

Geometric and Discrete Path Planning for Interactive Virtual Worlds

Marcelo Kallmann
University of California Merced
mkallmann@ucmerced.edu
UCMERCED

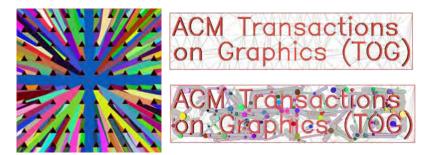
Mubbasir Kapadia Rutgers University Mubbasir.kapadia@rutgers.edu

Introduction

- Topics
 - Overview of the classical Computational Geometry and Al algorithms related to path planning
 - Overview of recent advances in planning methods for interactive virtual environments

Course Topics

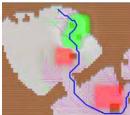
- 1) Discrete and Geometric Planning (Marcelo,30min)
 - A*, Shortest Paths, Visibility Graphs, Dijkstra,
 Shortest Path Maps, Navigation Meshes

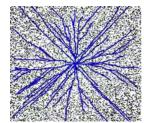


Examples: the shortest path map (left) and local clearance triangulation (right)

Course Topics

- 2) Advanced Planning Techniques (Mubbasir, 20min)
 - Extending classical A* to real-time constraints and dynamic scenarios, navigation with constraints, using GPU to speed up computations





Course Topics

- 3) Planning for Character Animation (Mubbasir and Marcelo, 30min)
 - Character navigation problems, full-body and behavior planning, interactive narrative, etc.

Course: Modules

- Introduction (3 min)
- Discrete and Geometric Planning (Marcelo) (30min)
- Advanced Planning Techniques (Mubbasir) (20min)
- Planning for Animation (Mubbasir and Marcelo) (30min)
- Questions and Discussion (7min)

(We will take quick questions after each part as well)

Additional Information

- · We will cover a lot of material in little time
 - Most topics will be covered as an overview
- Additional Material
 - SIGGRAPH course notes
 - Webpages of the authors:

http://graphics.ucmerced.edu/ http://www.cs.rutgers.edu/~mubbasir/

- Recent book published by the authors:

Geometric and Discrete Path Planning for Interactive Virtual Worlds Morgan & Claypool, 2016

Module I Discrete and Geometric Planning

Marcelo Kallmann mkallmann@ucmerced.edu

http://graphics.ucmerced.edu/

M. Kallmann

Geometric Path Planning

Introduction to Discrete Search

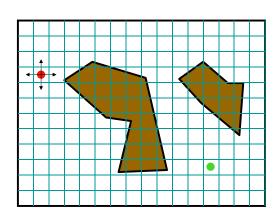
M. Kallmann

Discrete Search

Main classical algorithms

- Dijkstra
 - · Search expansion outwards from source
- $-A^*$
 - Reduces the number of nodes expanded with the use of a heuristic function
- Both can be applied to generic graphs
 - Positive edge weights only
 - 4- or 8-connected grids are also graphs

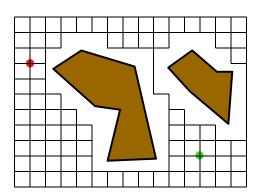
Ex: 4-Connected Grid Discretization



M. Kallmann M. Kallmann

Equivalent to a Graph

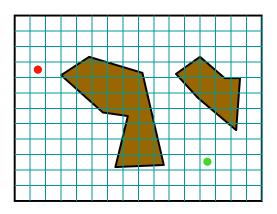
Equivalent to a Graph



M. Kallmann

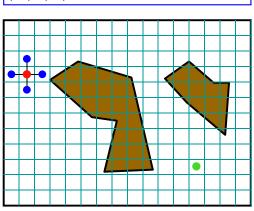
Example in Grid Discretization

• Example in a grid



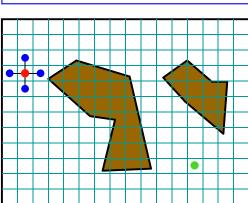
Example in Grid Discretization

Q:



