Render the Possibilities f IntrOd UCtiOI‘I
SIGGRAPH2016 7’ }' _
- * Topics

Geometric and Discrete Path Planning — Overview of the classical Computational
for Interactive Virtual Worlds Geometry and Al algorithms related to path
planning

. Marcelo Kallmann
University of California Merced

mka'ﬁ‘é‘ﬁ%“é’"&?&“” — Overview of recent advances in planning
ORIVRSEY O CALIORNGR MACED methods for interactive virtual environments

Mubbasir Kapadia
Rutgers University
Mubbasir.kapadia@rutgers.edu

Course Topics Course Topics
1) Discrete and Geometric Planning (Marcelo,30min) 2) Advanced Planning Techniques (Mubbasir,20min)
— A*, Shortest Paths, Visibility Graphs, Dijkstra, — Extending classical A* to real-time constraints and
Shortest Path Maps, Navigation Meshes dynamic scenarios, navigation with constraints,

using GPU to speed up computations

ACM Transactjons
on Graphics (TOG)

Examples: the shortest path map (left) and local clearance triangulation (right)

Course Topics

3) Planning for Character Animation
(Mubbasir and Marcelo, 30min)

— Character navigation problems, full-body and
behavior planning, interactive narrative, etc.

Course: Modules

- Introduction (3 min)

- Discrete and Geometric Planning (Marcelo) (3omin)

- Advanced Planning Techniques (Mubbasir) (20min)

- Planning for Animation (Mubbasir and Marcelo) (3omin)

- Questions and Discussion (7min)

(We will take quick questions after each part as well)

Additional Information

» We will cover a lot of material in little time
— Most topics will be covered as an overview

» Additional Material
— SIGGRAPH course notes
— Webpages of the authors:

http://graphics.ucmerced.edu/
http://www.cs.rutgers.edu/~mubbasir/

— Recent book published by the authors:

==w=ws Geometric and Discrete Path Planning for
Interactive Virtual Worlds

Render the Possibilities f
SIGGRAPH2016 f/ j

Module |
Discrete and Geometric Planning

Marcelo Kallmann
mkallmann@ucmerced.edu

L2 1 S

http://graphics.ucmerced.edu/ M. Kallmann

Geometric Path Planning

Introduction to Discrete Search

M. Kallmann

Discrete Search

* Main classical algorithms
— Dijkstra

+ Search expansion outwards from source

— A*
* Reduces the number of nodes expanded with the
use of a heuristic function

— Both can be applied to generic graphs

+ Positive edge weights only
* 4- or 8-connected grids are also graphs

M. Kallmann

Ex: 4-Connected Grid Discretization

M. Kallmann

Equivalent to a Graph

M. Kallmann

Equivalent to a Graph

M. Kallmann

Example in Grid Discretization

+ Example in a grid

M. Kallmann

Example in Grid Discretization

M. Kallmann

Example in Grid Discretization Example in Grid Discretization
Q:

[1 1 1 1 | [1 1 1 1 |

M. Kallmann M. Kallmann

Example in Grid Discretization Example in Grid Discretization

[1 1 1 2 2 | [1 1 2 2 2 2 |

@

(2

M. Kallmann M. Kallmann

Example in Grid Discretization

[1 2 2 2 2 2

[Snten

®
s
)

M. Kallmann

Example in Grid Discretization

[2 2 2 2 2 2

[Snten

;
*
‘

M. Kallmann

Example in Grid Discretization

[2 2 2 2 2 3 33

oo o

;
+
+

M. Kallmann

Example in Grid Discretization

[2 2 2 3 3 3

M. Kallmann

Example in Grid Discretization

Example in Grid Discretization

17 18
[2 3 3 3 3 3 3 [3 3 3 3 3 3 3
’ *
o o o -
L b
Xz g
o o o
° °
[]
M. Kallmann M. Kallmann
Example in Grid Discretization , Example in Grid Discretization i
[3 3 3 3 3 3 3 [3 3 3 3 3 3 3
’ ’
- - o
a2 a2
o e
® ®
/
[]
M. Kallmann M. Kallmann

Example in Grid Discretization

Example in Grid Discretization

21 22
[3 3 3 3 3 3 3 [3 3 3 3 3 3 3 |
wave front wave front
propagation propagation
([
M. Kallmann M. Kallmann
Algorithm: Dijkstra Algorithm: Dijkstra
. .
23 24
* Initialization * lteration 1: all neighbors go to Q
Algorithm 1 - Dijkstra Algorithm for Shortest Paths Algorithm 1 - Dijkstra Algorithm for Shortest Paths
Input: source node s and goal node £. Input: souree node s and goal node £. 1) @: [(1), (4:m). (42v)]
Output: shortest path from s to ¢, or null path if it does not exist. Output: shortest path from s to ¢, or null path if it does not exist.
1: Dijkstra(s, t) 1: Dijkstra(s, t)
2: | Initialize ¢} with (s,0), set g(s) to be 0, and mark = as visited; 2: Initialize () with (s,0), set g(s) to be 0, and mark = as visited;
a:|while (@ not empty)} do 3 while (@ not empty)} do
4 v+ CQremove(); v+ Quremove();
5 if (v =1) return reconstructed branch from v to s; 5 if (v =t) return reconstructed branch from v to s;
a: for each (neighborsnofv) do a: |for each (neighborsn ofv) do
T if (n not visited or g(n) > g(v) + c(v,n)) then T if (n not visited or g(n) > g(v) + c(v,n)) then
8 Set the parent of n to be v; 8 Set the parent of n to be v;
o Set g(n) to be g{v) + (v, n); o Set g(n) to be g(v) + e(v, n);
10: if (n visited) Q).decrease(n. g(n)): else ()insert(n, g(n)): 10: if (n visited) Q).decrease(n, gin)); else QQinsertin, g(n)):
11: Mark n as visited, if not already visited; 11: Mark n as visited, if not already visited;
12: end if 12 end if
13: end for 13: |end for
14: end while 14: end while
15: return null path; 15: return null path;
M. Kallmann

