polygonal corridor (Figure 3). Path πl may or not be the globally
shortest one π∗, and as we have seen from the previous sections, it
is not straightforward to determine if πl is the globally shortest one
without the use of appropriate methods and data structures.

Because in real-time virtual worlds speed of computation is imper-
ative, locally shortest paths have been considered acceptable and
practically all the methods reported in the literature have been lim-
ited to them. One great benefit of explicitly representing the medial
axis in a data structure for path planning is that locally shortest
paths can be easily interpolated towards the medial axis in order to
reach maximum clearance when needed.

medaxis.pdf
1.3
1.75
2.7
2.65

medaxisfull.pdf
1.3
1.75
2.7
2.65

Figure 9: The medial axis (left) represents the points with maxi-
mum clearance in the environment, and its edges can be decom-
posed such that each edge is associated to its closest pair of obsta-
cle elements (right). The medial axis is composed of line segments
and parabolic arcs.

2.3.2 The Constrained Delaunay Triangulation

Triangulations offer a natural approach for cell decomposition and
they have been employed for path planning in varied ways, includ-
ing to assist with the computation of ESPs. The method of Kapoor
et al. (1997) uses a triangulated environment decomposed in cor-
ridors and junctions in order to compute the relevant subgraph of
the visibility graph for a given ESP query. The method computes
ESPs in O(n + h2 logn), where h is the number of holes in the
environment.

The majority of the methods using triangulations for path planning
applications are however limited to simpler solutions based on the
Constrained Delaunay Triangulation (CDT) as a cell decomposition
for discrete search. CDTs can be defined as follows. Triangulation
T will be a CDT of S if: 1) it enforces obstacle constraints, i.e., all
segments of S are also edges in T , and 2) it respects the Delaunay
criterion as much as possible, i.e., the circumcircle of every trian-
gle t of T contains no vertex in its interior which is visible from all
three vertices of t. One important property of the Delaunay triangu-
lation is that it is the dual graph of the Voronoi diagram. Comput-
ing one or the other involves similar work and efficient O(n logn)
algorithms are available. Several textbooks cover the basic algo-
rithms and many software tools are available [The CGAL Project
2014; Tripath Toolkit 2010; Hjelle and Dæhlen 2006].

The CDT is a triangulation that has O(n) cells and therefore dis-
crete search algorithms can compute channels (or corridors) con-
taining locally shortest solutions in optimal times. Since channels
are already triangulated, they are ready to be processed by the Fun-
nel algorithm (Figure 4), which has been used in many instances
as an efficient way to extract the shortest path inside a channel of a

triangulation [Kallmann 2014; Kallmann 2010b; Demyen and Buro
2006].

Figure 10: The constrained Delaunay triangulation provides a
O(n) conformal cell decomposition of any polygonal planar en-
vironment given as input. Adjacent triangle cells on the free region
of the environment form a graph that is thus suitable for path plan-
ning.

Techniques for handling clearance in triangulated environments
have also been explored. One simple approach to capture the width
of a corridor is to refine constrained edges that have orthogonal
projections of vertices on the opposite side of a corridor, adding
new free CDT edges with length equal to the width of the corri-
dor [Lamarche and Donikian 2004]. However, such a refinement
can only address simple corridors and the total number of vertices
added to the CDT can be significant. The more recent Local Clear-
ance Triangulation [Kallmann 2014] shows how a CDT can be re-
fined in order to efficiently compute paths with arbitrary clearance
still relying on a triangulation of O(n) cells. LCTs and other struc-
tures have been recently proposed as navigation meshes suitable for
efficiently computing paths in real-time virtual worlds and they are
the topic of the next section.

2.4 Designing Navigation Meshes

The term Navigation Mesh has been mostly used by the computer
games community in order to refer to a data structure that is specifi-
cally designed for supporting path planning and navigation compu-
tations. While the term is well accepted and widely used, no formal
definition or expected properties are attached to it. Path finding
and navigation have become an important part of video games and
navigation meshes have become the most popular approach for de-
signing and implementing a given solution.

Many software tools are available for path planning and most of
them can be classified as providing a navigation mesh solution. Ex-
amples are: Autodesk Navigation, Spirops, Recast, Path Engine,
etc. While there is little information available on the specific tech-
niques employed, most of the approaches are based on computing
some sort of graph or mesh structure that covers the free region of
the environment, and then path planning is performed with a graph
search algorithm running on the structure.

With many new techniques being developed by commercial so-
lutions and by the research community for improving navigation
meshes, it is expected that a more formal classification of the
achieved properties will become a needed discussion. We provide
in this section an overview of basic properties that a navigation
mesh structure should observe, and discuss how these properties
are addressed in some recent approaches proposed for navigation
meshes.

The main function of a navigation mesh is to represent the free en-

vironment efficiently in order to allow path queries to be computed
in optimal times and to well support other spatial queries useful for
navigation. The basic properties that are expected for a navigation
mesh are listed below.

• Linear number of cells. A navigation mesh should represent
the environment with O(n) number of cells or nodes, in order
to allow search algorithms to operate on the structure at efficient
running times.

• Quality paths. A navigation mesh should facilitate the com-
putation of quality paths. Since we accept that ESPs cannot be
always found, other guarantees on the type of paths that are com-
puted should be provided. A reasonable expectation is that lo-
cally shortest paths should be efficiently provided, and additional
definitions of quality may be adopted in the future.

• Arbitrary clearance. A navigation mesh should provide an ef-
ficient mechanism for computing paths with arbitrary clearance
from obstacles. This means that the structure should not need to
know in advance the clearance values that will be used. A weaker
and less desirable way to address clearance is to pre-compute the
environment specifically for each needed clearance value in ad-
vance.

• Representation robustness. A navigation mesh should be ro-
bust to degeneracies in the description of the environment. It
should well handle any given description of obstacles, even
with undesired self-intersections and overlaps, which often occur
from common environment modeling techniques. Being robust
is crucial for allowing dynamic updates to occur, in particular
when users are allowed to change the environment.

• Dynamic updates. A navigation mesh should efficiently update
itself to accommodate dynamic changes in the environment. Dy-
namic updates are crucial for supporting many common events
that happen in virtual worlds. Updates can reflect large changes
in the environment or small ones, such as doors opening and clos-
ing or agents that stop and become obstacles for other agents.

The above properties summarize basic needs that navigation
meshes should observe in typical virtual world simulations. We
use these properties as a starting point for analyzing and comparing
a few approaches for designing navigation meshes.

2.4.1 Methods Based on the Medial Axis

Navigation meshes based on the medial axis are able to well ad-
dress the desired properties, and should be the approach of choice
when the determination of paths with maximal clearance is impor-
tant. A series of techniques based on the medial axis have been
proposed [Geraerts 2010], including algorithms for addressing dy-
namic updates [van Toll et al. 2012]. The medial axis can be used
as a graph for path search (Figure 9-left), and it can also be used
to decompose the free space in cells (Figure 9-right) for supporting
other navigation queries.

The medial axis is however a structure that is often more complex
to be built and maintained than others. It involves straight line seg-
ments and parabolic arcs, and not much has been investigated with
respect to robustness issues.

2.4.2 Triangulations

The other classical structure that represents an alternative to the
medial axis is a triangulation. Triangulations have been extensively
employed in the area of finite element mesh generation [Shewchuk
1996] and many algorithms are available. There is also a significant
body of research related to addressing robustness [Shewchuk 1997;

Devillers and Pion 2003], which is an important factor that is often
overlooked in many methods. Triangulations can also represent en-
vironments with less nodes [Kallmann 2014] than the medial axis,
they are simpler to be computed, and are some times preferred just
because they are in fact a well-known triangle mesh structure.

While triangulations have been used in many ways as a naviga-
tion mesh, very few works have achieved useful properties when
computing paths directly from a triangulation. The next section de-
scribes a recent development that well addresses our desired prop-
erties.

2.4.3 Local Clearance Triangulations

One limitation of traditional triangulations is that they cannot easily
accommodate arbitrary clearance tests and the recent Local Clear-
ance Triangulation (LCT) has been proposed exactly to overcome
this difficulty [Kallmann 2014].

LCTs are computed by refinement operations on a Constrained De-
launay Triangulation of the input obstacle set. The refinements are
designed to ensure that two pre-computed local clearance values
stored per edge are sufficient to precisely determine if a disc of ar-
bitrary size can pass through any narrow passages of the mesh. This
means that at run-time clearance determination is reduced to simple
clearance value comparison tests during path search. This property
is essential for the correct and efficient extraction of paths with ar-
bitrary clearance directly from the triangulation, without the need
to represent the medial axis.

LCTs exactly conform to any given set of polygonal obstacles
and dynamic updates and robustness are also addressed. Com-
mon degeneracies such as polygon overlaps and intersections can
be handled with guaranteed robustness and in a watertight manner.
Since LCTs are triangulations, they are well suited for supporting
generic navigation and environment-related computations, such as
for computing free corridors, visibility, accessibility and proximity
queries [Kallmann 2010a].

In comparison to approaches based on the medial axis, LCTs offer
a triangular mesh decomposition that carries just enough clearance
information to be able to compute paths of arbitrary clearance, with-
out the need to represent the intricate shapes the medial axis can
have. Some indicative comparisons have been performed shwoing
that the LCT decomposition graph can use about 75% less nodes
than a full medial axis representation [Kallmann 2014]. The ap-
proach is highly flexible and has been successfully adopted in the
video game The Sims 4. See Figure 11 for examples.

2.5 Other Methods

While LCTs already reduce the number of nodes in the represen-
tation when comparing to the full medial axis, it is also possi-
ble to devise approaches that further reduce the number of nodes.
One example is the Neogen structure, which is based on large
almost-convex cells partitioning the free region of a given environ-
ment [Oliva and Pelechano 2013a]. By relying on large cells the
total number of nodes in the underlying adjacency graph is reduced
and paths can be searched in faster times. The structure remains
of linear O(n) space. The drawback is that, since the structure is
coarser, more computation is needed to compute locally optimal so-
lutions and to guarantee arbitrary clearances. While clearance can
be computed, it is not readily available in the structure and pre-
computation for each clearance value may be needed.

Several extensions to navigation meshes have also been proposed
for allowing the interconnection of floor plans in multi-layer and
non-planar environments, in order to address 3D scenes [Lamarche

Figure 11: LCTs efficiently support the computation of paths with
arbitrary clearance (top), and well address dynamic updates and
robustness to degenerate input such as when obstacles intersect or
overlap during dynamic movements (bottom).

2009; Jorgensen and Lamarche 2011; Oliva and Pelechano 2013b;
van Toll et al. 2011]. Such techniques can however be seen to not
be specific to a given choice of navigation mesh representation.

A common factor in all these representations is that they do not
address the computation of globally shortest paths. The focus is in-
stead on achieving fast computation of a reasonable collision-free
path, and what is reasonable is often not well-defined. The lack of
global optimality seems to not be much important, but in any case
there is a lack of well-formalized definitions of path quality. It is
important to observe that path computation methods will often need
to integrate additional properties such as costs of particular regions
(high density, undesired terrain, etc.) and behavioral constraints and
preferences of the considered agents. Also, reactive behaviors with
their own heuristics will always be present to steer the agents during
path following. It is expected that navigation meshes will soon pro-
vide new solutions to better support these higher-level mechanisms
and to better deliver paths suitable for them.