Example in Grid Discretization

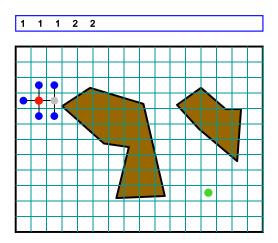
1 1 1 1



M. Kallmann

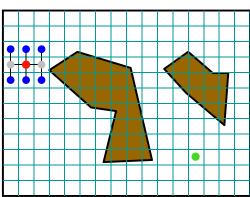
Example in Grid Discretization

11

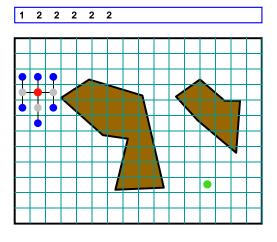


Example in Grid Discretization

1 1 2 2 2 2

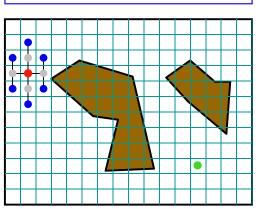


13



Example in Grid Discretization

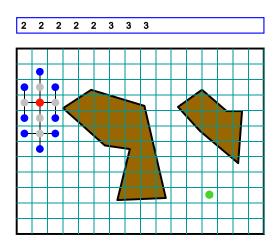
2 2 2 2 2 2



M. Kallmann M. Kallmann

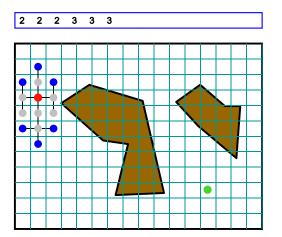
Example in Grid Discretization

1.4



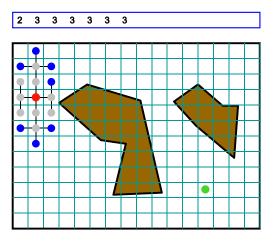
Example in Grid Discretization

1.0



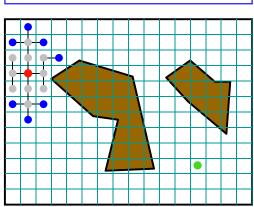
M. Kallmann M. Kallmann

17



Example in Grid Discretization

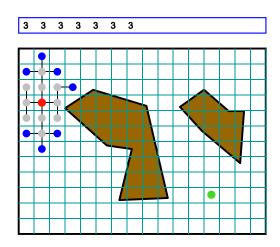
3 3 3 3 3 3 3



M. Kallmann M. Kallmann

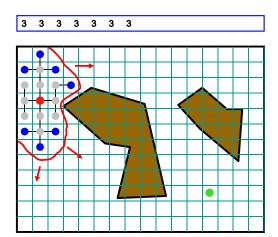
Example in Grid Discretization

19



Example in Grid Discretization

20



M. Kallmann M. Kallmann

3 3 3 3 3 3

Example in Grid Discretization

3 3 3 3 3 3

M. Kallmann M. Kallmann

Algorithm: Dijkstra

Initialization

wave front

propagation

Algorithm 1 - Dijkstra Algorithm for Shortest Paths

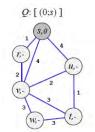
Input: source node s and goal node t.

Output: shortest path from s to t, or null path if it does not exist.

```
1: Dijkstra(s,t)

    Initialize Q with (s,0), set g(s) to be 0, and mark s as visited;

 3: while ( Q not empty ) do
     v \leftarrow Q.remove();
     if (v = t) return reconstructed branch from v to s;
     for each ( neighbors n of v ) do
       if ( n not visited or g(n) > g(v) + c(v, n) ) then
          Set the parent of n to be v;
          Set g(n) to be g(v) + c(v, n);
          if ( n visited ) Q.decrease(n, g(n)); else Q.insert(n, g(n));
          Mark n as visited, if not already visited;
        end if
     end for
14: end while
15: return null path;
```



Algorithm: Dijkstra

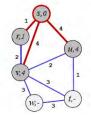
wave front

propagation

Iteration 1: all neighbors go to Q

Algorithm 1 - Dijkstra Algorithm for Shortest Paths Input: source node s and goal node t. Output: shortest path from s to t, or null path if it does not exist. 2: Initialize Q with (s,0), set g(s) to be 0, and mark s as visited; 3: while (Q not empty) do 4: v ← Q.remove(); if (v = t) return reconstructed branch from v to s; for each (neighbors n of v) do if (n not visited or g(n) > g(v) + c(v, n)) then Set the parent of n to be v; Set g(n) to be g(v) + c(v, n); if (n visited) Q.decrease(n, g(n)); else Q.insert(n, g(n)); 11: Mark n as visited, if not already visited; end if 12: 13: end for 14: end while 15: return null path;

1) Q: [(1:r), (4:u), (4:v)]



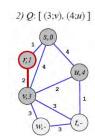
M Kallmann M. Kallmann

• Iteration 2: decrease key called for v

```
Algorithm 1 - Dijkstra Algorithm for Shortest Paths
Input: source node s and goal node t.
Output: shortest path from s to t, or null path if it does not exist.
 1: Dijkstra(s,t)

    Initialize Q with (s,0), set g(s) to be 0, and mark s as visited;

 3: while ( Q not empty ) do
     v \leftarrow Q.remove();
     if (v = t) return reconstructed branch from v to s;
     for each ( neighbors n of v ) do
        if ( n not visited or g(n) > g(v) + c(v, n) ) then
          Set the parent of n to be v;
          Set g(n) to be g(v) + c(v, n);
         if ( n visited ) Q.decrease(n, g(n)); else Q.insert(n, g(n));
          Mark n as visited, if not already visited;
     end for
14: end while
15: return null path;
```