M. Kallmann

Algorithm: Dijkstra

Algorithm: Dijkstra

25 26
* lteration 2: decrease key called for v * lteration 3: target node t goes to Q
Algorithm 1 - Dijkstra Algorithm for Shortest Paths Algorithm 1 - Dijkstra Algorithm for Shortest Paths
Input: source node s and goal node £. 2) 0: [(Gov). (4a)] Input: source node s and goal node £. 3) O: [(4m). (6:w). (6:0)]
Output: shortest path from s to ¢, or null path if it does not exist. Output: shortest path from s to ¢, or null path if it does not exist.
1: Dijkstra(s, t) 1: Dijkstra(s, t)
2: Initialize ¢} with (s,0), set g(s) to be 0, and mark s as visited; 2 Initialize ¢ with (s,0), set g(s) to be 0, and mark = as visited;
a: while (@ not empty } do 3 while (@ not empty } do
v+ Q.uremove(); v+ Quremove();
5. if { v =1) return reconstructed branch from v to s; 5. if { v =1) return reconstructed branch from v to s;
6 for each (neighbors nofv) do 6 for each (neighborsn ofv) do
T if (n not visited or g(n) > g(v) + c(v,n)) then T if (n not visited or g(n) > g(v) +c(v,n)) then
8 Set the parent of n to be v; & Set the parent of n 1o be v;
o Set _g(n) to be g{v) + c{v. n): o Set g(n) to be g(v) + c(v, n);
10: [F[n visited) Q.decrease(n g(n});lel&e Qansert(n, g(n)): 10: if (n visited) Q.decrease(n, gin));|else Qansert(n, g(n)):
11: Mark n as visited, if not already visited: 11: Mark n as visited, if not already visited:
12: end if 12: end if
13: end for 13 end for
14: end while 14: end while
15: return null path; 15: return null path;
M. Kallmann M. Kallmann
Algorithm: Dijkstra Algorithm: Dijkstra
27 28
* lteration 4: decrease key called for t * lteration 5
Algorithm 1 - Dijkstra Algorithm for Shortest Paths Algorithm 1 - Dijkstra Algorithm for Shortest Paths
Input: source node s and goal node £. 4) 0: [(5:0. (6:w)] Input: souree node s and goal node £. 3) 0 [(6:w)]
Output: shortest path from s to ¢, or null path if it does not exist. Output: shortest path from s to ¢, or null path if it does not exist.
1: Dijkstra(s, t) 1: Dijkstra(s, t)
2: Initialize () with (s,0), set g(s) to be 0, and mark = as visited; 2: Initialize () with (s,0), set g(s) to be 0, and mark = as visited;
3 while (@ not empty) do 3 while (@ not empty)} do
v+ Q.removel); 1 v Qremove():
5. if { v =1) return reconstructed branch from v to s; 5 |'1f (v =1) return reconstructed branch from v to s;
a: for each (neighborsnofv) do 6 for each (neighborsnofv) do
T if (n not visited or g(n) > g(v) + c(v,n)) then T if (n not visited or g(n) > g(v) + c(v,n)) then
8 Set the parent of n to be v; & Set the parent of n to be v;
o Set_g(n) to be glv) + (v, n): o Set g(n) to be g(v) + e(v, n);
10: if (n visited) QQ.decrease(n g(n})jlelse Qinsert(n, g(n)): 10: if (n visited) Q).decrease(n, gin)); else QQinsertin, g(n)):
11: Mark n as visited, if not already visited; 11: Mark n as visited, if not already visited;
12: end if 12 end if
13: end for 13: end for
14: end while 14: end while
15: return null path; 15: return null path;
M. Kallmann

M. Kallmann

Example . Algorithm: A* .
* Includes Heuristic
— Cost becomes cost-to-come + cost-to-go

— Typical cost-to-go heuristic: dist(node,goal)

Algorithm 2 - A* Algorithm for Shortest Paths
Input: source node s and goal node .
Output: shortest path from s to £, or null path if it does not exist.
1: AStar(s.t)
2: Initialize ¢ with (s, 0), set g(s) to be 0, and mark s as visited;
3: while () notempty) do
4 v+ Q.remove():
if (v = ¢) return reconstructed branch from v to s;
for all (neighbors nofv) do
if (nnot visited or g(n) > g(v) + c(v.n)) then
Set the parent of n to be v;
9: Set g(n) to be g(v) + e(v.n):
100 if (nvisited) then Q.decrease(n. g(n)+h(n)):
11 else Q.insert(n, g(n) + h(n)):
12 Mark n as visited, if not already visited;
13: return null path;

o= 3

M. Kallmann

M. Kallmann

Example Analysis .

31
* Priority Queue
Diik A* — Self-balancing binary tree or a binary min-heap
g stra * Insertion, removal and decrease: O(log(k))
— Simplifications possible
* Decrease operation not as simple to implement
* Good option: to “insert again” instead of a decrease

» QOverall time
* O((ntm)logn)
(n = number of vertices, m = number of edges)

* Equivalentto O (mlogn)
— Note: m may be O(n?)

M. Kallmann M. Kallmann

Geometric Path Planning

33

Euclidean Shortest Paths (ESPs)

M. Kallmann

Euclidean Shortest Paths

34

» Shortest paths in the Euclidean plane

— Paths are “globally” shortest in the plane
* And not in a given graph representing the plane
+ Cannot be efficiently reduced to a simple graph search

— Most popular method
» Search the “Visibility Graph”
— unfortunately it has O(n?) edges (n = # obs vertices)

— But it can be computed in O(n log n)
+ Using the “continuous Dijkstra” approach
— Optimal algorithm difficult to implement in practice
— More about that later

M. Kallmann

35

Visibility Graph

M. Kallmann

Visibility Graph

» Edges connect all pairs of visible vertices

R

36

M. Kallmann

Visibility Graph

37

M. Kallmann

Visibility Graph

* It can be preprocessed
— Query points added later at run-time

38

M. Kallmann

Visibility Graph
* Full visibility graph

— Optimizations are possible

39

M. Kallmann

Visibility Graph

» Optimizations are possible

40

— Ex: discard edges connecting “concave corners”

M. Kallmann

Visibility Graph

* Final graph for path search
— Ready for a discrete path search algorithm

41

— Shortest path in the Visibility Graph is the ESP

M. Kallmann

Visibility Graph

* Preprocessing for a specific clearance value
— Lozano-Pérez and Wesley 1979
— Chew 1985

* First dilates the environment, then computes visibility
graph of tangents
— Pre-computation: O(n2log n), size: O(n?), query: O(n?log n)

42

» Clearance-independent preprocessing possible
— Wein, van den Berg and Halperin, “the visibility—
Voronoi complex and its applications”, 2007

* Preprocessing: O (n?logn)
* Query time: O (nlogn+m) =0 (n?)
* Probably the best practical method for global optimality

M. Kallmann

43

Pre-processing for a source point:

Shortest Path Tree

M. Kallmann

The Shortest Path Tree

» Contains shortest paths from all vertices to
source point

— Can be computed from the visibility graph with
an exhaustive Dijkstra Expansion

44

Algorithm 2 Dijkstra SPT Expansion

1: function BUILDSPT (p)

2 Initialize priority queue ¢ with p;
3 Mark node of p as visited;

4 while (¢} not empty) do
5.
6
7

§ +— Q.remove();
for all (neighbors n of 5) do
if (n not visited or g(n) > g(s) + d(s.n)) then

8: Set the SPT parent of n to be s;
9: Set g(n) to be g(s) + d(s,n);
10: Insert n with cost g(n) in Q:

11: Mark n as visited;

M. Kallmann

The Shortest Path Tree: Example

45

M. Kallmann

The Shortest Path Tree: Example

_‘—T—'_T______ — o — — — — = - e
r—— et —) o j =))

'_A

46

£

———_—_,_—
=0

M. Kallmann

The Shortest Path Tree

» The SPT is rooted at some source point

47

» Given a destination point,
how to use the SPT ?
— First compute visible vertices V to query point

— Identify vertex vV that is in the shortest path
to source point

» Simple given that vertices store their geodesic
distances to the SPT source (cost g)

— Shortest path is branch passing by v

M. Kallmann

Continuous Dijkstra

48

M. Kallmann

Continuous Dijkstra

49

» Addresses the whole plane

 Principle is the same as discrete SPT

— But is continuous, will generate a Shortest Path
Map (SPM) partition of the plane in O(n) cells