As a final example, path planning is also very useful to guide other
types of search methods. There is an extensive body of research on
planning motions from motion capture clips based on the concept of
motion graphs [Kovar et al. 2002; Arikan and Forsyth 2002], which
are unstructured graphs automatically built from clips that can be
concatenated under a given error metric threshold. The unrolling
of the graph in an environment for achieving realistic locomotion
involves expensive discrete search on the motion graph, and a com-
mon method is to prune all search branches that are far away from a
pre-computed path with clearance [Mahmudi and Kallmann 2013].
See Figure 12.

The concept has been later extended with the pre-computation of
motion maps built from the motion graph, such that they can be ef-
ficiently concatenated to achieve path following at interactive rates
from the motion graph data [Mahmudi and Kallmann 2012]. These
examples show the importance of the concept of pruning a large

search space with a fast 2D path planning method from a naviga-
tion mesh.

The next section reviews discrete search methods suitable for dy-
namic domains and additional techniques for addressing more ad-
vanced versions of the path planning and navigation problem.

Figure 12: The left images illustrate the space traversed by a stan-
dard discrete search over the connected clips in a motion graph, in
order to reach a destination point around obstacles. The examples
on the right column show how the search space can be reduced by
pruning the branches of the search that become far away from a 2D
path efficiently computed from a navigation mesh before the motion
graph search expansion starts.

3 Advanced Planning Techniques

While classical search algorithms are designed to run until comple-
tion, anytime and incremental versions are available to meet strict
time constraints and to efficiently repair solutions to accommodate
dynamic environment changes. We review these algorithms in this
section, and we also describe recent extensions that incorporate spa-
tial navigation constraints and exploit massively parallel graphics
hardware in order to provide orders of magnitude computational
speedups.

3.1 Anytime Dynamic Search

A* search (Algorithm 2) and its variants are extensively studied
approaches that generate optimal paths [Hart et al. 1968]. These
algorithms process the minimum number of states possible while
guaranteeing an optimal solution. Many planning problems [Ka-
padia and Badler 2013], however, are often too large to solve op-
timally within an acceptable time, and even minor changes in the
obstacle set may severally invalidate the solution, requiring a re-
plan from scratch. In order to handle many planning agents (e.g.,
crowds), approaches often coarsen the resolution of the search [Ka-
padia et al. 2009; Kapadia et al. 2012] to meet real-time constraints
while sacrificing solution quality. This section introduces funda-
mental advances in real-time search methods that meet strict time
limits and efficiently handle dynamic environments, while preserv-
ing bounds on optimality.

3.1.1 Anytime Planning

Anytime planning presents an appealing alternative. Anytime plan-
ning algorithms try to find the best plan they can within the amount
of time available to them. They quickly find an approximate, and
possibly highly suboptimal plan and iteratively improve this plan
while reusing previous plan efforts. In addition to being able to
meet time deadlines, many of these algorithms also make it possi-
ble to interleave planning and execution: while the agent executes
its current plan the planner works on improving the plan ahead.
A popular anytime version of A* is called Anytime Repairing A*
(ARA*) [Likhachev et al. 2003]. This algorithm has control over
a suboptimality bound for its current solution, which it uses to
achieve the anytime property: it starts by finding a suboptimal solu-
tion quickly using a loose bound, then tightens the bound progres-
sively as time allows. Given enough time it finds a provably optimal
solution. While improving its bound, ARA* reuses previous search
efforts and, as a result, is very efficient.

3.1.2 Incremental Planning

Replanning, or incremental algorithms effectively reuse the results
of previous planning efforts to help find a new plan when the prob-
lem has changed slightly. D* Lite [Koenig and Likhachev 2002]
is an example of an incremental search technique which is widely
used in artificial intelligence and robotics. D* performs A* to gen-
erate an initial solution, and repairs its previous solution to accom-
modate world changes by reusing as much of its previous search
efforts as possible. As a result, they can be orders of magnitude
more efficient than replanning from scratch every time the world
model changes.

3.1.3 Anytime Dynamic A*

Anytime Dynamic A* [Likhachev et al. 2005] combines the incre-
mental properties of D* Lite [Koenig and Likhachev 2002] and
the anytime properties of ARA* [Likhachev et al. 2003] to effi-
ciently repair solutions after world changes and agent movement. It
quickly generates an initial suboptimal plan, bounded by an initial
inflation factor which focuses search efforts towards the goal. This
initial plan is iteratively improved by reducing the inflation factor
until it becomes 1.0, thus guaranteeing optimality in the final solu-
tion.

A typical implementation of AD* is presented in Algorithm 4. It
performs a backward search and maintains a least cost path from
the goal sgoal to the start sstart by storing the cost estimate g(s)
from s to sgoal. However, in dynamic environments, edge costs in
the search graph may constantly change and expanded nodes may
become inconsistent. Hence, a one-step look ahead cost estimate
rhs(s) is introduced [Koenig and Likhachev 2002] to determine
node consistency. A priority queue OPEN contains the states that
need to be expanded for every plan iteration, with the priority de-
fined using a lexicographic ordering of a two-tuple key(s), defined
for each state.

OPEN contains only the inconsistent states (g(s) 6= rhs(s)) which
need to be updated to become consistent. Nodes are expanded in
increasing priority until there is no state with a key value less than
the start state. A heuristic function h(s, s′) computes an estimate
of the optimal cost between two states, and is used to focus the
search towards sstart. Instead of processing all inconsistent nodes,
only those nodes whose costs may be inconsistent beyond a certain
bound, defined by the inflation factor ε are expanded. It performs
an initial search with an inflation factor ε0 and is guaranteed to ex-
pand each state only once. An INCONS list keeps track of already
expanded nodes that become inconsistent due to cost changes in

neighboring nodes. Assuming no world changes, ε is decreased it-
eratively and plan quality is improved until an optimal solution is
reached (ε = 1).

Each time ε is decreased, all states made inconsistent due to change
in ε are moved from INCONS to OPEN with key(s) based on the re-
duced inflation factor, and CLOSED is made empty. This improves
efficiency since it only expands a state at most once in a given
search and reconsidering the states from the previous search that
were inconsistent allows much of the previous search effort to be
reused, requiring only a minor amount of computation to refine the
solution. ComputeOrImprovePath (Algorithm 4 [15–23]) gives
the routine for computing or refining a path from sstart to sgoal.
When change in edge costs are detected, new inconsistent nodes
are placed into OPEN and node expansion is repeated until a least
cost solution is achieved within the current ε bounds. When the en-
vironment changes substantially, it may not be feasible to repair the
current solution and it is better to increase ε so that a less optimal
solution is reached more quickly.

Algorithm 4 Anytime Dynamic Planner

1: function KEY(s)
2: if (g(s) > rhs(s)) then
3: return [rhs(s) + ε · h(s, sgoal); rhs(s)];
4: else
5: return [g(s) + ·h(s, sgoal); g(s)];

6: function UPDATESTATE(s)
7: if (s 6= sstart) then
8: s′ = args′∈pred(s) min(c(s, s′) ·MC (s, s′) + g(s′)) ;
9: rhs(s) = c(s, s′) ·MC (s, s′) + g(s′);

10: prev(s) = s′;
11: if (s ∈ OPEN) remove s from OPEN;
12: if (g(s) 6= rhs(s)) then
13: if (s /∈ CLOSED) insert s in OPEN with key(s);
14: else insert s in INCONS;
15: Insert s in VISITED;

16: function COMPUTEORIMPROVEPATH(tmax)
17: while (mins∈OPEN(key(s) < key(sgoal) ∨ rhs(sgoal) 6=

g(sgoal) ∨Π(sstart, sgoal) = NULL) ∧ t < tmax do
18: s = args∈OPEN min(key(s));
19: if (g(s) > rhs(s)) then
20: g(s) = rhs(s);
21: CLOSED = CLOSED ∪ s;
22: else
23: g(s) =∞;
24: UpdateState(s);

3.2 Planning with Constraints

While there is extensive literature for computing optimal, collision-
free paths, there is relatively little work that explores the satisfac-
tion of additional spatial constraints between objects and agents at
the global navigation layer. In this section, we present a planning
framework [Kapadia et al. 2013b] that satisfies multiple spatial con-
straints imposed on the path. The type of constraints specified could
include staying behind a building, walking along walls, or avoiding
the line of sight of patrolling agents. The anytime-dynamic planner
is extended to compute constraint-aware paths, while efficiently re-
pairing solutions to account for varying dynamic constraints or an

updating world model. The method can be used on challenging
navigation problems in complex environments for dynamic agents
using combinations of hard and soft, attracting and repelling con-
straints, defined by both static and moving obstacles.

3.2.1 Environment Representation

A coarse-resolution representation, such as a triangulation-based
method, facilitates efficient search but cannot directly accommo-
date all constraints due to insufficient resolution in regions of the
environment where constraints may be specified. Since dynamic
constraints are not known ahead of time, it is difficult to simply in-
crease triangulation density near constraints. It is possible to devise
methods for increasing resolution at specific regions when needed,
or the alternative is to rely on a dense representation of the envi-
ronment that can account for all constraints (including dynamic ob-
jects), but at the cost of not being efficient in large environments. To
avoid these limitations, we propose a hybrid environment represen-
tation that has sufficient resolution while still accelerating search
computations by exploiting longer, coarser transitions, when possi-
ble.

Triangulations. We define a simple triangulated representation of
free space in the environment, represented by Σtri = 〈Stri,Atri〉
where elements of Stri are the midpoints of the edges in the naviga-
tion mesh and elements of Atri are the six directed transitions per
triangle, two bi-directional edges for each vertex pair. This trian-
gulation can be easily replaced by more complex solutions [Recast
2014; Kallmann 2014], and produces a low-density representation
of the state and action space. Figure 13(a) illustrates Σtri for a sim-
ple environment. The triangulation domain Σtri provides a coarse-
resolution discretization of free space in the environment, facilitat-
ing efficient pathfinding. However, the resulting graph is too sparse
to represent paths adhering to constraints such as spatial relations
to an object.

To offset this limitation, we can annotate objects in the environ-
ment with additional geometry to describe relative spatial relation-
ships (e.g., Near, Left, Between, etc.). These annotations gen-
erate additional triangles in the mesh, which expands Σtri to in-
clude states and transitions that can represent these spatial relations.
Annotations, and the corresponding triangulation, are illustrated in
Figure 13(b). These annotations are useful for constraints relative
to static objects; however, Σtri cannot account for dynamic objects
as the triangulation cannot be efficiently recomputed on the fly. To
handle dynamic constraints, we provide a dense graph representa-
tion, described below.