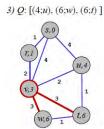
Algorithm: Dijkstra

• Iteration 3: target node t goes to Q

```
Algorithm 1 - Dijkstra Algorithm for Shortest Paths
Input: source node s and goal node t.
Output: shortest path from s to t, or null path if it does not exist.

    Initialize Q with (s,0), set g(s) to be 0, and mark s as visited;

3: while ( Q not empty ) do
     v \leftarrow Q.remove();
     if (v = t) return reconstructed branch from v to s;
     for each ( neighbors n of v ) do
       if ( n not visited or g(n) > g(v) + c(v, n) ) then
          Set the parent of n to be v;
          Set g(n) to be g(v) + c(v, n);
          if ( n visited ) Q.decrease(n, g(n)); else Q.insert(n, g(n));
          Mark n as visited, if not already visited;
     end for
14: end while
15: return null path:
```



M. Kallmann

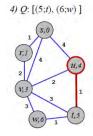
Algorithm: Dijkstra

• Iteration 4: decrease key called for t

```
Algorithm 1 - Dijkstra Algorithm for Shortest Paths
Input: source node s and goal node t.
Output: shortest path from s to t, or null path if it does not exist.
 1: Dijkstra(s,t)

 Initialize Q with (s,0), set g(s) to be 0, and mark s as visited;

 3: while ( Q not empty ) do
 4: v ← Q.remove();
     if (v = t) return reconstructed branch from v to s:
     for each ( neighbors n of v ) do
        if ( n not visited or g(n) > g(v) + c(v, n) ) then
          Set the parent of n to be v;
          Set g(n) to be g(v) + c(v, n);
         if ( n visited ) Q.decrease(n, g(n)); else Q.insert(n, g(n));
          Mark n as visited, if not already visited;
        end if
     end for
14: end while
15: return null path;
```

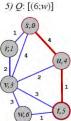


Iteration 5

```
Algorithm 1 - Dijkstra Algorithm for Shortest Paths
Input: source node s and goal node t.
Output: shortest path from s to t, or null path if it does not exist.
1: Dijkstra(s,t)

    Initialize Q with (s,0), set g(s) to be 0, and mark s as visited;

3: while ( Q not empty ) do
     v \leftarrow O.remove():
    if (v = t) return reconstructed branch from v to s;
     for each ( neighbors n of v ) do
       if ( n not visited or g(n) > g(v) + c(v, n) ) then
          Set the parent of n to be v;
          Set g(n) to be g(v) + c(v, n);
          if ( n visited ) Q.decrease(n, g(n)); else Q.insert(n, g(n));
          Mark n as visited, if not already visited;
       end if
     end for
14: end while
15: return null path;
```

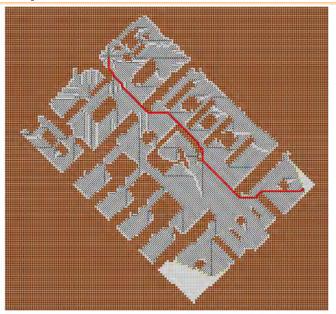


M. Kallmann

Algorithm: Dijkstra

M Kallmann M Kallmann

Example



M. Kallmann

Algorithm: A*

- Includes Heuristic
 - Cost becomes cost-to-come + cost-to-go
 - Typical cost-to-go heuristic: dist(node,goal)

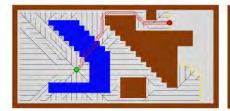
```
Algorithm 2 - \Lambda^o Algorithm for Shortest Paths Input: source node s and goal node t. Output: shortest path from s to t, or null path if it does not exist.

1: AStar(s, t)
2: Initialize Q with (s,0), set g(s) to be 0, and mark s as visited;
3: while (Q not empty) do
4: v \leftarrow Q.remove();
5: if (v = t) return reconstructed branch from v to s;
6: for all (neighbors\ n\ of\ v) do
7: if (n\ not\ visited\ or\ g(n) > g(v) + c(v,n)) then
8: Set the parent of n to be v;
9: Set g(n) to be g(v) + c(v,n);
10: if (n\ visited) then Q.decrease(n,g(n)+h(n));
11: else Q.insert(n,g(n)+h(n));
12: Mark n as visited, if not already visited;
13: return null path;
```

Example

Dijkstra

Α*



Analysis

- Priority Queue
 - Self-balancing binary tree or a binary min-heap
 - Insertion, removal and decrease: O(log(k))
 - Simplifications possible
 - Decrease operation not as simple to implement
 - Good option: to "insert again" instead of a decrease
- Overall time
 - O ((n+m) log n)
 (n = number of vertices, m = number of edges)
 - Equivalent to O (m log n)
 - Note: m may be O(n²)

M. Kallmann

Geom	etric	Path	PI	an	nin	q
						$\mathbf{-}$

33

Euclidean Shortest Paths (ESPs)