* Represents all shortest paths from the source to any
point in the continuous plane

* Once the SPM is computed, ESPs to the source
point can be efficiently computed

— It is based on the simulation of a “continuous
wavefront propagation” from the source point

[Mitchell 1991; Mitchell 1993], [Hershberger and Suri 1997]

M. Kallmann

Continuous Dijkstra

50

Wavefront propagation

— Every point in the wavefront border has equal
distance to the source point p

o

M. Kallmann

Continuous Dijkstra

51

Wavefront propagation

— Vertices hit by the wavefront will be visible to
their wave generators

M. Kallmann

Continuous Dijkstra

52

Wavefront propagation

— Every time a vertex is reached, a new wave
generator will cover the unseen region from the
previous generator

M. Kallmann

Continuous Dijkstra

53

Wavefront propagation

— New vertices are processed as they are
reached

M. Kallmann

Continuous Dijkstra

54

» Wavefront propagation

— New vertices are processed as they are
reached

M. Kallmann

Continuous Dijkstra

55

Wavefront propagation

— All points in the wavefront border remain with
equal geodesic distance to the source point

\

M. Kallmann

Continuous Dijkstra

56

» Front will eventually collide with itself
forming hyperbolic frontiers

Front
collisions

M. Kallmann

Continuous Dijkstra

Result: Shortest Path Map

— Captures all possible shortest paths to the
source point

57

M. Kallmann

Continuous Dijkstra

» Path extraction from SPM

— First find region containing goal point, then
trace back generator vertices

58

M. Kallmann

Continuous Dijkstra: Example

59

M. Kallmann

Continuous Dijkstra: Example

60

M. Kallmann

Continuous Dijkstra: Example Continuous Dijkstra: Example

61

62

Camporesi and Kallmann, Computing Shortest Path Maps with GPU Shaders, MIG 2014.
Camporesi and Kallmann, Computing Shortest Path Maps with GPU Shaders, MIG 2014.
M. Kallmann M. Kallmann

Continuous Dijkstra: Extensions

63

Additional Geometric
Representations useful for Path
Planning

(work in preparation)

M. Kallmann http://graphics.ucmerced.edu/ M. Kallmann

Navigation Meshes

M. Kallmann

Navigation Meshes

66

« Navigation meshes are a representation of
the free environment

— For virtual worlds, being fast is most important
» Computing ESPs is usually not addressed

» What properties should we expect?

M. Kallmann

Summary of Expected Properties

o7
 Linear number of cells

— Critical for path search to run in optimal times
Quality of paths

— Locally shortest paths should be provided
Arbitrary clearance

— Same structure should handle any clearance value
Representation robustness

— Intersections, overlaps, etc. should be handled
Dynamic updates

— Efficient updates when environment changes

M. Kallmann

Approaches

68

* Many approaches are possible
— Coarser cell decompositions
possible (less nodes to search)
* Ex.: NEOGEN [0liva and Pelechano 2013]

— Complete solutions for path
planning have been developed

* Ex.: Recast & Detour toolkit, freely
available

— However meshes need to be pre-
processed for each given desired
clearance

M. Kallmann

Approaches

69

 Structures most suitable for handling
arbitrary clearance efficiently:

Medial Axis CDTs

Medial Axis

* Medial Axis as a navigation mesh

— Good amount of work available

* For ex.: extensions for multi layered environments and

for handling dynamic updates available
— Geraerts, “Planning Short Paths with Clearance using Explicit
Corridors”, 2010
— van Toll et al., “Navigation Meshes for Realistic Multi-Layered
Environments”, 2011
— van Toll et al., “A Navigation Mesh for Dynamic Environments”, 2012

70

Medial axis represents CDT decomposes the free S : --..I
paths of maximum clearance space in O(n) triangles | % B
M. Kallmann M. Kallmann
Triangulations ; Triangulations .

 Triangulations as navigation meshes
— Triangle meshes are relatively simple to build
* Are composed of only straight edges

— Paths can be easily computed
» However handling clearance is not straightforward

— Can easily generate locally shortest paths
» For instance corridors will be already triangulated and
ready for the Funnel algorithm

(recent benchmark work shows that triangulations are faster)

M. Kallmann

However, clearance not directly represented

— Clearance checks per edge not enough

» Even if additional free edges are inserted to improve

capturing clearance in corridors

[Lamarche and Donikian, “Crowd of Virtual Humans: a New
Approach for Real Time Navigation in Complex and Structured
Environments”, 2004]

— Clearance checks per triangle not enough

* Previous attempts do not always work
[Demyen and Buro, “Efficient triangulation-based pathfinding”,
2006]

M. Kallmann

74

Local Clearance Triangulations

73

Triangulations
 Local Clearance Triangulations (LCTs)

— Proposes a refinement strategy for CDTs
allowing clearance information to be stored in the

triangulation

— Details in TOG 2014

» Kallmann, “Dynamic and Robust Local Clearance

Triangulations”, 2014

M. Kallmann

» Clearance Defined per triangle traversal

— Traversal from ab to bc: T4be

cl(a,b,c) = dist(b,s)

oy

— Traversal clearance:
s is the constraint behind ac and closest to

Local Clearance Triangulations

M. Kallmann

76

Local Clearance Triangulations

* However clearance metric not enough...
— Clearance in the red arrow direction not well

captured

Triangle
being
traversed

75

™~ Traversal
disturbance

M. Kallmann

» But it can work if there are no disturbances
— By refining the triangulation disturbances can be
eliminated and correct paths are obtained

M. Kallmann

Local Clearance Triangulations

77

* Refinements solve disturbances

— Disturbances appear when a traversal does not
correctly captures the local clearance of all
possible exit directions

™~ Traversal
disturbance

M. Kallmann

Local Clearance Triangulations

78

* Refinements solve disturbances

— Now all disturbances have been eliminated with
refinements

— Correct result: no valid path exists

N) New traversal now
N ' <=1 correctly captures
— narrow passage

M. Kallmann

Local Clearance Triangulations

79

« Example of refinements
— Total number of vertices remain O(n)

M. Kallmann

Example LCT

80

M. Kallmann

Example LCT

81

M. Kallmann

Example LCT

82

Test environment for The Sims 4: each small square represents a
static character, later dynamically removed when it is time to walk

[used with permission]

M. Kallmann

Example

83

&

&

N
A

Efficiently representation of environments at different scales

M. Kallmann

New Results on LCTs

84

— Dynamic Operations with management of refinements
— Robust operations addressing self-intersections at run-time

M. Kallmann, “Dynamic and Robust Local Clearance Triangulations”, TOG 2014
M. Kallmann

Dynamic Updates: Example

85

— Dynamic updates while maintaining the mesh ready for arbitrary
clearance path queries

Robustness: Example

86
— Robust watertight dynamic updates at run-time

Such arbitrary intersections are only possible
with the proposed robustness solutions

— Robustness with floating point representation is achieved with one exact point
location test for correctness detection and perturbation of invalid coordinates

Summary ; .
» Euclidean Shortest Paths are difficult to be

computed efficiently

— Visibility Graph popular but is a O(n?) structure

— Continuous Dijkstra methods promising

Questions?