Dense Uniform Graph. To generate Σdense = 〈Sdense,Adense〉,
we densely sample points in the 3D environment, separated by a
uniform distance dgrid, which represents the graph discretization.
For each of these points, we add a state to Sdense if it is close to the
navigation mesh (within

√
3

2
dgrid of the nearest point), and clamp

it to that point. Since the graph is sampled in 3D, each state in
Sdense could have a maximum of 26 neighbors; however, in prac-
tice, each state has no more than 8 neighbors if the domain oper-
ates in a locally-planar environment (such as a game or real-world
map). The dense domain Σdense can be precomputed or generated
on the fly, depending on environment size and application require-
ments. Regardless of how it is implemented, however, a dense do-
main greatly increases the computational burden of the search due
to the increased number of nodes and transitions compared with a
sparse domain.

Hybrid Graph. In the first of our two attempts to mitigate the per-
formance problem of Σdense, we combine Σdense and Σtri to gen-
erate a hybrid domain Σhybrid = 〈Shybrid = Sdense,Ahybrid =
Adense∪Atri〉. First, we add all the states and transitions in Σdense

(a) (b) (c) (d)

Figure 13: (a) Environment triangulation Σtri. (b) Object annotations, with additional nodes added to Σtri, to accommodate static spatial
constraints. (c) Dense uniform graph Σdense, for same environment. (d) A hybrid graph Σhybrid of (a) Σtri and (c) Σdense; highways are
indicated in red.

to Σhybrid. For each state in Stri, we find the closest state in Sdense,
creating a mapping between the state sets, λ : Stri → Sdense.
Then, for each transition (s, s′) ∈ Atri, we add the correspond-
ing transition (λ(s), λ(s′)) in Adense. The resulting hybrid do-
main Σhybrid has the same states as Σdense with additional tran-
sitions. These transitions are generally much longer than those in
Adense, creating a low-density network of highways through the
dense graph.

In Σhybrid, a pathfinding search can automatically choose highways
for long distances, and only use the dense graph when necessary or
the planner has additional time to compute an exact plan. As before,
the dense graph allows the planner to find paths that adhere to con-
straints. But when there is no strong influence of nearby constraints,
the planner can take highways to improve its performance. In ad-
dition, with a planner like AD* [Likhachev et al. 2005], we can
inflate the influence of the heuristic to produce suboptimal paths
very quickly that favor highway selection, and iteratively improve
the path quality by using dense transitions, while maintaining inter-
active frame rates.

3.2.2 Constraints

Constraints imposed on how an agent navigates to its destination
greatly influence the motion trajectories that are produced, and of-
ten result in global changes to the paths that cannot be met us-
ing existing local solutions. A constraint-aware planning prob-
lem is represented by a start state sstart, a goal state sgoal, and
a set of constraints C = {ci}. Each constraint is defined as
ci = ((In|Near) Annotationi with weight wi). Despite the
simplicity of such a definition, it is important to note its flexibil-
ity: both goals and constraints can encode very rich semantics for
a wide variety of planning problems. In addition, multiple prob-
lem specifications can be chained together to create more complex
commands; for example, “move to the street corner, then patrol the
alleyway”, where “patrol” can be described as a repeating series of
commands going back and forth between two points.

Annotations. An annotation is simply a region that allows the
user to define the area of influence of a constraint. By attaching
annotations to an object in the environment, a user can provide
positional information, which are used to semantically construct
customized prepositional constraints (for example, “in the grass”,
“near the wall”, or “west of the train tracks”). Common annotations
include Back, Front, Left, and Right, for a static object in the
environment. Annotations can be easily added for dynamic objects
as well, for example, to specify an agent’s LineOfSight. The re-
lationships between multiple objects can be similarly described by

introducing annotations such as Between. The annotations define
the area of influence of the constraint, relative to the position of the
object.

Hard Constraints. A hard constraint comprises just one field: an
“annotation.” This annotation represents an area in which transi-
tions in Σhybrid are pruned. Hard constraints can only be Not
constraints; environment regions where an agent is not allowed to
navigate. In order to specify hard attracting constraints, we use a
sequence of goals that the agent must navigate to (e.g., go behind
the building and then to the mailbox).

Soft Constraints. A soft constraint specification consists of three
fields: (1) a preposition, (2) an annotation, and (3) the constraint
weight. We define two simple prepositions, Near and In which
define the boundaries of the region of influence. The weight de-
fines the influence of a constraint, and can be positive or negative.
For example, one constraint may be a weak preference (w = 1),
while another may be a very strong aversion (w = −5) where a
negative weight indicates a repelling factor. Weights allow us to
define the influence of constraints relative to one another, where
one constraint may outweigh another, facilitating the superposition
of multiple constraints in the same area with consistent results.

3.2.3 Multiplier Field

Constraints must modify the costs of transitions in the search graph,
in order to have an effect on the resulting path generated. The in-
fluence of a constraint is defined using a continuous multiplier field
m (~x), which denotes the multiplicative effect of the constraint at a
particular position ~x in the environment. It is important to note that,
due to its continuous nature, the multiplier field can be easily trans-
lated to any pathfinding system; it is not specific to graph search
representations of pathfinding problems. For a single constraint c,
the cost multiplier field mc (~x) is defined as follows:

mc (~x) = 1.1−Wc(~x),

where Wc (~x) is the constraint weight field defined as a position-
dependent weight value for a constraint. For In constraints, it has
a discrete definition:

Wc (~x) =

{
w, if ~x ∈ annotationc,
0, otherwise.

For Near constraints it provides a soft falloff with a fixed radius of
|w| outside of the annotation:

Wc (~x) = w ·max

(
0,
|w| − rc(~x)

|w|

)
,

where rc(~x) is the shortest distance between the position ~x and the
volume of the annotation on the constraint c. Outside of the fixed
radius |w|, a Near constraint has no effect.

Multiple Constraints. For a set of constraints C, we define the
aggregate cost multiplier field,

mC (~x) = max

(
1,m0

∏
c∈C

mc (~x)

)
= max

(
1, 1.1W0−

∑
c∈C Wc(~x)

)
.

To accommodate attractor constraints which reduce cost, we define
a “base” multiplier m0 or base weight W0, which is automatically
calculated based on the weight values of the constraints in C. This
multiplier affects costs even in the absence of constraints, which
allows attractors to reduce the cost of a transition, without it ever
going below the original (geometric) cost. The resulting cost multi-
plier is also limited to be greater than or equal to 1, to preserve the
optimality guarantees of the planner.

Cost multiplier for a transition. The cost multiplier for a transi-
tion (s→ s′), given a set of constraints C, is defined as follows:

MC

(
s, s′

)
=

∫
s→s′

mC (~x) d~x.

We choose to define this as a path integral because it is general-
ized to any path, not just a single discrete transition, and because it
perfectly preserves cost under any path subdivision. For our graph
representations, we estimate the path integral using a four-part Rie-
mann approximation by taking the value of the multiplier field at
several points along the transition.

3.2.4 Planning Algorithm

The modified cost of reaching a state s from sstart, under the influ-
ence of constraints, is computed as follows:

g(sstart, s) = g(sstart, s
′) +MC

(
s, s′

)
· c(s, s′),

where c(s, s′) is the cost of a transition from s → s′, and
MC (s, s′) is the aggregate influence of all constraint multiplier
fields. This is recursively expanded to produce:

g(sstart, s) =
∑

(si,sj)∈Π(sstart,s)

MC (si, sj) · c(si, sj),

which utilizes the constraint-aware multiplier field to compute the
modified least-cost path from sstart to s, under the influence of ac-
tive constraints C. States keep track of the set of constraints that in-
fluence its cost, which mitigates the need of exhaustively evaluating
every constraint to compute the cost of each transition. When the
area of influence of a constraint changes, the states are efficiently
updated, as described below.

Accommodating Dynamic Constraints. Over time, objects as-
sociated with a constraint may change in location, affecting the con-
straint multiplier field which influences the search. For example, an
agent constrained by a LineOfSight constraint may change po-
sition, requiring the planner to update the plan to ensure that the
constraint is satisfied. Each constraint multiplier field mc (~x) has
a region of influence region(mc, ~x), which defines the finite set of
states Sc that is currently under its influence. When a constraint c
moves from ~xprev to ~xnext, the union of the states that were previ-
ously and currently under its region of influence (Sprev

c ∪Snext
c) are

marked as inconsistent (their costs have changed) and they must be
updated. Additionally, for states s ∈ Snext

c , if c is a hard constraint,
its cost g(s) = ∞. Algorithm 5 provides the pseudo code for
ConstraintChangeUpdate. The routine UpdateState(s) is modi-
fied slightly from its original definition to incorporate the multiplier
fields during cost calculation.

Algorithm 5 ConstraintChangeUpdate (c, ~xprev, ~xnext)

1: Sprev
c = region(mc, ~xprev);

2: Snext
c = region(mc, ~xnext);

3: for each (s ∈ Sprev
c ∪ Snext

c) do
4: if (pred(s)

⋂
VISITED 6= NULL) then

5: UpdateState(s);
6: if (s′ ∈ Snext

c ∧ c ∈ Ch) then g(s′) =∞;
7: if (s′ ∈ CLOSED) then
8: for each (s′′ ∈ succ(s′)) do
9: if (s′′ ∈ VISITED) then

10: UpdateState(s′′);

3.3 Dynamic Search on the GPU

To meet the growing needs of computationally intensive applica-
tions, Kapadia et al. [2013] introduce a massively parallelizable,
wavefront-based approach to path planning that can exploit graph-
ics hardware to considerably reduce the computational time, while
still maintaining strict optimality guarantees. The approach per-
forms efficient updates to accommodate world changes and agent
movement, while reusing previous computations. A new termina-
tion condition is introduced to ensure that the plans returned are
strictly optimal, even on search graphs with non-uniform costs,
while requiring minimum GPU iterations. Furthermore, the com-
putational complexity of the approach is independent of the number
of agents (traveling to the same goal), facilitating optimal, dynamic
path planning for a large number of agents in complex dynamic
environments, opening the application to large-scale crowd appli-
cations.

3.3.1 Method

The method relies on appropriate data transfer between the CPU
and GPU at specific times. In the initial setup, the CPU
calls generateMap(rows, columns) which allocates rows ×
columns states in the GPU to represent the entire world. Ini-
tially, all free states s have an associated cost of -1, g(s) = −1,
which represents a state that needs to be updated, while obstacles
have infinite cost, g(s) = ∞. Given an environment configuration
with start and goal state(s), computePlan is executed which repeat-
edly invokes plannerKernel (a GPU operation) until a solution is
achieved. We keep two copies of the world map: one for reading
state costs and the other for writing updated state costs. After each
iteration (i.e., kernel execution), the two maps are swapped. This
strategy addresses the synchronization issues inherent in GPU pro-
gramming, by ensuring that the main kernel does not write to the
same map used for reads.

(a) (b) (c) (d)

Figure 14: Navigation under different constraint specifications. (a) Attractor to go behind an obstacle and a repeller to avoid going in front
of an obstacle. (b) Combination of attractors to go along a wall. (c) Combination of attractors and repellers to alternate going in front of
and behind obstacles, producing a (d) Lane formation with multiple agents under same constraints.