M. Kallmann

Euclidean Shortest Paths

Shortest paths in the Euclidean plane

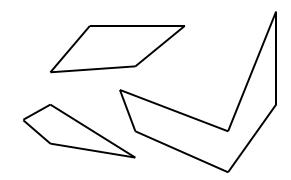
- Paths are "globally" shortest in the plane
 - And not in a given graph representing the plane
 - Cannot be efficiently reduced to a simple graph search
- Most popular method
 - · Search the "Visibility Graph"
 - unfortunately it has $O(n^2)$ edges (n = # obs vertices)
- But it can be computed in $O(n \log n)$
 - Using the "continuous Dijkstra" approach
 - Optimal algorithm difficult to implement in practice
 - More about that later

M. Kallmann

Visibility Graph

Visibility Graph

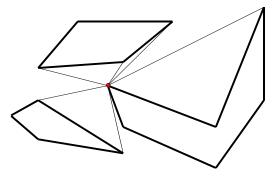
• Edges connect all pairs of visible vertices



M. Kallmann

Visibility Graph

27

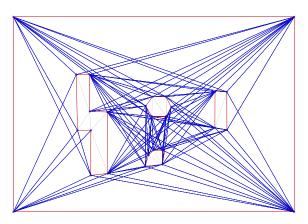


M. Kallmann

Visibility Graph

• It can be preprocessed

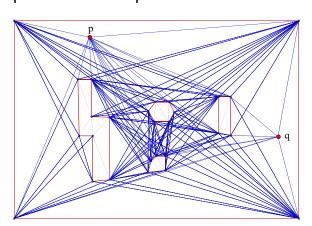
- Query points added later at run-time



M. Kallmann

Visibility Graph

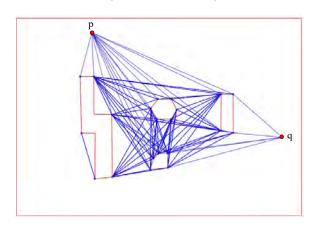
- Full visibility graph
 - Optimizations are possible



Visibility Graph

• Optimizations are possible

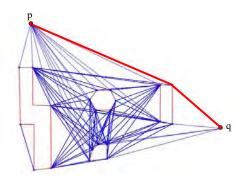
- Ex: discard edges connecting "concave corners"



M. Kallmann

Visibility Graph

- Final graph for path search
 - Ready for a discrete path search algorithm



- Shortest path in the Visibility Graph is the ESP

M. Kallmann

Visibility Graph

Preprocessing for a specific clearance value

- Lozano-Pérez and Wesley 1979
- Chew 1985
 - First dilates the environment, then computes visibility graph of tangents
 - Pre-computation: $O(n^2 \log n)$, size: $O(n^2)$, query: $O(n^2 \log n)$
- Clearance-independent preprocessing possible
 - Wein, van den Berg and Halperin, "the visibility–
 Voronoi complex and its applications", 2007
 - Preprocessing: O ($n^2 \log n$)
 - Query time: O $(n \log n + m) = O(n^2)$
 - Probably the best practical method for global optimality

M. Kallmann

Pre-processing for a source point:

Shortest Path Tree

The Shortest Path Tree

- Contains shortest paths from all vertices to source point
 - Can be computed from the visibility graph with an exhaustive Dijkstra Expansion

```
Algorithm 2 Dijkstra SPT Expansion

1: function BUILDSPT (p)

2: Initialize priority queue Q with p;

3: Mark node of p as visited;

4: while (Q not empty) do

5: s \leftarrow Q.remove();

6: for all (neighbors n of s) do

7: if (n not visited or g(n) > g(s) + d(s, n)) then

8: Set the SPT parent of n to be s;

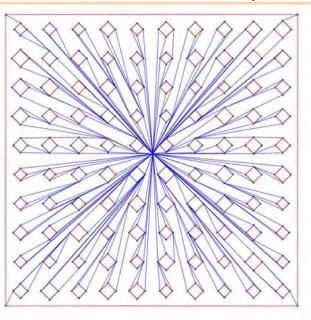
9: Set g(n) to be g(s) + d(s, n);

10: Insert n with cost g(n) in Q;

11: Mark n as visited;
```

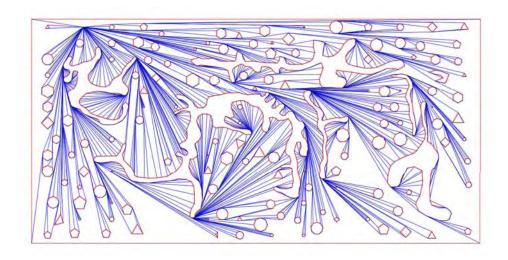
M. Kallmann

The Shortest Path Tree: Example



M. Kallmann

The Shortest Path Tree: Example



M. Kallmann

The Shortest Path Tree

- The SPT is rooted at some source point
- Given a destination point, how to use the SPT?
 - First compute visible vertices V to query point
 - Identify vertex $v \in V$ that is in the shortest path to source point
 - Simple given that vertices store their geodesic distances to the SPT source (cost *g*)
 - Shortest path is branch passing by ν