* Navigation Meshes

— Focus on efficient path planning

— Medial axis gives paths of maximum clearance

— Triangulations can be used to efficiently

compute paths with arbitrary clearance

Render the Possibilities

SIGGRAPH2016 @

Advanced Planning Techniques

Mubbasir Kapadia

www.cs.rutgers.edu/~mubbasir

Challenges

Real-time Planning in Dynamic Environments

Planning with Constraints

Scaling to large worlds and many agents

www.cs.rutgers.edu/~mubbasir

Proposed Solutions

Roal-Bimeo Planning in Dunamic Environmanitc
nCdi-tHrhic T iarhhg Mo yridiCErvroRmchts

From Classical A* to Anytime Dynamic
Search

Planning with Constraints

Scaling to large worlds and many agents

www.cs.rutgers.edu/~mubbasir

Proposed Solutions

Roal-Bimao Planning in Dunamic Environmanitc
nCdi-trhRC T armhng Mo yrid i cEnvroRme Rt

From Classical A* to Anytime Dynamic
Search

Constraint-Aware Navigation in Dynamic
Environments

Scaling to large worlds and many agents

www.cs.rutgers.edu/~mubbasir

Proposed Solutions
e Plarnine i e

From Classical A* to Anytime Dynamic
Search

Planning with C .

Constraint-Aware Navigation in Dynamic
Environments

Scaling to-large-worlds-and-many-agents
Anytime Dynamic Search on the GPU

www.cs.rutgers.edu/~mubbasir

A* Search Algorithm

Computes optimal g-values of relevant states

procedure ComputePath()
while(sg,1 1 not expanded) &)

remove s with the smallest f(s) from OPEN; /\/\ A/Q
for each successor s’ of s
@

ifg(s") > g(s) +c(s,s") .\.

g(s") = g(s)+C(S s');
insert/update s" in OPEN with f(s') = g(s’) + h(s');

www.cs.rutgers.edu/~mubbasir

Dijkstra’s Search Expansion

Expands state in the order of f = g values

goal

www.cs.rutgers.edu/~mubbasir

A* Search Expansion

Expands state in the order of f = g+h values

goal

Courtesy Likhachev 2010

www.cs.rutgers.edu/~mubbasir

A* Search Expansion

Expands state in the order of f = g+h values

For large problems, this results in A* quickly running out of
memory

S start
B goal

Courtesy Likhachev 2010

www.cs.rutgers.edu/~mubbasir

Weighted A* Search Expansion

Expands states in the order of f = g + €.h values

Ss/’arf

key to finding solution fast:
shallow minima for h(s)-h*(s) function

Courtesy Likhachev 2010

www.cs.rutgers.edu/~mubbasir

Anytime Repairing A* (ARA*)

Efficient series of weighted A* searches with decreasing €

Anytime Repairing A* (ARA*)

set ¢ to large value;
(S = 0; v-values of all states are set to infinity;
while > 1
CLOSED = {}; INCONS = {};
ComputePathwithReuse();
publish current ¢ suboptimal solution;

decrease ¢
initialize OPEN = OPEN U INCONS;

ARA*: Anytime A* with Provable Bounds on Sub-Optimality
Maxim Likhachev, Geoff Gordon and Sebastian Thrun
Advances in Neural Information Processing Systems, 2003

www.cs.rutgers.edu/~mubbasir

mitialize OPEN with all overconsistent states;
ComputePathwithReuse function
while(f(s,,,,;) > minimum f-value in OPEN)
remove s with the smallest [g(s)+ eh(s)] from OPEN,
insert s into CLOSED;
v(s)=g(s);
for every successor s’ of s
ifg(s’) > g(s) + c(s,s)
g(s) = gls) + c(s.s);
if s not in CLOSED then insert s into OPEN,;
otherwise insert s " into INCONS

www.cs.rutgers.edu/~mubbasir

Anytime Repairing A* (ARA*)

Con/sistent State: ., L
g(S) - mlns”épred(s’)(g(s)+C(S S))

= g(s)+c(s,s)

Inconsistent State:
g(sl) > Mg cpred(s’) (g(S//) + C(Sﬁv S/))

Anytime Repairing A* (ARA*)

mitialize OPEN with all overconsistent states;

ComputePathwithReuse function
while(f(s,,,,;) > minimum f-value in OPEN)
remove s with the smallest [g(s)+ eh(s)] from OPEN,
msert s into CLOSED;
v(s)=g(s),
for every successor s’ of s
ifg(s’) > g(s) + c(s.s’)
8(s) = g(s) +c(s.s);
if s not in CLOSED then insert s into OPEN,;
otherwise insert s~ into INCONS

www.cs.rutgers.edu/~mubbasir

www.cs.rutgers.edu/~mubbasir

Anytime Repairing A* (ARA*)

mitialize OPEN with all overconsistent states;

ComputePathwithReuse function
while(f(s,,,;) > minimum f-value in OPEN')

remove s with the smallest /g(s)+ eh(s)] from OPEN;
insert s into CLOSED;

v(s)=g(s),

for every successor s’ of s
ifg(s’) > g(s) +c(s.s”)
8(s) = g(s) +c(s.s);
1f s not in CLOSED then insert s’ into OPEN;

otherwise insert s into INCONS

www.cs.rutgers.edu/~mubbasir

Anytime D*

Combined properties of anytime and dynamic planning

Set € to large value
While goal is not reached
ComputePathWithReuse()
Publish g-suboptimal path
Follow path until map is updated
Update corresponding edge costs
Set start to current state of agent
If significant changes were observed
Increase € or replan from scratch
Else
Decrease €

Anytime search in dynamic graphs
Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebastian Thrun
Journal of Artificial Intelligence, 2008

www.cs.rutgers.edu/~mubbasir

Anytime D*

Combined properties of anytime and dynamic planning

Set € to large value

While goal is not reached

ComputePathWithReuse()

Publish e-suboptimal path

Follow path until map 1s updated

Update corresponding edge costs

Set start to current state of agent

If significant changes were observed
Increase € or replan from scratch

Else
Decrease €

Anytime search in dynamic graphs
Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebastian Thrun
Journal of Artificial Intelligence, 2008

www.cs.rutgers.edu/~mubbasir

Anytime D*

Combined properties of anytime and dynamic planning

Set ¢ to large value

While goal is not reached
ComputePathWithReuse()
Publish e-suboptimal path
Follow path until map is updated
Update corresponding edge costs

Set start to current state of agent

Increase € or replan from scratch

Else

Decrease €

Anytime search in dynamic graphs
Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebastian Thrun
Journal of Artificial Intelligence, 2008

Anytime D*

Combined properties of anytime and dynamic planning

Set € to large value

While goal is not reached
ComputePathWithReuse()
Publish e-suboptimal path

Follow path until map 1s updated
Update corresponding edge costs
Set start to current state of agent

Tf significant changes were observed
Increase € or replan from scratch
Else
Decrease €

Anytime search in dynamic graphs
Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebastian Thrun
Journal of Artificial Intelligence, 2008

www.cs.rutgers.edu/~mubbasir

www.cs.rutgers.edu/~mubbasir

Anytime D*

o

www.cs.rutgers.edu/~mubbasir

Proposed Solutions
e i L

From Classical A* to Anytime Dynamic
Search

lannine wit .