Once the planner is done executing, each agent can just follow the
least cost path from the goal to its own state to find the generated
plan. If an obstacle moves from state s to state s′, the GPU map
is updated by setting g(s′) = ∞ and g(s) = −1. This means that
s′ is now an obstacle and the cost for s is invalid and needs to be
updated. In addition, the neighbors of s′ are checked and marked
as inconsistent if they had s′ as their least cost predecessor. The
planner kernel monitors states that are marked as inconsistent and
efficiently computes their updated costs (while also propagating in-
consistency) without the need for resetting the entire map. Agent
movement (change in start) is also efficiently handled by perform-
ing the search in a backward fashion from the goal to the start, and
marking the previous state of the agent as inconsistent to ensure a
plan update. Algorithm 6 provides a pseudocode for computePlan.

Algorithm 6 computePlan(*mcpu)

1: mr ← mcpu;
2: mw ← mcpu;
3: while (flag = 0) do
4: flag ← 0;
5: plannerKernel(mr , mw, flag);
6: swap (mr ,mw);
7: mcpu ← mr;

The wavefront algorithm sets up a map with a initial state which
contains an initial cost. At each iteration, every state at the frontier
is expanded computing its cost relative to its predecessor’s cost.
This process repeats until the cost for every state is computed, thus
creating the effect of a wave spreading across the map. Wavefront-
based approaches are inherently parallelizable, but existing tech-
niques require the entire map to be recomputed to handle dynamic
world changes and agent movement. Algorithm 7 describes the
shortest path wavefront algorithm ported to the GPU. The planner
first initializes the cost of every traversable state to a default value,
g(s) = −1, indicating it needs to be updated. States occupied by
obstacles take a value of infinity, g(s) = ∞, and the goal state is
initialized with a value of 0, g(s) = 0. The planner finds the value
g of reaching any state s from the goal by launching a kernel at
each iteration that computes g(s) as follows:

g(s) = mins′∈succ(s)∧g(s′)≥0(c(s, s′) + g(s′)),

where 0 ≤ c(s, s′) ≤ ∞ is the cost of traversing from state s to s′,
and is used to encode regions of the environment which should be
avoided (e.g., rough terrain, dangerous areas), in addition to obsta-
cles that cannot be traversed. This process continues until all states
have been updated at which point the planner terminates execution.
To address the concurrency problem inherent in a massively parallel
application, two maps are used, one as read-only mr and the other

write-onlymw. Each thread in the kernel reads the necessary values
to calculate the cost of its corresponding state from mr , and writes
it to its given state inmw. This ensures that the map being read will
not change while the kernel is executing. Once the kernel finishes
execution, mr and mw are swapped, thus allowing the threads to
read the most recent map while preventing race conditions.

Algorithm 7 plannerKernel(*mr , *mw, *flag)

s← threadState;
if (s 6= obstacle ∧s 6= goal) then

for each (s′ in neighbor(s)) do
if (s′ 6= obstacle) then

newg ← g(s′) + c(s, s′);
if ((newg < g(s)∨g(s) = −1)∧g(s′) > −1) then

pred(s)← s′;
g(s)← newg;
evaluate termination condition;

The kernel also takes as a parameter a flag which is set depending
on the termination condition used. A new termination condition is
used that can greatly reduce the number of iterations required to
find an optimal plan in large environments with non-uniform search
graphs. If at any iteration, it is found that the minimum g-value
expanded corresponds to that of the agent, this means that a path
to that agent is available and any other possible path would yield a
higher cost. To make sure that the agent state is expanded at each
iteration (to compare to the other states expanded), a g-value of -1
if given to it before each kernel run, marking it as a state that needs
to be updated. To implement this strategy, it is enough to just adjust
the condition that would set the flag that terminates the execution:

if (g(s) < g(start) ∨ g(agent) = −1) flag = 1.

Once the planner has finished executing, an agent can simply gen-
erate its plan by following the reverse of the least-cost path from
the goal to its position.

3.3.2 Efficient Plan Repair for Dynamic Environments and
Moving Agents

To handle obstacle movements, inconsistent states are identified
and resolved. A state is inconsistent if its predecessor is not the
neighbor with lowest cost or if its successor is inconsistent. If an
obstacle moves from state s to state s′, then new costs are set with
g(s′) = ∞ and g(s) = −1, which marks s for update. A kernel
is then run (Algorithm 8) which sets the g-value of every incon-
sistent state to −1. A state s with predecessor s′ is inconsistent if
g(s) 6= g(s′) + c(s, s′). This kernel is executed repeatedly until
all inconsistencies are resolved and is detected when there are no

Figure 15: Complex 512× 512 with 200 agents. Goal is in center
of map, and computed paths are shown in blue. Every black area is
an obstacle.

updates performed by any thread during an iteration. Algorithm 8
is triggered when environment changes are detected to ensure that
node inconsistency is propagated and resolved in the entire map.
Keep in mind that the following code will run in parallel, and that
all read and write operations are done in two distinct maps.

Algorithm 8 Algorithm to propagate state inconsistency

s← threadState;
if (pred(s) 6= NULL) then

if (g(s) == obstacle ∨ pred(s) == obstacle ∨ g(s) 6=
g(pred(s)) + c(s, s′)) then

pred(s) = NULL;
g(s) = −1;
incons = true;

Handling agent movement is straightforward. For the non-
optimized planner, the cost to reach every state has already been
computed, so the agent would only require to reconstruct its path
again. In the case of the optimized version of the planner it is nec-
essary to run the planner again so that any state between the goal
and the new agent position that has not been expanded gets a chance
to update its cost.

3.4 Multi-Agent Planning

The kernel is executed until all agent states have been reached, and
the maximum g-value of a state that is occupied by an agent is less
than the g-value of any other state that was updated during the cur-
rent iteration, as captured by the following Boolean expression:

((g(s) < maxai∈{a}g(ai)) ∨ (g(ai) = −1∀ai ∈ {a})).

The number of iterations for convergence depends on the distance
from the goal to the farthest agent. When the map is updated,
each agent simply follows the least cost path from the goal to its
position to find an optimal path. Note that the approach requires
no additional computational cost to handle many agents, provided
they share the same goal.

3.4.1 Adaptive Resolution Grids

To address the memory limitations associated with uniform
grids [Mubbasir Kapadia and Badler 2013], the environment can
be adaptively discretized into variable resolution quads, using finer
resolution only where necessary, thus significantly reducing the size
of the state space. This also reduces considerably the memory foot-
print allowing us to handle very large environments in GPU mem-
ory and also accelerates the search process. Using an adaptive en-
vironment representation on the GPU has two main challenges: in-
dexing is no longer constant time and handling dynamic changes is
computationally expensive, since the number and location of neigh-
bor quads varies as obstacles move in the world. Given these prop-
erties, it is impossible to know ahead of time how many neigh-
bors a given quad has, which ones those neighbors are, and how
many quads are needed to represent the state space. In addition,
dynamically allocating memory on the GPU to accommodate these
changes can be very expensive. These challenges are addressed
by: (1) using a quadcode scheme for performing efficient index-
ing, update, and neighbor finding operations on the GPU, and (2)
efficiently handling dynamic environment changes by performing
local repair operations on the quad tree, and performing plan repair
to resolve state inconsistencies without having to plan from scratch.
Please refer to [Garcia et al. 2014] for a detailed description of this
method.

4 Planning Techniques for Character Anima-
tion

In this section the techniques and principles described in the pre-
vious sections are applied to more complex planning problems,
demonstrating the generality and applicability of real-time planning
techniques for interactive virtual worlds. We start by exploring the
use of multiple heterogenous domains of control to solve more chal-
lenging navigation problems with space-time constraints at interac-
tive rates. Section 4.3 then demonstrates the use of planning for
interactive narrative. Additional applications showcasing the use
of planners for complex problem domains include footstep-based
planning for crowds [Singh et al. 2011], path planning for coherent
and persistent groups [Huang et al. 2014], and multi-actor behavior
synthesis [Kapadia et al. 2011].

4.1 Multi-Domain Planning

The problem domain of interacting autonomous agents in dynamic
environments is extremely high-dimensional and continuous, with
infinite ways to interact with objects and other agents. Having a
rich action set, and a system that makes intelligent action choices,
facilitates robust, intelligent virtual characters, at the expense of in-
teractivity and scalability. Greatly simplifying the problem domain
yields interactive virtual worlds with hundreds and thousands of
agents that exhibit simple behavior. The ultimate, far-reaching goal
is still a considerable challenge: a real-time system for autonomous
character control that can handle many characters, without compro-
mising control fidelity.

One approach for solving such problems has been presented by a
real-time planning framework for multi-character navigation that
enables the use of multiple heterogeneous problem domains of dif-
fering complexities for navigation in large, complex, dynamic vir-
tual environments [Kapadia et al. 2013a]. The original navigation
problem is decomposed into a set of smaller problems that are dis-
tributed across planning tasks working in these different domains.
An anytime dynamic planner is used to efficiently compute and re-
pair plans for each of these tasks, while using plans in one domain
to focus and accelerate searches in more complex domains. Using

multiple heterogeneous domains enables the solution of many chal-
lenging multi-agent scenarios in complex dynamic environments
requiring space-time precision and explicit coordination between
interacting agents, by accounting for dynamic information at all
stages of the decision-making process. Figure 18 illustrates some
of the challenging scenarios and their solutions.

4.1.1 Multiple Domains of Control

The 4 domains defined below provide a nice balance between global
static navigation and fine-grained space-time control of agents in
dynamic environments. Figure 16 illustrates the different domain
representations for a given environment. The static navigation mesh
domain Σ1 uses a triangulated representation of free space and
only considers static immovable geometry. Dynamic obstacles and
agents are not considered in this domain. The Dynamic Navigation
Mesh Domain Σ2 also uses triangulations to represent free spaces
and coarsely accounts for dynamic properties of the environment
to make a more informed decision at the global planning layer. A
time-varying density field is defined to store the density of move-
able objects (agents and obstacles) for each polygon in the triangu-
lation at some point of time.

The Grid Domain Σ3 discretizes the environment into grid cells
where a valid transition is considered between adjacent cells that
are free (diagonal movement is allowed). An agent is modeled as
a point with a radius (orientation and agent speed is not considered
in this domain). This domain only accounts for the current position
of dynamic obstacles and agents, and cannot predict collisions in
space-time. The cost and heuristic are distance functions that mea-
sure the Euclidean distance between grid cells. The Space-Time
Domain Σ4 models the current state of an agent as a space-time
position with a current velocity The domains described here are
not a comprehensive set and only serve to showcase the ability of
this framework to use multiple heterogeneous domains of control in
order to solve difficult problem instances at a fraction of the com-
putation cost.

4.1.2 Problem Decomposition

Figure 17(a) illustrates the use of tunnels to connect each of the
4 domains, ensuring that a complete path from the agents initial
position to its global target is computed at all levels. Figure 17(b)
shows how Σ2 and Σ3 are connected by using successive waypoints
in Π(Σ2) as start and goal for independent planning tasks in Σ3.
This relation between Σ2 and Σ3 allows finer-resolution plans be-
ing computed between waypoints in an independent fashion. Lim-
iting Σ3 (and Σ4) to plan between waypoints instead of the global
problem instance ensures that the search horizon in these domains
is never too large, and that fine-grained space-time trajectories to
the initial waypoints are computed quickly. However, completeness
and optimality guarantees are relaxed as Σ3, Σ4 never compute a
single path to the global target.