Continuous Dijkstra

Continuous Dijkstra

- Addresses the whole plane
- Principle is the same as discrete SPT
 - But is continuous, will generate a Shortest Path Map (SPM) partition of the plane in O(n) cells
 - Represents all shortest paths from the source to any point in the continuous plane
 - Once the SPM is computed, ESPs to the source point can be efficiently computed
 - It is based on the simulation of a "continuous wavefront propagation" from the source point

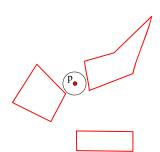
[Mitchell 1991; Mitchell 1993], [Hershberger and Suri 1997]

M. Kallmann

Continuous Dijkstra

Wavefront propagation

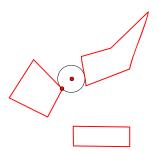
 Every point in the wavefront border has equal distance to the source point p



M. Kallmann

Continuous Dijkstra

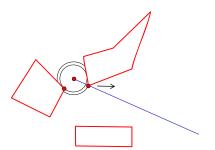
- Wavefront propagation
 - Vertices hit by the wavefront will be visible to their wave generators



Continuous Dijkstra

Wavefront propagation

 Every time a vertex is reached, a new wave generator will cover the unseen region from the previous generator

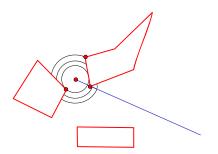


0

M. Kallmann

Continuous Dijkstra

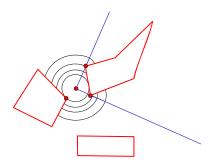
- Wavefront propagation
 - New vertices are processed as they are reached



M. Kallmann

Continuous Dijkstra

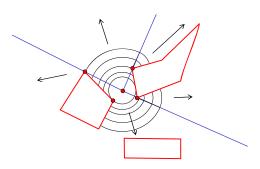
- Wavefront propagation
 - New vertices are processed as they are reached



M. Kallmann

Continuous Dijkstra

- Wavefront propagation
 - All points in the wavefront border remain with equal geodesic distance to the source point



Continuous Dijkstra

 Front will eventually collide with itself forming hyperbolic frontiers



4

M. Kallmann

Continuous Dijkstra

- Result: Shortest Path Map
 - Captures all possible shortest paths to the source point

M. Kallmann

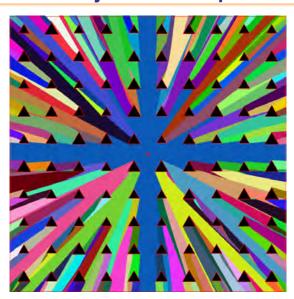
Continuous Dijkstra

- Path extraction from SPM
 - First find region containing goal point, then trace back generator vertices

M. Kallmann

Continuous Dijkstra: Example

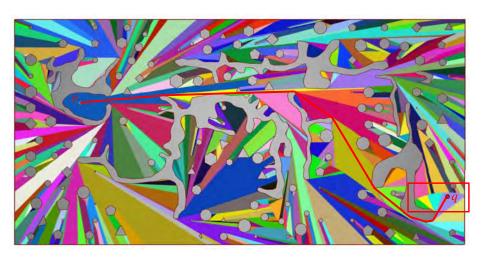
Continuous Dijkstra: Example



6

M. Kallmann

Continuous Dijkstra: Example



Camporesi and Kallmann, Computing Shortest Path Maps with GPU Shaders, MIG 2014.

M. Kallmann

Continuous Dijkstra: Example

Camporesi and Kallmann, Computing Shortest Path Maps with GPU Shaders, MIG 2014.

M. Kallmann

Continuous Dijkstra: Extensions

M. Kallmann

Additional Geometric Representations useful for Path Planning

http://graphics.ucmerced.edu/ M. Kallmann

(work in preparation)

Navigation Meshes

Navigation Meshes

 Navigation meshes are a representation of the free environment

- For virtual worlds, being fast is most important
 - Computing ESPs is usually not addressed
- What properties should we expect?

M. Kallmann

Summary of Expected Properties

· Linear number of cells

- Critical for path search to run in optimal times
- Quality of paths
 - Locally shortest paths should be provided
- Arbitrary clearance
 - Same structure should handle any clearance value
- Representation robustness
 - Intersections, overlaps, etc. should be handled
- · Dynamic updates
 - Efficient updates when environment changes

Approaches

- · Many approaches are possible
 - Coarser cell decompositions possible (less nodes to search)
 - Ex.: NEOGEN [Oliva and Pelechano 2013]



- Ex.: Recast & Detour toolkit, freely available
- However meshes need to be preprocessed for each given desired clearance



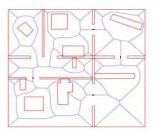
M. Kallmann

M. Kallmann

Approaches

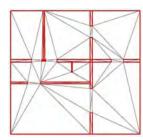
 Structures most suitable for handling arbitrary clearance efficiently:

Medial Axis



Medial axis represents paths of maximum clearance

CDTs



CDT decomposes the free space in O(n) triangles

M. Kallmann

Medial Axis

Medial Axis as a navigation mesh

- Good amount of work available
 - For ex.: extensions for multi layered environments and for handling dynamic updates available
 - Geraerts, "Planning Short Paths with Clearance using Explicit Corridors", 2010
 - van Toll et al., "Navigation Meshes for Realistic Multi-Layered Environments", 2011
 - van Toll et al., "A Navigation Mesh for Dynamic Environments", 2012



M. Kallmann

Triangulations

- Triangulations as navigation meshes
 - Triangle meshes are relatively simple to build
 - · Are composed of only straight edges
 - Paths can be easily computed
 - · However handling clearance is not straightforward
 - Can easily generate locally shortest paths
 - For instance corridors will be already triangulated and ready for the Funnel algorithm

(recent benchmark work shows that triangulations are faster)

Triangulations

- However, clearance not directly represented
 - Clearance checks per edge not enough
 - · Even if additional free edges are inserted to improve capturing clearance in corridors [Lamarche and Donikian, "Crowd of Virtual Humans: a New Approach for Real Time Navigation in Complex and Structured Environments", 2004]
 - Clearance checks per triangle not enough
 - Previous attempts do not always work [Demyen and Buro, "Efficient triangulation-based pathfinding", 2006]

M. Kallmann

Triangulations

- Local Clearance Triangulations (LCTs)
 - Proposes a refinement strategy for CDTs allowing clearance information to be stored in the triangulation
 - Details in TOG 2014
 - Kallmann, "Dynamic and Robust Local Clearance Triangulations", 2014

Local Clearance Triangulations

Clearance Defined per triangle traversal

– Traversal from ab to bc: au_{abc}

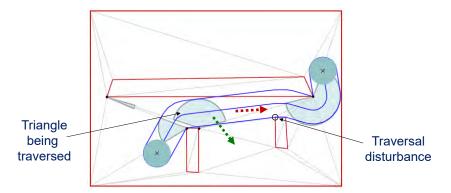
- Traversal clearance: cl(a,b,c) = dist(b,s) s is the constraint behind ac and closest to b

M. Kallmann

M. Kallmann

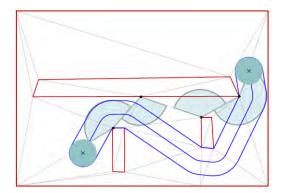
Local Clearance Triangulations

- However clearance metric not enough...
 - Clearance in the red arrow direction not well captured



Local Clearance Triangulations

- But it can work if there are no disturbances
 - By refining the triangulation disturbances can be eliminated and correct paths are obtained

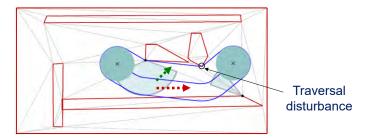


.

M. Kallmann

Local Clearance Triangulations

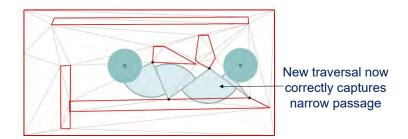
- Refinements solve disturbances
 - Disturbances appear when a traversal does not correctly captures the local clearance of all possible exit directions



M. Kallmann

Local Clearance Triangulations

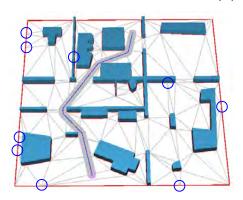
- · Refinements solve disturbances
 - Now all disturbances have been eliminated with refinements
 - Correct result: no valid path exists



M. Kallmann

Local Clearance Triangulations

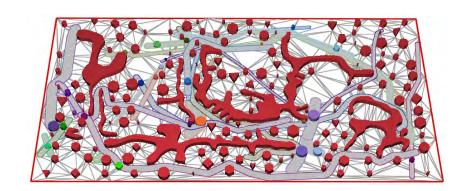
- Example of refinements
 - Total number of vertices remain O(n)



Example LCT

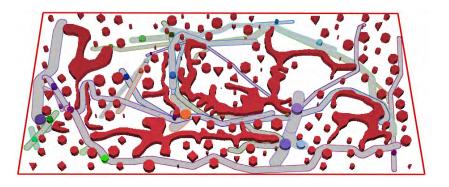
90

M Kallmann



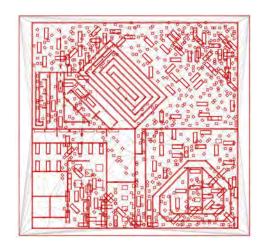
Example LCT

81



M. Kallmann

Example LCT



Test environment for The Sims 4: each small square represents a static character, later dynamically removed when it is time to walk [used with permission]