Constraint-Aware Navigation in Dynamic
Environments

Scaling to-large-worldsand-many-agents

Anytime Dynamic Search on the GPU

www.cs.rutgers.edu/~mubbasir

Global Navigation with Spatial Constraints in Dynamic Environments

www.cs.rutgers.edu/~mubbasir

Plan Execution
In Along(Wall)

Extending AD* to compute and repair constraint-aware paths
www.cs.rutgers.edu/~mubbasir

Challenges

Environment representation

Constraint specification

Constraint Satisfaction

www.cs.rutgers.edu/~mubbasir

Proposed Solutions
Envi .
Hybrid representation for constraint-aware
navigation

Constraint specification

Constraint Satisfaction

www.cs.rutgers.edu/~mubbasir

Proposed Solutions
Envi i
Hybrid representation for constraint-aware
navigation

- : ficati

Cost multiplier fields used to represent
qualitative constraints

Constraint Satisfaction

www.cs.rutgers.edu/~mubbasir

Proposed Solutions
Envi .
Hybrid representation for constraint-aware
navigation

- : ficati

Cost multiplier fields used to represent
qualitative constraints

- int Satisfacti

An anytime dynamic planner that computes and
repairs constraint-aware paths

www.cs.rutgers.edu/~mubbasir

dynamic annotation

M

N o

.

Proolarn Darfintclon Wit Consiralres Plair) wWitnolr cor)

Environment Triangulation Yitri
www.cs.rutgers.edu/~mubbasir

Object annotations with additional nodes added to Y ;; Dense Uniform Graph 2Zdense
www.cs.rutgers.edu/~mubbasir www.cs.rutgers.edu/~mubbasir

)X{)A‘ Constraint Formulation

-
my" A‘ e () = —w (k1 + k2 - 7(c, T)) 77

UV

mc(f):{g%(f) . e ()] < e

: otherwise

J

(A=
S

<.

Hybrid graph Xinybria
www.cs.rutgers.edu/~mubbasir

Constraint Formulation
e (Z) :(L’l + k2 - r(c, (T"))_Q

!

=

o ome (@) 0 me (F)] < e
me (%) = { 0 : otherwise

Constraint Formulation
m(; (?) = —W + ’,((,t. (?))—2

o me (@) 0 me(F)] < e
N 0 : otherwise

Constraint Formulation
e (T) = —w (k1 + ko (e, 2)

me@ = { ge@ ;<

otherwise

Constraint Formulation

e (£) = —w (k1 + ko - r(e,)72

) ome (@) o e (@) < e
me (%) = { 0 : otherwise

Multiple Constraints

mec (¥) = max (1, mo + Z me ()

ceC

)

Cost multiplier for a transition:

Mc (S, .9') = / mc (Z) dZ

Mc (s,s") = mc (%)

www.cs.rutgers.edu/~mubbasir

Multiple Constraints

mo

Cost multiplier for a transition:

Mc (s,s") = / mc (¥) d¥

Me (5.5 = me (Z52)

www.cs.rutgers.edu/~mubbasir

Multiple Constraints

Cost multiplier for a transition:

Mc (s, s/) = / mc (T) dT
s—s’

Mo (s.8) ~ mc (%)

www.cs.rutgers.edu/~mubbasir

Multiple Constraints

mc (£) = max (1, mo + Z me. (Z)

ceC

Cost multiplier for a transition:

)

Mc (s, s/) = / mec (Z) d¥
J s—ss’

Mc (s,sl) ~me (@)

www.cs.rutgers.edu/~mubbasir

Multiple Constraints
mec () = max (1, mo + Z me (f)>
ceC

Cost multiplier for a transition:

Mc (s, s/) = / mc (%) dZ
s—s’

Mc (s,s') A mc (M)

2

www.cs.rutgers.edu/~mubbasir

Planner: Cost Computation

Modified cost of reaching state s:

g(sstart7 3) - Q(Sstart; S/) + MC (37 S,) : 6(37 S/)

g(sstart7 3) = Z

(Sivsj)en(sstart 15)

Mc (Siv Sj) ' C(siv Sj)

www.cs.rutgers.edu/~mubbasir

Accommodating Dynamic Constraints

Algorithm 1 ConstraintChangeUpdate (¢, Zprev, Tnext)

1: S = region(m., Tprev)
2: S = region(me, Tnext)
3: for each s € SP™V U S do
if pred(s) () VISITED # NULL then
UpdateState(s)
if s’ € S2** A c € Cy, then g(s') = oo
if s’ € CLOSED then
for each s € succ(s’) do
if s € VISTTED then
UpdateState(s”)

B

VR W

www.cs.rutgers.edu/~mubbasir

Search Expansion!
Near: BackOf(A) A CIMNCEVaNOIIIAEY)

HIgHWAVICTOSSINYIISTNG U MLy AN aVigation:
\MemCie g

Real-time Planning in Dynamic-Environments
From Classical A* to Anytime Dynamic
Search
Plarningwith-Censtraints

S5 QL

Anytime Dynamic Search on the GPU

www.cs.rutgers.edu/~mubbasir

Need for high fidelity navigation in complex, dynamic virtual
environments

www.cs.rutgers.edu/~mubbasir

Challenges

Large-scale, complex, dynamic environments

Strict optimality requirements

Scalability with number of agents

www.cs.rutgers.edu/~mubbasir

Massively parallel wave-front based search with
efficient plan repair

Strict optimality requirements

Scalability with number of agents

www.cs.rutgers.edu/~mubbasir

Massively parallel wave-front based search with
efficient plan repair

Termination condition enforces strict optimality with
minimum number of GPU iterations

Scalability with number of agents

www.cs.rutgers.edu/~mubbasir

Massively parallel wave-front based search with
efficient plan repair

Termination condition enforces strict optimality with
minimum number of GPU iterations

Handles any number of moving agents at no additional
computational cost

www.cs.rutgers.edu/~mubbasir

Method Overview

Algorithm 1 computePlan(*m.,,,)

My <= Mepu

My < Mepu

repeat
flag < 0O
plannerKernel(m.., m.,, flag)
swap (M, M)

until (flag = 0)

Mepu — My

www.cs.rutgers.edu/~mubbasir

Method Overview

Algorithm 1 computePlan(*m.,,,)

My < Mepuy

My <~ Mepuy

repeat
flag < 0O
plannerKernel(m.., m.,, flag)
swap (1M, M)

until (flag = 0)

Mepu < My

www.cs.rutgers.edu/~mubbasir

Method Overview

Algorithm 1 computePlan(*m.,,,)

My <— Mepy
Moy <= Mepy
repeat

flag < 0O

plannerKernel(m.,, m.,, flag)

swap (M-, My,
until (flag = 0)
mcpu <— mfr‘

www.cs.rutgers.edu/~mubbasir

Method Overview

Algorithm 2 plannerKernel(*m,., *m.,, * flag)

s < threadState
if s #£ obstacle As # goal then
for all s’ in neighbor(s) do
if s’ £ obstacle then
newg < g(s') + c(s,s’)
if (newg < g(s) V g(s) = —1) A g(s’) > —1 then
pred(s) « s’
g(s) < newg
{ evaluate.termination.condition }