Σ1 is first used to compute a path from start to goal, ignoring dy-
namic obstacles and other agents. Π(Σ1) is used to accelerate com-
putations in Σ2, which refines the global path to factor in the dis-
tribution of dynamic objects in the environment. Depending on the
relationship between Σ2 and Σ3, a single planning task or multiple
independent planning tasks are used in Σ3. Finally, the plan(s) of
T (Σ3) are used to accelerate searches in Σ4.

Changes trigger plan updates which are propagated through the task
dependency chain. T (Σ2) monitors plan changes in T (Σ1) as well
as the cumulative effect of changes in the environment to refine
its path. Each T (Σ3) instance monitors changes in the waypoints
along Π(Σ2) to repair its solution, as well as nearby changes in
obstacle and agent position. Finally, T (Σ4) monitors plan changes

(a)

(b)

Figure 17: Relationship between domains. (a) Use of tunnels to
connect each of the 4 domains. (b) Use of successive waypoints in
Π(Σ2) as start, goal pairs to instantiate multiple planning tasks in
Σ3 and Σ4.

in T (Σ3) (which it depends on) and repairs its solution to compute a
space-time trajectory that avoids collisions with static and dynamic
obstacles, as well as other agents.

Events are triggered (outgoing edges) and monitored (incoming
edges) by tasks, creating a cyclic dependency between tasks, with
T0 (agent execution) monitoring changes in the plan produced by
the particular T (Σ4), which monitors the agents most imminent
global waypoint. Tasks that directly affect the agent’s next decision,
and tasks with currently invalid or sub-optimal solutions are given
higher priority. Given the maximum amount of time to deliberate
tmax, the agent pops one or more tasks that have highest priority
and divides the deliberation time across tasks (most imminent tasks
are allocated more time). Task priorities constantly change based
on events triggered by the environment and other tasks.

4.1.3 Domain Mapping

λ(s,Σ,Σ
′
) is defined as an 1 : n function that allows us to map

states in S(Σ) to one or more equivalent states in S(Σ
′
):

λ(s,Σ,Σ
′
) : s→ {s′|s′ ∈ S(Σ

′
) ∧ s ≡ s′}. (1)

Mapping functions are defined specifically for each domain pair.
For example, λ(s,Σ1,Σ2) maps a polygon s ∈ S(Σ1) to one
or more polygons {s′|s′ ∈ S(Σ2)} such that s′ is spatially con-
tained in s. If the same triangulation is used for both Σ1 and
Σ2, then there exists a one-to-one mapping between states. Sim-
ilarly, λ(s,Σ2,Σ3) maps a polygon s ∈ S(Σ2) to multiple grid
cells {s′|s′ ∈ S(Σ3)} such that s′ is spatially contained in s.
λ(s,Σ3,Σ4) is defined as follows:

λ(s,Σ3,Σ4) : (x)→ {(x +W (∆x), t+W (∆t))}, (2)

where W (∆) is a window function in the range [−∆,+∆]. The
choice of t is important in mapping Σ3 to Σ4. Since λ effectively
maps a plan Π(Σ3, sstart, sgoal) in Σ3 to a tunnel in Σ4, it can
exploit the path and the temporal constraints of sstart and sgoal to
define t for all states along the path. This is achieved by calculating
the total path length and the time to reach sgoal. This allows the
computation of the approximate time of reaching a state along the
path, assuming the agent is traveling at a constant speed along the
path.

(a) (b) (c) (d) (e)

Figure 16: (a) Problem definition with initial configuration of agent and environment. (b) Global plan in static navigation mesh domain Σ1

accounting for only static geometry. (c) Global plan in dynamic navigation mesh domain Σ2 accounting for cumulative effect of dynamic
objects. (d) Grid plan in Σ3. (e) Space-time plan in Σ4 that avoids dynamic threats and other agents.

(a) (b) (c) (d)

Figure 18: Different scenarios. (a) Agents crossing a highway with fast moving vehicles in both directions. (b) 4 agents solving a deadlock
situation at a 4-way intersection. (c) 20 agents distributing themselves evenly in a narrow passage, to form lanes both in directions. (d) A
complex environment requiring careful foot placement to obtain a solution.

Mapping Successive Waypoints to Independent Planning
Tasks. Successive waypoints along the plan from one domain can
be used as start and goal for a planning task in another domain. This
effectively decomposes a planning problem into multiple indepen-
dent planning tasks, each with a significantly smaller search depth.

Consider a path Π(Σ2) = {si|si ∈ S(Σ2), ∀i ∈ (0, n)} of
length n. For each successive waypoint pair (si, si+1), a plan-
ning problem Pi = 〈Σ3, sstart, sgoal〉 is defined such that sstart =
λ(si,Σ2,Σ3) and sgoal = λ(si+1,Σ2,Σ3). Even though λ may
return multiple equivalent states, only one candidate state is cho-
sen. For each problem definition Pi, an independent planning task
T (Pi) is instantiated which computes and maintains path from si
to si+1 in Σ3. Figure 17 illustrates this connection between Σ2 and
Σ3.

Tunnels. The work in [Gochev et al. 2011] observes that a plan
in a low dimensional problem domain can often be exploited to
greatly accelerate high-dimensional complex planning problems by
focusing searches in the neighborhood of the low dimensional plan.
They introduce the concept of a tunnel τ(Σhd,Π(Σld), tw) as a sub
graph in the high dimensional space Σhd such that the distance of
all states in the tunnel from the low dimensional plan Π(Σld) is less
than the tunnel width tw. Based on their work, this approach uses
plans from one domain in order to accelerate searches in more com-
plex domains with much larger action spaces. A planner is input a
low dimensional plan Π(Σld) which is used to focus state transi-
tions in the sub graph defined by the tunnel τ(Σhd,Π(Σld), tw).

To check if a state s lies within a tunnel τ(Σhd,Π(Σld), tw)
without precomputing the tunnel itself, the low dimensional
plan Π(Σld) is first converted to a high dimensional plan
Π

′
(Σhd, sstart, sgoal) by mapping all states of Π to their corre-

sponding states in Π
′
, using the mapping function λ(s,Σld,Σhd)

as defined in Equation 1. Note that the resulting plan Π
′

may have
multiple possible trajectories from sstart to sgoal due to the 1 : n
mapping of λ. A distance measure d(s,Π(Σ)) computes the dis-

tance of s from the path Π(Σ). During a planning iteration, a state
is generated if and only if d(s,Π(Σhd)) ≤ tw. This is achieved by
redefining the succ(s) and pred(s) to only consider states that
lie in the tunnel. Furthermore, node expansion can be prioritized to
states that are closer to the path by modifying the heuristic function
with:

ht(s, sstart) = h(s, sstart) + |d(s,Π(Σ))|. (3)

4.2 Precomputed Environment Semantics for Dexter-
ous Character Animation

The widespread availability of high-quality motion capture data and
the maturity of solutions to animate virtual characters has paved the
way for the next generation of interactive virtual worlds exhibit-
ing intricate interactions between characters and the environments
they inhabit. However, current motion synthesis techniques have
not been designed to scale with complex environments and contact-
rich motions, requiring environment designers to manually embed
motion semantics in the environment geometry in order to address
online motion synthesis. We introduce an automated approach for
analyzing both motions and environments in order to represent the
different ways in which an environment can afford a character to
move. We extract the salient features that characterize the contact-
rich motion repertoire of a character and detect valid transitions
in the environment where each of these motions may be possible,
along with additional semantics that inform which surfaces of the
environment the character may use for support during the motion.
The precomputed motion semantics can be easily integrated into
standard navigation and animation pipelines in order to greatly en-
hance the motion capabilities of virtual characters. The computa-
tional efficiency of our approach enables two additional applica-
tions. Environment designers can interactively design new environ-
ments and get instant feedback on how characters may potentially
interact, which can be used for iterative modeling and refinement.
End users can dynamically edit virtual worlds and characters will

automatically accommodate the changes in the environment in their
movement strategies.

4.2.1 Overview

Fig. 19 illustrates the main steps of our framework. Given raw mo-
tion data and geometry data of the environment, our system ana-
lyzes both of them in order to find valid motion transitions in the
environment. Motion transitions are then annotated in the environ-
ment combined with standard navigation mesh representations for
runtime pathfinding and motion synthesis.

Motion Analysis. Given a database of motion clips representing
different motion skills for a character, we analyze each motion (or a
set of similar motions) to define its motion signature – which char-
acterizes the different contacts between the character’s body parts
and the environment during the motion, the spatial constraints be-
tween pairs of contacts, as well as the collision bounds of the char-
acter while performing the motion.

Environment Analysis. Given an arbitrarily complex 3D environ-
ment, our system identifies surfaces that can be used to support
the character using different kinds of contacts. For each motion
signature (a sequence of contact configurations), a corresponding
sequence of proximal contact surfaces is identified which satisfy
the spatial constraints between the contacts in the motion. We
use a “projection and intersection” based method that efficiently
identifies spatial relationships between surfaces and can handle de-
formable motion models. The set of valid surfaces are pruned to
ensure that the resulting motion performed in that part of the envi-
ronment is collision-free, producing an annotated environment that
identifies areas where different motion skills are possible.

Runtime Pathfinding and Motion Synthesis. We extend tradi-
tional navigation graph approaches to include additional edges for
connecting disconnected surfaces using a particular motion skill,
with semantics that codify motion, contact, and collision con-
straints. During runtime, standard search techniques can be used on
this navigation graph to generate a path that includes these behav-
iors. A data-driven animation system is used to animate characters
to navigate along this path, and the annotated motion transitions are
used to animate the character to perform complex animations that
satisfy the exact contact constraints without the need for expensive
configuration-space motion planning.

4.2.2 Motion Analysis

The movement repertoire of an animated character is defined by a
set of motion skills m ∈M. A motion skill may be a single motion
clip or a set of similar motion clips which can be blended together
to create a parameterized motion skill that can produce new contact
variations that are not present in the original motions.

Each motion skill is abstracted as m = 〈G,V,L〉 where: (1) the
contact constraint graph G = 〈C,E〉 is defined by a set of con-
tacts c ∈ C, and spatial constraints e(i, j) ∈ E between pairs of
contacts (ci, cj) ∈ C. (2) V represents the collision bounds of
the character over the course of the motion. (3) L is a data-driven
controller that is used for animating the character and may be a sin-
gle motion clip coupled with inverse kinematics, or a parameterized
blend tree of similar motions.

Contact Constraint Graph

Over the course of the motion, different parts of the characters body
might come in contact with different surfaces of the environment.
We define a contact pose P = {ci} as a body part (e.g., hands or
feet) coming in contact with one or more surfaces in the environ-
ment. Each contact c = {p,n} denotes the contact of a body part

with one environment surface, defined using the relative position
p and surface normal n of the contact, with respect to the initial
position of the center of mass of the character. Fig. 20 illustrates
example contact poses.