M. Kallmann

Example

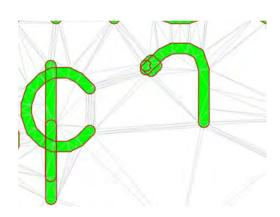


Efficiently representation of environments at different scales

New Results on LCTs

- **Dynamic Operations** with management of refinements

- **Robust operations** addressing self-intersections at run-time



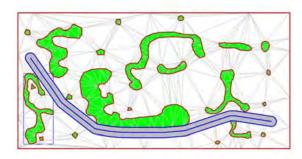
M. Kallmann, "Dynamic and Robust Local Clearance Triangulations", TOG 2014

M. Kallmann

M. Kallmann

Dynamic Updates: Example

85

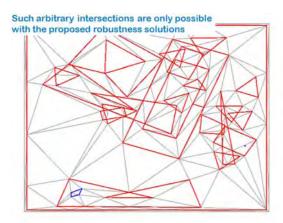


 Dynamic updates while maintaining the mesh ready for arbitrary clearance path queries

M. Kallmann

Robustness: Example

- Robust watertight dynamic updates at run-time



 Robustness with floating point representation is achieved with one exact point location test for correctness detection and perturbation of invalid coordinates

M. Kallmann

Summary

87

- Euclidean Shortest Paths are difficult to be computed efficiently
 - Visibility Graph popular but is a $O(n^2)$ structure
 - Continuous Dijkstra methods promising
- Navigation Meshes
 - Focus on efficient path planning
 - Medial axis gives paths of maximum clearance
 - Triangulations can be used to efficiently compute paths with arbitrary clearance

Questions?

88

M. Kallmann

Advanced Planning Techniques

Mubbasir Kapadia

www.cs.rutgers.edu/~mubbasir

Proposed Solutions

Real time Planning in Dynamic Environments

From Classical A* to Anytime Dynamic Search

Planning with Constraints

Scaling to large worlds and many agents

www.cs.rutgers.edu/~mubbasir

Challenges

Real-time Planning in Dynamic Environments

Planning with Constraints

Scaling to large worlds and many agents

www.cs.rutgers.edu/~mubbasir

Proposed Solutions

Real time Planning in Dynamic Environments

From Classical A* to Anytime Dynamic Search

Planning with Constraints

Constraint-Aware Navigation in Dynamic Environments
Scaling to large worlds and many agents

Proposed Solutions

Real-time Planning in Dynamic Environments

From Classical A* to Anytime Dynamic Search

Planning with Constraints

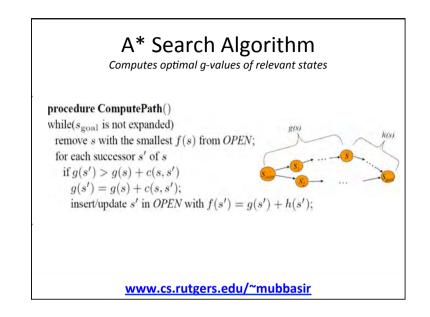
Constraint-Aware Navigation in Dynamic Environments

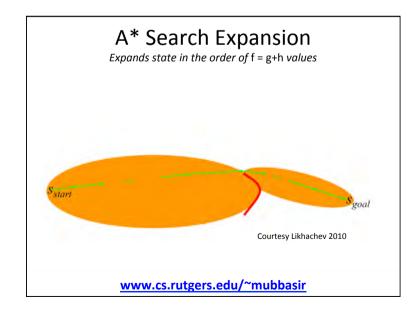
Scaling to large worlds and many agents

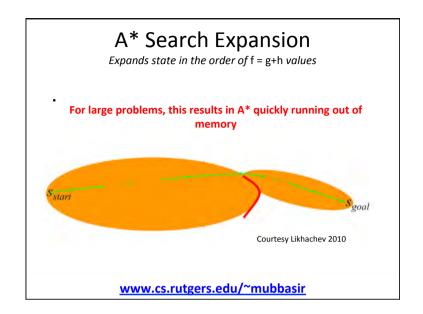
Anytime Dynamic Search on the GPU

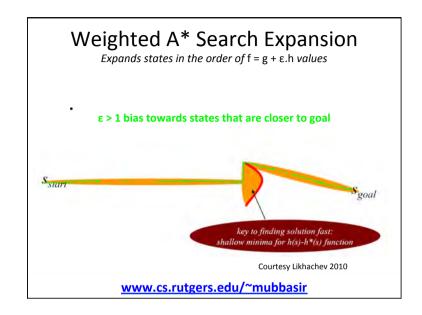
www.cs.rutgers.edu/~mubbasir

Dijkstra's Search Expansion Expands state in the order of f = g values Second Second









Anytime Repairing A* (ARA*)