9(9) = 7n/in.s’Esucc(s)/\g(s’)ZO(C(Sa S/) + 9(9/))

www.cs.rutgers.edu/~mubbasir

Method Overview

g(S) = 77””5’Esucc(s)/\g(s’)ZO(C(St 8/) + g(‘S/))

www.cs.rutgers.edu/~mubbasir

Method Overview

Algorithm 2 plannerKernel(*m,., *m.,, * flag)

s <— threadState
if s # obstacle As # goal then
for all s’ in neighbor(s) do
if s’ # obstacle then
newg < g(s') + c(s,s’)
if (newg < g(s) V g(s) = —1) A g(s’) > —1 then
pred(s) « s’
g(s) < newg

| { evaluate_termination_condition }

g(S) = 77””5’Esucc(s)/\g(s’)20(6(87 8/) + g(sl))

www.cs.rutgers.edu/~mubbasir

Method Overview

Algorithm 1 computePlan(*m.,,,)

mfr‘ < mcpu
My < Mepu
repeat
flag < 0O
plannerKernel(m.,, m.,, flag)
I swap (M, My) I
until (flag = 0)
Mepu < My

www.cs.rutgers.edu/~mubbasir

Method Overview

Algorithm 1 computePlan(*m.,,,)

My < Mepy

Moy < Mepu

repeat
flag < 0O
plannerKernel(m.,, m.,, flag)
swap (M, M)

until (flag = 0)

Mepu < My

www.cs.rutgers.edu/~mubbasir

Wavefront expansion. N =3

\ l

www.cs.rutgers.edu/~mubbasir

Wavefront expansion. N =11

\ l

www.cs.rutgers.edu/~mubbasir

Wavefront expansion. N =15

N

www.cs.rutgers.edu/~mubbasir

Wavefront expansion. N =18

www.cs.rutgers.edu/~mubbasir

Termination Conditions

Exit when goal reached

if(s == goal)flag =0

Exit when whole map converges
flag=1

Minimal map convergence with optimality guarantees

if(g(s) < g(start) V g(agent) = —1) flag = 1

www.cs.rutgers.edu/~mubbasir

Non-uniform state space

www.cs.rutgers.edu/~mubbasir

Sub-optimal solution, N = 8

www.cs.rutgers.edu/~mubbasir

Termination Conditions

Exit when goal reached

if(s == goal)flag =0

Exit when whole map converges

flag=1

Minimal map convergence with optimality guarantees

if(g(s) < g(start) V glagent) = —1) flag =1

www.cs.rutgers.edu/~mubbasir

Optimal solution, N =17

www.cs.rutgers.edu/~mubbasir

Termination Conditions

Exit when goal reached
if(s == goal)flag =0
Exit when whole map converges
flag=1

Minimal map convergence with optimality guarantees

if(g(s) < g(start) V g(agent) = —1) flag =1

www.cs.rutgers.edu/~mubbasir

Optimal solution, N = 12
(minimum number of iterations)

www.cs.rutgers.edu/~mubbasir

Efficient Plan Repair for Dynamic
Environments & Moving Agents

Algorithm 3 Algorithm to propagate state inconsistency

s + threadState
if pred(s) # NULL then
if (g(s) == obstacle V pred(s) == obstacle V g(s) # g(pred(s)) +
c(s,s’)) then
pred(s) = NULL
g(s) = -1
incons = true

www.cs.rutgers.edu/~mubbasir

Dynamic Search on The GPU:

Step by Step demonstration of plan computation and efficient plan repair.

Multi-Agent Planning

Extended Termination Condition
if((9(s) < maza;eqay9(ai)) v (9(ai) = —1va; € {a}))

Multi-Agent Simulation
* Single map can be queried by all agents to compute path
¢ Movement along path using local collision avoidance

Multiple Target Locations
e Aseparate map required for each target
* Significant memory overhead

www.cs.rutgers.edu/~mubbasir

Performance Analysis

“GPULEXITA #GPU L,EXITB ~GPU 2, EXITA +GPU 2, EXITB

é

PERFORMANCE TIME (5)

03

Agent Scalability
-
5 el
& ’:‘
st ™
Memory

“GPULEMTA =GPULEXTE

~GPU2EATA GPUZEXTE

H

PERFORMANCETIME(S) .

2 e o s s e
ENVIRONMENTSIZE (NAN GRID UNITS)

Environment Scalability

~PLANREPAIR #PLAN FROM SCRATCH

PERFORMANCE TIME (5)

INTIAL OBSTACLE OBSTACLE GOAL START
MOVEMENT MOVEMENT MOVEMENT MOVEMENT

Dynamic Planning

www.cs.rutgers.edu/~mubbasir

200 /Agent Giobal PathsPlanning and
’ Simulgti?n on Complex Benchmarks
; N L | ‘

saddn s LA

-y * ’
. LA
e e e ea e

* o, ()
o Alecal

1Y

GPU-based Dynamic Search on Adaptive Resolution
Grids

£ el

GPU-based Dynamic Search on Adaptive Resolution Grids
Francisco Garcia, Mubbasir Kapadia, and Norman I. Badler
IEEE International Conference on Robotics and Automation, June 2014

www.cs.rutgers.edu/~mubbasir

Render the Possibilities

SIGGRAPH2016 j

Planning Techniques for
Character Animation

Mubbasir Kapadia

www.cs.rutgers.edu/~mubbasir

Outline

* Footstep Domain for Dynamic Crowds

* Precomputing Environment Semantics for
Contact-Rich Character Animation

* Additional Application Domains

www.cs.rutgers.edu/~mubbasir

“Current steering algorithms cannot handle the space of all possible scenarios
that agents encounter in dynamic virtual environments”

“A particle-based agent representation cannot capture nuanced interactions that
humans exhibit in confined and crowded situations.”

065 PPR MEGOCENTRIC RVO 9¢REACTIVE ~~CCROWDS

0 2000 4000 6000 8000 10000
NUMBER OF SAMPLES

COVERAGE

Scenario Space: Characterizing Coverage, Quality, and Failure of Steering Algorithms
Mubbasir Kapadia, Matt Wang, Shawn Singh, Glenn Reinmann, Petros Faloutsos
ACM SIGGRAPH Symposium on Computer Animation, August 2011

www.cs.rutgers.edu/~mubbasir

®
Vector @ ®
Interface @ @ ©

® ©

www.cs.rutgers.edu/~mubbasir

“A particle-based agent representation cannot capture nuanced interactions that
humans exhibit in confined and crowded situations.”

O]
Vector O ®

Interface
QO Ypo L

_

S -

www.cs.rutgers.edu/~mubbasir

“A particle-based agent representation cannot capture nuanced interactions that
humans exhibit in confined and crowded situations.”