A constraint e(i, j) ∈ E defines the distance interval (dmin, dmax)
between the two contacts ci, cj ∈ C. For a motion skill that is a
single motion clip without any procedural deformation, this will be
a single numeric value. We do not consider temporal constraints as
they are not necessary in a static snapshot of an environment.

(a) (b) (c)

Figure 20: Contact Poses. (a) Planar contact pose. (b) L-shape
contact pose: two surfaces with angle between normals close to 90
degrees. This corresponds to placing hands or other body part on a
perpendicular edge in the environment. (c) Grasping contact: three
planar surfaces with normals spanning 180 degrees, corresponding
to placing hands on a curved surface.

For each motion, we identify the set of keyframes during which a
contact takes place using a semi-automated method, as described
in [Xiao et al. 2006]. A keyframe may have multiple body parts in
contact at a time, leading to simultaneous contact poses. Fig. 21
illustrates the keyframes of selected motions with their contacts
highlighted. Fig. 22 illustrates an example of a contact constraint
graph for a tic-tac motion. Our constraint graph allows to represent
constraints between all pairs of contacts. This is useful to spec-
ify global constraints, for example, such as lower and upper limits
between the first and last contacts for the behavior to be executed.

(a) (b)

Figure 22: Contact Constraint Graph for a tic-tac motion. The
nodes represent the contacts c ∈ C over the course of the motion,
and the edges represent spatial constraints e(., .) ∈ E between
contacts.

4.2.3 Environment Analysis

Once the motions have been processed we analyze the environment
to automatically detect locations where motion skills may occur.

Contact Surface Detection

Figure 19: Framework Overview.

Figure 21: Keyframes of selected motions with annotated contacts.

The environment W is a collection of objects o. The geometry of
each object is represented as a set of discrete triangles generated
from the environment modeling stage. We first cluster adjacent tri-
angles into larger surfaces s that have the same surface normals ns .
Starting from a triangle in the environment, we perform a breadth-
first expansion to neighbouring triangles and cluster adjacent trian-
gles that have similar facing normals. This clusters the environment
triangulation into a set of contact surfaces s ∈ S, where s is a col-
lection of adjacent triangles that face the same (or similar) direction.
Fig. 23 illustrates the contact surface clustering process.

(a) (b) (c)

Figure 23: Surface Clustering and Gathering. (a) Original Envi-
ronment mesh. (b) Triangles with the same normals are clustered
together to form surfaces. (c) Surfaces that share the same normal
properties are grouped and mapped to corresponding contacts in
the motion.

Motion Detection

Given a set of surfaces s ∈ S characterizing the environment, we
seek to identify spatially co-located surfaces that satisfy the con-
straints on the motion signature of a specific motion skill, while
avoiding collisions with any geometry, and to identify the valid sub-

regions on each surface where each contact in the motion might take
place. We provide an overview of the steps for detecting a valid
transition in the environment for a motion skill m.

Contact Rotation. The contacts c ∈ C of a motion skill contain
the relative positions of all contacts in the motion with respect to
the initial position of the character’s center of mass, assuming the
character is initially facing along the positive X axis. To detect the
execution of the motion skill in any direction, we first sample the set
of valid start directions and transform the contact signature for the
chosen direction. Note that the spatial constraints between contacts
remain unaffected as a result of this rotation.

Figure 24: Contact Rotation.

Surface Gathering. Next, we identify all contact surfaces si ⊆ S
with a surface normal which is consistent with each contact ci ∈
C for the motion skill. Fig. 23(c) illustrates the surface gathering
process.

Contact Constraint Satisfaction. For each pair of contact surfaces

(sa, sb) ∈ S1×S2, we find the subregions (s
′
a, s

′
b) on each surface

that satisfy the spatial constraint e(1, 2) between the first two con-
tacts c1 and c2 in the motion. This is accomplished using the algo-
rithm described above. This produces a new set R ∈ S

′
1×S

′
2 com-

prising pairs of contact surfaces that satisfy the spatial constraint
between the first two contacts. This process is iteratively repeated
for each subsequent contact in C to produce R ∈ S

′
1 × · · ·S

′
|C|

which contains a set of surface sequences that accommodate all the
contacts in the motion, and each surface represents the set of all
valid locations where the particular contact in the motion may take
place.

Figure 25: Motion detection results.

Contact Constraint Satisfaction

We check the spatial relationship between two contact surfaces and
return subsurfaces that satisfy the distance constraint imposed be-
tween them, as specified by the contact constraint graph. We con-
sider a non-deformable motion skill (e.g., a single motion clip with
no procedural modification), where the spatial constraint is a sin-
gle discrete value. For motion skills that have deformable motion
models (e.g., a blend tree of multiple similar motion clips and/or
procedural deformation using inverse kinematics), this is a distance
interval, which is not considered here.

Figure 26: (a) Two contact surfaces are parallel to each other, the
overlapping region will either be a 2D polygon or null. (b) Two
contact surfaces are in arbitrary positions relative to each other,
the overlapping region will either be a line segment or null.

4.2.4 Results

As shown in Fig. 28, our system seamlessly integrates into exist-
ing navigation and animation pipelines to produce virtual charac-
ters that can autonomously reason about their environments while
harnessing an increased repertoire of motion skills to navigate in
complex virtual worlds. Our approach scales to handle multiple
characters while still maintaing real-time rates.

Dynamic Game Worlds. The computational efficiency of our ap-
proach also allows motion transitions to be repaired at interactive
rates, enabling new applications including dynamic game worlds.
We demonstrate two example game demos in the supplementary
video. In the first example, a player interactively manipulates ob-
jects in the game world while an autonomous character navigates
in the environment. The second example shows many characters
chasing a player-controlled character in the game.

Interactive Authoring of Game Worlds. We have developed a
simple authoring tool that allows game level designers to interac-
tively author game worlds while harnessing the power of our ap-
proach. Using our tool, an author simply drags and drops geometry
into the scene. Our system works behind the scenes to detect and
annotate potential ways in which a character may interact in the en-
vironment by highlighting the different possible motion transitions
between objects. At any time, the author can see a real-time an-
imation of the character navigating in the current environment to
get instant visual feedback, which can be used to iteratively refine
the initial design. The supplementary video shows the interactive
authoring session to create the complex scene shown in Fig. 28.

Computational Efficiency. Fig. 27 analyses the computational ef-
ficiency of our approach. For complex environments with greater
than 3000 surface elements (more than 20,000 triangles), nearly
100 motion transitions for 10 motion skills are detected within 5
seconds. For local repair of motion transitions for dynamic and
interactive use, the operation is instantaneous.

(a) (b)

Figure 27: Computational Efficiency Analysis.

4.3 Event-Centric Planning

Complex virtual worlds with sophisticated, autonomous virtual
populaces [Kapadia et al. 2014; Shoulson et al. 2013b] are essential
for many applications. Directed interactions between virtual char-
acters help tell rich narratives within the virtual world and personify
the characters in the mind of the user. However, creating and coor-
dinating fully-fledged virtual actors to behave realistically and act
according to believable goals is a significant undertaking.

One approach to collapse a very large, mechanically-oriented char-
acter action space into a series of tools available to a narrative plan-
ner is to define and use a domain of events: dynamic and reusable
behaviors for groups of actors and objects that carry well-defined
narrative ramifications. Events facilitate precise authorial control
over complex interactions involving groups of actors and objects,
while planning allows the simulation of causally consistent char-
acter actions that conform to an overarching global narrative. By

Figure 28: Navigation in complex static environment.

planning in the space of events rather than in the space of individ-
ual character capabilities, virtual actors can exhibit a rich repertoire
of individual actions without causing combinatorial growth in the
planning branching factor. Such a system [Shoulson et al. 2013a]
produces long, cohesive narratives at interactive rates, allowing a
user to take part in a dynamic story that, despite intervention, con-
forms to an authored structure and accomplishes a predetermined
goal.

4.3.1 Revised Action Space

Unlike traditional multi-agent planning, the planner does not op-
erate in the space of each actor’s individual capabilities. Rather,
the system’s set of actions is taken from a dictionary of events, au-
thored parameterizable interactions between groups of characters
and props. Because of this disconnection between character be-
haviors and the action space for the planner, actors can have a rich
repertoire of possible actions without making an impact on the plan-
ner’s computational demands. Two characters involved in an inter-
action could have dozens of possible actions for displaying diverse,
nuanced sets of gesticulations. Where a traditional planner would
need to expand all of these possibilities at each step in the search,
our planner only needs to invoke the conversation event between the
two characters and let the authored intelligence of the event itself
dictate which gestures the characters should display and when.

Formulating Narrative Events. Events are pre-authored dy-
namic behaviors that take as parameters a number of actors or props
as participants. When launched, an event suspends the autonomy
of any involved object and guides those objects through a series of
arbitrarily complex actions and interactions. Events are well-suited
for interpersonal activities such as conversations, or larger-scale be-
haviors such as a crowd gathering in protest. Each event is tempo-
rary, possessing a clear beginning and at least one end condition.
When an event terminates, autonomy is restored to its participants
until they are needed for any other event. To implement events
we use Parameterized Behavior Trees (PBTs), a flexible, graphical
programming language for single- or multi-actor behaviors. Each
event is defined as

e = 〈t, c,R = (r1, . . . , rm), φ : R×Wm → {0, 1}, δ : S → S′〉,

where the PBT t contains event behavior, c is the event’s cost, the
role list R defines the number of objects that can participate in the
event and each participant’s required role index number, the pre-
condition function φ transforms the list of m roles and a selection

Event UnlockDoor(Prisoner : a, Door: d) {
Precondition φ:
Closed(d) ∧ ¬Guarded(d)
∧ Locked(d) ∧ CanReach(a,d);

Postcondition δ:
¬Locked (d)

}

Figure 30: Event definition for UnlockDoor.

of m objects from the world into a true or false value, and the post-
condition function δ transforms the world state as a result of the
event.

Roles for an event are defined based on an object’s narrative value.
A conversation may take two human actors, whereas an event for
an orator giving a speech with an audience might take a speaker,
a pedestal object, and numerous audience members. Preconditions
and postconditions define the rules of the world, so that a character
can pull a lever if the lever can be reached from the character’s po-
sition. Figure 30 illustratates the pre- and postconditions for an Un-
lockDoor event. This event metadata would be accompanied with
a PBT that instructs the character to approach the door and play a
series of animations illustrating the door being unlocked.

Goal Specification. Goals can be specified as: (1) the desired
state of a specific object, (2) the desired state of some object, or (3)
a certain event that must be executed during the simulation. These
individual primitives can be combined to form narrative structures
suited for the unfolding dynamic story.

4.3.2 Planning in Event Space

The event system plans a sequence of events that satisfy a given nar-
rative. The set of permissible events at each search node I ∈ I de-
termines the transitions in the search graph. A valid instance of an
event e is defined as Ie = 〈e,O ∈W|Re|〉 with φe(Re, O) = 1.
This implies that the event’s preconditions have been satisfied for
a valid set of participants O, mapped to their designated roles
Re. The transitions I are used to produce a set of new states:
{S′|Se = δ(S, Ie)∀Ie ∈ I} by applying the effects of each can-
didate event to the current state in the search. Cost is calculated
based on the event’s authored and generated cost, and stored along-
side the transition. The planner generates a sequence of event tran-

(a) (b) (c) (d)

Figure 29: Characters exhibiting two cooperative behaviors. Two actors hide while a third lures a guard away (a), then sneak past once the
guard is distracted (b). An actor lures the guards towards him (c), while a second presses a button to activate a trap (d).

sitions Π(Sstart, Sgoal) from the Sstart to Sgoal that minimizes the
aggregate cost.

If all of the characters and objects could participate equally in an
event, then the branching factor in planning would be |E|

(|W|
|R|

)
,

which would grow prohibitively large. In order to curb the com-
binatorial cost of this search process, actors and objects are di-
vided into role groups. Though there may be many objects in the
world, very few of them will fill any particular role, which greatly
reduces the size of the event instance list. Checking an object’s
role is a very fast operation which is used filtering before the more
costly operation to validate the event’s preconditions on its candi-
dates. The maximum branching factor of this technique will be
|E|(maxe∈E|Re|)maxr∈R|`r|, and the effective branching factor
can be calculated by taking average instead of maximal values.
In other words, the branching factor is bounded by the number of
events, the maximum number of participants in any event, and the
size of the role group with the most members.

Role groups mitigate the effect of the total number of objects in
the world from on the growth of the branching factor as long as
new objects are evenly divided into small groups. This increases
efficiency and allows the system to scale to large groups of actors
and objects at the cost of flexibility (all of the objects in a role group
may be busy when needed) and authoring burden (the author must
ensure that objects are divided properly). Note that the branching
factor also grows independently of an actor or object’s individual
capabilities, allowing characters to exhibit rich and varied behaviors
without affecting the planner’s overhead.

The discussed techniques allow to integrate high level goals and
specification of behaviors within a path planning framework in or-
der to achieve complex simulated virtual worlds. The presented
techniques can be employed and extended in several ways. They
are not techniques that can be found in textbooks, they are rather
the subject of an evolving interdisciplinary research field between
computer animation and AI disciplines.

4.4 Planning Motions in High Dimensions

The most popular approach for locomotion synthesis around obsta-
cles is to reduce the planning problem to 2D path planning and to
rely on a locomotion controller that is able to follow 2D paths. Re-
alistic results are often achieved with locomotion controllers built
based on motion capture clips carefully organized and parameter-
ized. Once a suitable locomotion controller is built, the approach

achieves fast results and is commonly employed in real-time appli-
cations and video games.

Relying on locomotion controllers however still requires significant
engineering work for achieving generic and realistic results, and
several planning methods have been developed with the goal to au-
tomatically synthesize locomotion directly from an input set of un-
organized motion capture data. Such an approach largely simplifies
the goal of transferring to the virtual character example locomo-
tion performances with different styles captured directly from real
actors.

While locomotion controllers still represent the best approach in
terms of computation performance, planning algorithms operating
directly on motion capture data spaces can produce better-quality
results (by imposing minimal modification to the original data), and
they can plan motions of higher complexity. The several planning
techniques proposed in the literature which are based on motion
graphs lie in this category, and a representative approach in this
area is illustrated in Figure 12.

Motion synthesis involving object interaction can also be translated
into a high-dimensional motion planning problem with the addi-
tional need to address a higher number of challenging constraints.
The next two sections present an overview of two recent approaches
for full-body motion planning addressing interaction with objects.

4.5 Planning Full-Body Manipulations

One particularly challenging type of motion planning problem is
when locomotion and manipulation have to work together in order
to successfully accomplish a given desired action. This is the case
of several full-body motions involving manipulation, such as in the
example shown in Figure 31.

A new planning-based approach for whole-body motion synthesis
able to generate high-quality motions for such challenging mobile-
manipulation scenarios has been recently proposed [Mahmudi and
Kallmann 2015]. The approach decouples the problem in special-
ized locomotion and manipulation skills, and proposes a multi-
modal planning scheme that explores the search space of each skill
together with the possible transition points between skills. In order
to achieve high-quality results the locomotion skill is designed to
be fully data-driven, while manipulation skills can be algorithmic
or data-driven according to data availability and the complexity of
the environment.

The method is able to automatically generate complex motions with
precise manipulation targets among obstacles and in coordination
with locomotion. Of particular importance is the ability to consider
multiple locomotion trajectories during the overall search for a so-
lution, such that the trajectory that enables the successful execution
of the upper-body action is the one that eventually leads to the so-
lution motion. The drawback of the approach is that search times
can easily become prohibitive for real-time applications, requiring
the development of additional simplification and pre-computation
techniques.

Figure 31: Example of planning the concatenation of locomotion
clips for achieving realistic locomotion while algorithmically per-
forming an upper body manipulation (opening the door) with In-
verse Kinematics.

4.6 Planning Motions for Virtual Demonstrators

Virtual humans and embodied conversational agents are promising
in the realm of human-computer interaction applications. One cen-
tral goal in the area is to achieve virtual assistants that can effec-
tively interact, train, and assist people in a wide variety of tasks.
The need to demonstrate objects and procedures appears in many
situations and the underlying motion synthesis problem involves
several planning processes at different levels.

Simple everyday demonstrations involve a series of coordinated
steps that a virtual agent needs to replicate. The agent needs to
walk while avoiding obstacles along the way, stop at an appropriate
demonstration location with clear view to the target and observer,
interact with the object (e.g. point to it and deliver information),
and also maintain visual engagement with the observer.

This section presents an overview of the main approaches taken by
the planner PLACE [Huang and Kallmann 2015], which addresses
such harmonious multi-level orchestration of actions and behaviors
(see Figure 32).

The overall planning model was built from experiments with hu-
man subjects where participants were asked to freely approach tar-
get objects at different positions and to deliver object information to
observers at various locations. These experiments provided ground
truth data for defining a coordination model that is able to orches-
trate the involved pieces of a demonstration task.

The result is a whole-body motion planning framework, called
PLACE, that addresses the five main pieces of the overall problem
in an unified way:

• Placement: optimal character placement is essential for ad-
dressing target and observer visibility, locomotion accessibil-

Figure 32: The PLACE planner synthesizes whole-body demon-
strations for arbitrarily located targets and observers, also taking
into account obstacles and visual occluders.

ity, and action execution constraints.

• Locomotion: locomotion synthesis among obstacles and to-
wards precise placements allows the character to position it-
self in order to perform a demonstration.

• Action: realistic action execution needs to address arbitrary
object locations and to avoid nearby obstacles when needed.

• Coordination: coordination is important for transitioning well
from locomotion to the upper-body demonstrative action.

• Engagement: observer engagement is obtained with a gaze
behavior that interleaves attention to the observer and the tar-
get in order to achieve effective demonstrations.

The realism of the solution is addressed at two levels. At the be-
havioral level, placement, coordination and engagement are solved
following models extracted from experiments with human subjects.
At the motion synthesis level, locomotion and actions are synthe-
sized from collections of motion capture clips organized for effi-
cient synthesis and coordination. The presented techniques were
developed such that solutions can be computed at interactive rates
in realistic, reasonably complex, environments.

The approach is based on first applying the coordination model
in order to achieve a range of suitable locations for performing
the object demonstration. Then, data-based locomotion is planned
towards the best-ranked location, with gradual coordination with
the upper-body demonstrative action and the gaze behavior. For
a detailed exposition we refer the reader to the original publica-
tion [Huang and Kallmann 2015].

5 Final Notes

These course notes assemble a comprehensive overview of plan-
ning methods, techniques, approaches, and applications. We started
from classical geometric path planning topics and discrete search,
then gradually moved to more advanced discrete search techniques,
and finalized with examples of latest techniques being developed
for addressing complete simulated virtual worlds that are dynamic
and with multiple agents responding to different constraints and

types of events. A more detailed and in-depth exposition of the
topics covered in Sections 2 and 3 is available in the form of a
book [Kallmann and Kapadia 2016].

As simulated virtual worlds become more and more complex it is
expected that planning techniques will further progress in differ-
ent directions, from problem modeling and algorithmic research to
parallelization of algorithms and integration with behavioral plan-
ning. Collaboration between multidisciplinary researchers and the
existence of related conferences and journals are also important for
promoting new developments. We look forward to contributing to
these developments and encourage others to get involved.

Acknowledgements

Portions of the work presented in these notes were partially sup-
ported by NSF Award IIS-0915665 and by generous gifts from Dis-
ney Research.

References

AMATO, N. M., GOODRICH, M. T., AND RAMOS, E. A. 2000.
Linear-time triangulation of a simple polygon made easier via
randomization. In In Proceedings of the 16th Annual ACM Sym-
posium of Computational Geometry, 201–212.

ARIKAN, O., AND FORSYTH, D. A. 2002. Synthesizing con-
strained motions from examples. Proceedings of SIGGRAPH
21, 3, 483–490.

BERSETH, G., KAPADIA, M., AND FALOUTSOS, P. 2015. Ac-
clmesh: Curvature-based navigation mesh generation. In Pro-
ceedings of the 8th ACM SIGGRAPH Conference on Motion in
Games, ACM, New York, NY, USA, MIG ’15, 97–102.

BHATTACHARYA, P., AND GAVRILOVA, M. 2008. Roadmap-
based path planning - using the voronoi diagram for a clearance-
based shortest path. Robotics Automation Magazine, IEEE 15, 2
(june), 58 –66.

CAMPORESI, C., AND KALLMANN, M. 2014. Computing shortest
path maps with gpu shaders. In Proceedings of Motion in Games
(MIG).

CHAZELLE, B. 1982. A theorem on polygon cutting with applica-
tions. In SFCS ’82: Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science, IEEE Computer Society,
339–349.

CHAZELLE, B. 1991. Triangulating a simple polygon in linear
time. Discrete Computational Geometry 6, 5 (Aug.), 485–524.

CHEW, L. P. 1985. Planning the shortest path for a disc in
o(n2logn) time. In Proceedings of the ACM Symposium on
Computational Geometry.

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN,
C. 2009. Introduction to Algorithms, Third Edition, 3rd ed. The
MIT Press.

DE BERG, M., CHEONG, O., AND VAN KREVELD, M.
2008. Computational geometry: algorithms and applications.
Springer.

DEMYEN, D., AND BURO, M. 2006. Efficient triangulation-based
pathfinding. In AAAI’06: Proceedings of the 21st national con-
ference on Artificial intelligence, AAAI Press, 942–947.

DEVILLERS, O., AND PION, S. 2003. Efficient exact geometric
predicates for delaunay triangulations. In Proceedings of the 5th
Workshop Algorithm Engineering and Experiments, 37–44.

DIJKSTRA, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1, 269–271.

GARCIA, F., KAPADIA, M., , AND BADLER, N. I. 2014. Gpu-
based dynamic search on adaptive resolution grids. In Proceed-
ings of the IEEE International Conference on Robtics and Au-
tomation, IEEE, ICRA.