@ O

Vector O @ >

Interface ®
) O L ®©

| |
g1 | Bt

www.cs.rutgers.edu/~mubbasir

www.cs.rutgers.edu/~mubbasir

Footstep Navigation for Dynamic Crowds

Footstep Interface

Footstep Navigation for Dynamic Crowds
Shawn Singh, Mubbasir Kapadia, Glenn Reinmann, Petros Faloutsos
Special Issue, Computer Animation and Virtual Worlds (CAVW), April 2011

State and Action Space

.. S ={s|x,v,xy,
0.1 € {L, R}}
A= {CL|¢, Udes T}

Footstep Domain

www.cs.rutgers.edu/~mubbasir

Footstep Action Selection

* *.y)

@

. '\.,\ /@/Q&
Previous ™, P

foot y=a{5"- ;
o
® x/ Current foot
Y (f.f)
Pl N
World Space "

(x(t),y(t),fc(t),j/(t)) - (Vx0t7 0”27 Vxos 20”)

www.cs.rutgers.edu/~mubbasir

Footstep Action Selection

DOF 1: trajectory orientation

www.cs.rutgers.edu/~mubbasir

Footstep Orientation

Constraine_d invgarval of
foot orientations

b ..
[f‘ﬁnem—inner 7f¢neX[—0Uter] = ’jfd)pre\r _oulerafdbprev_inner + ;-‘ ﬁ[qb, atanz()%)C)]

www.cs.rutgers.edu/~mubbasir

Cost Formulation

Cost Function
C(S, S/) = AE, + AE, + AE;
AE, =R -T

m
AEQ = 5 |(V desired)z_(vo COS(ZQ))Z‘

dP
AE; =w- e length = w - mo - length

Heuristic Function

h(S) = Cexpected X I

Cost Formulation

Cost Function

c(s,s') = AE| + AE, + AE;
AE,=R-T
AE, = % |(V desirea)*— (vo c05(26))?|

dP
AE; =w- e length = w - mo - length

Heuristic Function

h(S) = Cexpected X 1

Spherical Inverted Pendulum Model - Sagittal View

m
AE, = E | (V desired)z_(v() COS<29)>2|

Cost Formulation

Cost Function
c(s,s') = AE| + AE, + AE;
AE, =R-T
AE, = g |(V desirea) > — (v c05(26))?|

dP
AE; =w- T length = w - ma - length

Heuristic Function

h(S) = Cexpected X N

Cost Formulation

Cost Function
C(S, S/) = AE, + AE, + AE;
AE, =R -T

m
AEQ = 5 |(V desired)z_(vo COS(ZQ))2‘

dP
AE; =w- e length = w - mo - length

Heuristic Function

h(S) = Cexpected X N

Short Horizon Space-Time Planner

Short-horizon planner

www.cs.rutgers.edu/~mubbasir

U Turn

www.cs.rutgers.edu/~mubbasir

Dynamic Collision Bounds

\

namic Collision Bounds

www.cs.rutgers.edu/~mubbasir

Narrow Passageways

Large Scale Simulations

www.cs.rutgers.edu/~mubbasir

www.cs.rutgers.edu/~mubbasir

Coverage Comparison

085 -PPR_ MBEGOCENTRIC -#4RVO -REACTIVE ~~CCROWDS _-o-FOOTSTEP

0 2000 4000 6000 8000 10000
NUMBER OF SAMPLES

Scenario Space: Characterizing Coverage, Quality, and Failure of Steering Algorithms
Mubbasir Kapadia, Matt Wang, Shawn Singh, Glenn Reinmann, Petros Faloutsos
ACM SIGGRAPH Symposium on Computer Animation, August 2011

www.cs.rutgers.edu/~mubbasir

Need for high fidelity navigation in complex, dynamic virtual
environments

www.cs.rutgers.edu/~mubbasir

The Quest for Complete Coverage .
P g Outline

117 4PPR MEGOCENTRIC 4RVO +REACTIVE ~CCROWDS -s-FOOTSTEP ~-STP

T ——— .~

M * Precomputing Environment Semantics for

Contact-Rich Character Animation

B (\/\M—MW f

0 2000 4000 6000 8000 10000
NUMBER OF SAMPLES

COVERAGE

Scenario Space: Characterizing Coverage, Quality, and Failure of Steering Algorithms
Mubbasir Kapadia, Matt Wang, Shawn Singh, Glenn Reinmann, Petros Faloutsos
ACM SIGGRAPH Symposium on Computer Animation, August 2011

www.cs.rutgers.edu/~mubbasir www.cs.rutgers.edu/~mubbasir

REQUIREMENTS

- Scalability in environment and
motion complexity

- Interactivity

- Coupled character and
environment authoring

PRECISION: Precomputed Environment Semantics for Contact-Rich Character Animation
Mubbasir Kapadia, Xu Xianghao, Maurizio Nitti, Marcelo Kallmann,
Stelian Coros, Robert W. Sumner, Markus Gross
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I13D), 2016

REQUIREMENTS

Scalability in environment and
motion complexity

REQUIREMENTS

Interactivity

REQUIREMENTS

Coupled character and
environment authoring

SOLUTIONS

Motion Analysis: Identify contact
semantics

Environment Analysis: Identify how
characters can interact with geometry

Runtime Navigation & Motion
Synthesis: Seamless integration with
existing approaches

PRECISION Framework

Geometry with Transitions Runtime Navigation
Geometry Motion Database Motion Signature and Navigation Mesh and Motion Synthesis

Surface Clustering

P

Motion
Detection

Surface
Gathering

Clustered Geometry Gathered Geometry Geometry with Motion Transitions

PRECISION Framework

Motion Database

Motion Signature

Motion Analysis

PRECISION Framework

Geometry

Surface Clustering

Surface
Gathering

Clustered Geometry

Gathered Geometry

Environment Analysis

Original Geometry

Triangulated Geometry

Triangles Clustered into Surfaces

Surface Grouping based on Normals

PRECISION Framework

Motion Signature

Motion
Detection

Gathered Geometry Geometry with Motion Transitions

Motion Skill Detection

Motion Skill Detection

Motion Signature Clustered Surfaces Annotated Motion Skills

Algorithm 2: DetectMotions (M, S)

foreach m € M do
foreach 6 € (0,27) do
foreach i € (1,|Cm|) do
ci’ = Rotate(c;,)
foreachs € S do
if ng "N < ¢ then
| S; + SiUs

R« S1

foreach i € (2,|C) do

R. 0

foreach (s, s) € R X S; do

& Pi-1—Pi
Vic1i ¢
=LY g 2=l

(s;, s’b) + ProjectIntersect(sq, b, Vi11,d)
R, Ry U (5q,51)

R+ R

R + CollisionCheck(R, Vi);

return R

Algorithm 2: DetectMotions (M, S)

foreach m € M do

Algorithm 2: DetectMotions (M, S)

foreach 6 € (0,27) do
foreach i € (1,|Cr) do
| ¢ =Rotate(c;,f)

Y
()
A 1(:4
14
¢y’ Hf +cg
c1 U
c
ll 2 c3
C1 *
f

Contact Rotation

Algorithm 2: DetectMotions (M, S)

foreachs € S do
ifns -n. s <ethen
| Si < SiUs

Algorithm 2: DetectMotions (M, S)

| | Resy

Algorithm 2: DetectMotions (M, S)

foreach i € (2,|Cr[) do
Ri+0
foreach (s, sp) € R X S; do

- Pi-1-Pi
Vi1
=1 g, =]l

(s;, s;,) + ProjectIntersect(sq, Sp, Vi11,d)
Rg — Rt u (S;,SL)
R+ R

Algorithm 2: DetectMotions (M, S)

Pi-1-Pi
[[pi—1-pil|

HEEEET

Algorithm 2: DetectMotions (M, S)

Algorithm 1: ProjectIntersect (s, sb, Vi j, d)

S:(—Sa+‘71J'd
’
Sp =S5 NS
S;=Sb—‘7iyj-d
’
Sg = 8p Nsa

’ !
return (s,,s,)

’ ‘ ‘ ‘ (s;,s{,)<—Prqjec‘tlntersect(sa,sb,vi_lyi,d) |

Algorithm 2: DetectMotions (M, S)

Sa
S

‘ ‘ ‘ ‘ (s;,s;,)<—Pn?jec,tlntersect(sa,sb,\“ri_lyi,d) |

Vab

*
Sa
!