GERAERTS, R. 2010. Planning short paths with clearance using
explicit corridors. In ICRA’10: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation.

GOCHEV, K., COHEN, B. J., BUTZKE, J., SAFONOVA, A., AND
LIKHACHEV, M. 2011. Path planning with adaptive dimension-
ality. In SOCS.

HART, P., NILSSON, N., AND RAPHAEL, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4, 2, 100–107.

HERSHBERGER, J., AND SNOEYINK, J. 1994. Computing min-
imum length paths of a given homotopy class. Computational
Geometry Theory and Application 4, 2, 63–97.

HERSHBERGER, J., AND SURI, S. 1997. An optimal algorithm for
euclidean shortest paths in the plane. SIAM Journal on Comput-
ing 28, 2215–2256.

HJELLE, O., AND DÆHLEN, M. 2006. Triangulations and Appli-
cations (Mathematics and Visualization). Springer-Verlag New
York, Inc., Secaucus, NJ, USA.

HOFF III, K. E., CULVER, T., KEYSER, J., LIN, M., AND
MANOCHA, D. 2000. Fast computation of generalized voronoi
diagrams using graphics hardware. In ACM Symposium on Com-
putational Geometry.

HUANG, Y., AND KALLMANN, M. 2015. Planning motions and
placements for virtual demonstrators. IEEE Transactions on Vi-
sualization and Computer Graphics (TVCG).

HUANG, T., KAPADIA, M., BADLER, N. I., , AND KALLMANN,
M. 2014. Path planning for coherent and persistent groups. In
Proceedings of the IEEE International Conference on Robtics
and Automation, IEEE, ICRA ’14.

JORGENSEN, C.-J., AND LAMARCHE, F. 2011. From geometry
to spatial reasoning: automatic structuring of 3d virtual environ-
ments. In Proceedings of the 4th international conference on
Motion in Games (MIG), Springer-Verlag, Berlin, Heidelberg,
353–364.

KALLMANN, M., AND KAPADIA, M. 2014. Navigation meshes
and real-time dynamic planning for virtual worlds. In ACM
SIGGRAPH 2014 Courses, ACM, New York, NY, USA, SIG-
GRAPH ’14, 3:1–3:81.

KALLMANN, M., AND KAPADIA, M. 2016. Geometric and Dis-
crete Path Planning for Interactive Virtual Worlds. Morgan and
Claypool Publishers.

KALLMANN, M. 2010. Navigation queries from triangular meshes.
In The Third International Conference on Motion in Games
(MIG).

KALLMANN, M. 2010. Shortest paths with arbitrary clearance
from navigation meshes. In Proceedings of the Eurographics /
SIGGRAPH Symposium on Computer Animation (SCA).

KALLMANN, M. 2014. Dynamic and robust local clearance trian-
gulations. ACM Transactions on Graphics 33, 5.

KAPADIA, M., AND BADLER, N. I. 2013. Navigation and steer-
ing for autonomous virtual humans. Wiley Interdisciplinary Re-
views: Cognitive Science.

KAPADIA, M., SINGH, S., HEWLETT, W., AND FALOUTSOS, P.
2009. Egocentric affordance fields in pedestrian steering. In
Proceedings of the 2009 symposium on Interactive 3D graphics
and games, ACM, New York, NY, USA, I3D ’09, 215–223.

KAPADIA, M., SINGH, S., REINMAN, G., AND FALOUTSOS, P.
2011. A behavior-authoring framework for multiactor simula-
tions. Computer Graphics and Applications, IEEE 31, 6 (nov.-
dec.), 45 –55.

KAPADIA, M., SINGH, S., HEWLETT, W., REINMAN, G., AND
FALOUTSOS, P. 2012. Parallelized egocentric fields for au-
tonomous navigation. The Visual Computer 28, 12, 1209–1227.

KAPADIA, M., BEACCO, A., GARCIA, F., REDDY, V.,
PELECHANO, N., AND BADLER, N. I. 2013. Multi-domain
real-time planning in dynamic environments. In Proceedings of
the 12th ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, ACM, New York, NY, USA, SCA ’13, 115–
124.

KAPADIA, M., NINOMIYA, K., SHOULSON, A., GARCIA, F.,
AND BADLER, N. 2013. Constraint-aware navigation in dy-
namic environments. In Proceedings of Motion on Games, ACM,
New York, NY, USA, MIG ’13, 89:111–89:120.

KAPADIA, M., MARSHAK, N., AND BADLER, N. I. 2014.
ADAPT: The agent development and prototyping testbed. IEEE
Transactions on Visualization and Computer Graphics 99, 1.

KAPADIA, M., XIANGHAO, X., NITTI, M., KALLMANN, M.,
COROS, S., SUMNER, R. W., AND GROSS, M. 2016. Precision:
Precomputing environment semantics for contact-rich character
animation. In Proceedings of the 20th ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games, ACM, New York,
NY, USA, I3D ’16, 29–37.

KOENIG, S., AND LIKHACHEV, M. 2002. D* Lite. In National
Conf. on AI, AAAI, 476–483.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. H. 2002. Motion
graphs. Proceedings of SIGGRAPH 21, 3, 473–482.

LAMARCHE, F., AND DONIKIAN, S. 2004. Crowd of virtual hu-
mans: a new approach for real time navigation in complex and
structured environments. Computer Graphics Forum 23, 3, 509–
518.

LAMARCHE, F. 2009. Topoplan: a topological path planner for
real time human navigation under floor and ceiling constraints.
Computer Graphics Forum 28, 2, 649–658.

LEE, D. T., AND PREPARATA, F. P. 1984. Euclidean shortest paths
in the presence of rectilinear barriers. Networks 3, 14, 393–410.

LIKHACHEV, M., GORDON, G. J., AND THRUN, S. 2003. ARA*:
Anytime A* with Provable Bounds on Sub-Optimality. In NIPS.

LIKHACHEV, M., FERGUSON, D. I., GORDON, G. J., STENTZ,
A., AND THRUN, S. 2005. Anytime Dynamic A*: An Anytime,
Replanning Algorithm. In ICAPS, 262–271.

LIU, Y. H., AND ARIMOTO, S. 1995. Finding the shortest path
of a disk among polygonal obstacles using a radius-independent
graph. IEEE Transactions on Robotics and Automation 11, 5,
682–691.

LOZANO-PÉREZ, T., AND WESLEY, M. A. 1979. An algorithm
for planning collision-free paths among polyhedral obstacles.
Communications of ACM 22, 10, 560–570.

MAHMUDI, M., AND KALLMANN, M. 2012. Precomputed
motion maps for unstructured motion capture. In Eurograph-
ics/SIGGRAPH Symposium on Computer Animation (SCA).

MAHMUDI, M., AND KALLMANN, M. 2013. Analyzing locomo-
tion synthesis with feature-based motion graphs. IEEE Transac-
tions on Visualization and Computer Graphics 19, 5, 774–786.

MAHMUDI, M., AND KALLMANN, M. 2015. Multi-modal data-
driven motion planning and synthesis. In Proceedings of the 8th
ACM SIGGRAPH Conference on Motion in Games, MIG 2015,
Paris, France, November 16-18, 2015, 119–124.

MITCHELL, J. S. B. 1991. A new algorithm for shortest paths
among obstacles in the plane. Annals of Mathematics and Artifi-
cial Intelligence 3, 83–105.

MITCHELL, J. S. B. 1993. Shortest paths among obstacles in
the plane. In Proceedings of the ninth annual symposium on
computational geometry (SoCG), ACM, New York, NY, USA,
308–317.

MUBBASIR KAPADIA, FRANCISCO GARCIA, C. D. B., AND
BADLER, N. I. 2013. Dynamic search on the gpu. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, IEEE, IROS ’13.

NILSSON, N. 1969. A mobile automaton: an application of arti-
ficial intelligence techniques. In In Proceedings of the 1969 In-
ternational Joint Conference on Artificial Intelligence (IJCAI),
509–520.

OLIVA, R., AND PELECHANO, N. 2013. A generalized exact arbi-
trary clearance technique for navigation meshes. In In Proceed-
ings of the ACM SIGGRAPH conference on Motion in Games
(MIG).

OLIVA, R., AND PELECHANO, N. 2013. Neogen: Near opti-
mal generator of navigation meshes for 3d multi-layered envi-
ronments. Computer & Graphics 37, 5, 403–412.

RECAST, 2014. Recast navigation mesh. https://github.com/
memononen/recastnavigation.

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2d quality
mesh generator and delaunay triangulator. In Applied Compu-
tational Geometry: Towards Geometric Engineering, M. C. Lin
and D. Manocha, Eds., vol. 1148 of Lecture Notes in Computer
Science. Springer-Verlag, May, 203–222. From the First ACM
Workshop on Applied Computational Geometry.

SHEWCHUK, J. R. 1997. Adaptive precision floating-point arith-
metic and fast robust geometric predicates. Discrete & Compu-
tational Geometry 18, 3 (Oct.), 305–363.

SHOULSON, A., GILBERT, M. L., KAPADIA, M., AND BADLER,
N. I. 2013. An event-centric planning approach for dynamic
real-time narrative. In Proceedings of Motion on Games, ACM,
New York, NY, USA, MIG ’13, 99:121–99:130.

SHOULSON, A., MARSHAK, N., KAPADIA, M., AND BADLER,
N. I. 2013. Adapt: the agent development and prototyping
testbed. In Proceedings of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, ACM, New York, NY,
USA, I3D ’13, 9–18.

https://github.com/memononen/recastnavigation
https://github.com/memononen/recastnavigation

SINGH, S., KAPADIA, M., REINMAN, G., AND FALOUTSOS, P.
2011. Footstep navigation for dynamic crowds. Computer Ani-
mation and Virtual Worlds 22, 2-3, 151–158.

THE CGAL PROJECT. 2014. CGAL User and Reference Manual,
4.4 ed. CGAL Editorial Board. http://doc.cgal.org/4.4/Manual/
packages.html.

TRIPATH TOOLKIT, 2010. Triangulation and path planning toolkit.
http://graphics.ucmerced.edu/software/tripath/.

VAN TOLL, W. G., IV, A. F. C., AND GERAERTS, R. 2011. Nav-
igation meshes for realistic multi-layered environments. In In
Proceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 3526–3532.

VAN TOLL, W. G., IV, A. F. C., AND GERAERTS, R. 2012. A
navigation mesh for dynamic environments. Computer Anima-
tion and Virtual Worlds (CAVW) 23, 6, 535–546.

WEIN, R., VAN DEN BERG, J., AND HALPERIN, D. 2007. The
visibility-voronoi complex and its applications. Computational
Geometry: Theory and Applications 36, 1, 66–78.

XIAO, J., ZHUANG, Y., YANG, T., AND WU, F. 2006. An efficient
keyframe extraction from motion capture data. In Advances in
Computer Graphics, vol. 4035 of LNCS. Springer Berlin Heidel-
berg, 494–501.

http://doc.cgal.org/4.4/Manual/packages.html
http://doc.cgal.org/4.4/Manual/packages.html
http://graphics.ucmerced.edu/software/tripath/