S

Parallel Surfaces

Sh

Algorithm 2: DetectMotions (M, S)

Sa !
Sa
S
~Vab
Vab
’ ‘ ‘ ‘ (s;,s;,)<—Projectlntersect(sa,sb,\“ri_lyi,d) | s*‘
— b a
! J
Sb Sh

Arbitrary Orientations

Algorithm 2: DetectMotions (M, S)

| | | [ReRUGs)

Algorithm 2: DetectMotions (M, S)

|| R CollisionCheck(R, V.n);

Collision-free motion

Motion with collision

PRECISION Framework

Geometry with Transitions
and Navigation Mesh

eometry with Motion Transitions.

Navigation Integration

Moving Object
Added Transition 4

S

Added Transition

Moving Object

Removed Transition

PRECISION Framework

Runtime Navigation
and Motion Synthesis

Runtime Navigation and Motion Synthesis

Dynamic Game Worlds

Outline

* Additional Application Domains

www.cs.rutgers.edu/~mubbasir

ACCLMesh:
Curvature-Based Navigation Mesh Generation

ACCLMesh: Curvature-Based Navigation Mesh Generation
Glen Berseth, Mubbasir Kapadia, Petros Faloutsos
Computer Animation and Virtual Worlds (2016, To Appear)

Multi-Domain Planning for Real-time Planning in Dynamic Environments

Multi-Domain Planning for Real-time Planning in Dynamic Environments
Mubbasir Kapadia, Alejandro Beacco Porres, Francisco Garcia, Nuria Pelechano, Norman. |. Badler
ACM SIGGRAPH/EG Symposium on Computer Animation, 2013

An Event-Centric Planning Approach for Dynamic
Real-Time Narrative

/ oot
An Event-Centric Planning Approach for Dynamic Real-Time Narrative
Alexander Shoulson, Max Gilbert, Mubbasir Kapadia, and Norman |. Badler
International Conference on Motion in Games, 2013

Conclusion

* Planning not limited to simple navigation
problems or non-interactive applications.

* Challenges
— Discretizing problem representation

— Defining problem domain (state, action space,
costs, heuristics)

— Choosing right planning strategy

www.cs.rutgers.edu/~mubbasir

SIGGRAPHZ015 @

Module Ill - Planning Techniques for
Character Animation

Marcelo Kallmann
mkallmann@ucmerced.edu

UCMERCED

UNIVERSITY OF CALIFORNIA, MERCED

http://graphics.ucmerced.edu/ M. Kallmann

* When to use full-body motion planners?
— To achieve automatic motion synthesis for
virtual characters among obstacles
+ 3D collision detection always needed (bottleneck)

— Planners can be integrated on top of motion
controllers

 Leveraging the quality for several powerful
approaches developed in computer animation
— Ex.: Motion Control session yesterday

M. Kallmann

Planning in High Dimensions

 Build graph representation of free space by
sampling valid poses/configurations
— Example graph/roadmap built by sampling:

Planning Collision-Free Reaching Motions for Interactive Object
Manipulation and Grasping, Eurographics, 2003

M. Kallmann

Planning in High Dimensions

Planning Collision-Free Reaching Motions for Interactive Object
Manipulation and Grasping, Eurographics, 2003 M. Kallmann

Planning locomotion with motion capture data

M. Kallmann

Adding Motion Capture Data

« Example approach

— Build a motion graph from motion capture data
» Search on the motion graph (graph unrolling)
+ Good quality, but often slow to use directly

— Possible to improve speed with
+ search precomputation
+ and 2D path planning

» Extensive literature available on the area
— Representative references in course notes

M. Kallmann

Speeding up motion search

* By pre-computing search trees per node:

M. Kallmann

Precomputed Motion Maps

Analyzing Locomotion Synthesis with Feature-Based Motion Graphs, IEEE TVCG 2012
Precomputed Motion Maps for Unstructured Motion Capture, SCA 2012
Feature-Based Locomotion with Inverse Branch Kinematics, best paper at MIG 2011

M. Kallmann

Precomputed Motion Maps

Analyzing Locomotion Synthesis with Feature-Based Motion Graphs, IEEE TVCG 2012
Precomputed Motion Maps for Unstructured Motion Capture, SCA 2012
Feature-Based Locomotion with Inverse Branch Kinematics, best paper at MIG 2011

Integrating manipulation planning with locomotion

M. Kallmann M. Kallmann
Addressing Full-Body Manipulations . Addressing Full-Body Manipulations)
* Integration of two planners
— Motion capture concatenation search for
locomotion
— Sampling-based planning for the arm
Multi-Modal Data-Driven Motion Planning and Synthesis Multi-Modal Data-Driven Motion Planning and Synthesis
Mentar Mahmudi and Marcelo Kallmann Mentar Mahmudi and Marcelo Kallmann
ACM SIGGRAPH Conference on Motion in Games (MIG), 2015 ACM SIGGRAPH Conference on Motion in Games (MIG), 2015
M. Kallmann M. Kallmann

Addressing application-specific coordination constraints

M. Kallmann

Ex. Application: Virtual Demonstrators

14

» Determine suitable locations for delivering
information, and then animate a solution

demonstrator

target

observer

Planning Motions and Pl for Virtual D ators
Yazhou Huang and Marcelo Kallmann
IEEE Transactions on Visualization and Computer Graphics (TVCG), 2015

M. Kallmann

Behavioral Model

15

» Model derived from human subjects

— 4 participants, actions to 6 objects, for 5
observers at different locations
+ Action: pointing and delivering info about the object

M. Kallmann

Placement Determination

16

M. Kallmann

Placement Determination

17

Additional Results

18

Long-range sequence example

s

Planning Motions and Placements for Virtual Demonstrators
Yazhou Huang and Marcelo Kallmann
IEEE Transactions on Visualization and Computer Graphics (TVCG), 2015

M. Kallmann M. Kallmann
Additional Information
* Acknowledgements « Additional Material
— Grad students and Collaborators — SIGGRAPH course notes
* Mentar Ma_hmudi, Yazhou Huang, Carlo — Webpages of the authors:
Camporesi, Amaury Aubel http://graphics.ucmerced.edu/
Fundina A . http://www.cs.rutgers.edu/~mubbasir/
— Funding Agencies
* CITRIS Seed Funding (#12, #14) — Recent book published by the authors:
» National Science Foundation
(11S-0915665, BCS-0821766, CNS-0723281, ——n Geomeric and Discrete Path Planning for
nteractive Virtual orias
CNS-1305196) == Morgan & Claypool, 2016
[rm———]
Thank You !
M. Kallmann M. Kallmann