Efficient series of weighted A* searches with decreasing ε set ε to large value; $g(s_{starv}) = 0$; v-values of all states are set to infinity; while $\varepsilon \ge 1$ $CLOSED = \{\}$; $INCONS = \{\}$; ComputePathwithReuse(); publish current ε suboptimal solution; decrease ε ; initialize $OPEN = OPEN \ U \ INCONS$;

ARA*: Anytime A* with Provable Bounds on Sub-Optimality Maxim Likhachev. Geoff Gordon and Sebastian Thrun

Advances in Neural Information Processing Systems, 2003

www.cs.rutgers.edu/~mubbasir

Anytime Repairing A* (ARA*)

initialize OPEN with all overconsistent states;

while($f(s_{goal}) > minimum f$ -value in OPEN)

ComputePathwithReuse function

```
remove s with the smallest [g(s) + \varepsilon h(s)] from OPEN; insert s into CLOSED; v(s) = g(s); for every successor s' of s if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s'); if s' not in CLOSED then insert s' into OPEN; otherwise insert s' into INCONS
```

Anytime Repairing A* (ARA*)

initialize *OPEN* with all overconsistent states; ComputePathwithReuse function

Consistent State:

$$g(s') = \min_{s'' \in pred(s')} (g(s'') + c(s'', s'))$$

= $g(s) + c(s, s')$

Inconsistent State:

$$g(s') > \min_{s'' \in pred(s')} (g(s'') + c(s'', s'))$$

www.cs.rutgers.edu/~mubbasir

Anytime Repairing A* (ARA*)

initialize *OPEN* with all overconsistent states;

ComputePathwithReuse function

while($f(s_{goal}) > minimum f$ -value in OPEN) remove s with the smallest $(g(s) + \varepsilon h(s))$ from *OPEN*: insert s into CLOSED;

v(s)=g(s);

for every successor s' of s

$$if g(s') > g(s) + c(s,s')$$

$$g(s') = g(s) + c(s,s');$$

if s' not in CLOSED then insert s' into OPEN;

otherwise insert s' into INCONS

www.cs.rutgers.edu/~mubbasir

Anytime Repairing A* (ARA*)

initialize OPEN with all overconsistent states;

ComputePathwithReuse function

```
while(f(s_{goal}) > minimum f-value in OPEN)
 remove s with the smallest [g(s) + \varepsilon h(s)] from OPEN:
 insert s into CLOSED;
 v(s)=g(s);
 for every successor s' of s
    if g(s') > g(s) + c(s,s')
      g(s') = g(s) + c(s,s'):
      if s' not in CLOSED then insert s' into OPEN;
      otherwise insert s' into INCONS
```

www.cs.rutgers.edu/~mubbasir

Anytime D*

Combined properties of anytime and dynamic planning

Set ε to large value

While goal is not reached

ComputePathWithReuse()

Publish ε-suboptimal path

Follow path until map is updated

Update corresponding edge costs

Set start to current state of agent

If significant changes were observed

Increase ε or replan from scratch

Else

Decrease ε

Anytime search in dynamic graphs

Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebastian Thrun Journal of Artificial Intelligence, 2008

Anytime D*

Combined properties of anytime and dynamic planning

Set ε to large value

While goal is not reached

ComputePathWithReuse()

Publish ε-suboptimal path

Follow path until map is updated

Update corresponding edge costs

Set start to current state of agent

If significant changes were observed

Increase ϵ or replan from scratch

Else

Decrease ϵ

Anytime search in dynamic graphs

Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebastian Thrun Journal of Artificial Intelligence, 2008

www.cs.rutgers.edu/~mubbasir

Anytime D*

Combined properties of anytime and dynamic planning

Set ε to large value

Else

While goal is not reached

ComputePathWithReuse()

Publish ε-suboptimal path

Follow path until map is updated

Update corresponding edge costs

Set start to current state of agent

If significant changes were observed Increase ϵ or replan from scratch

Decrease ϵ

Anytime search in dynamic graphs

Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebastian Thrun

Journal of Artificial Intelligence, 2008

www.cs.rutgers.edu/~mubbasir

Anytime D*

Combined properties of anytime and dynamic planning

Set ε to large value

While goal is not reached

ComputePathWithReuse()

Publish ε-suboptimal path

Follow path until map is updated

Update corresponding edge costs

Set start to current state of agent

If significant changes were observed

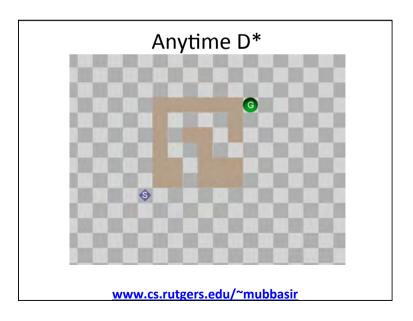
Increase ε or replan from scratch

Else

Decrease ϵ

Anytime search in dynamic graphs

Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebastian Thrun Journal of Artificial Intelligence, 2008



Proposed Solutions

Real-time Planning in Dynamic Environments

From Classical A* to Anytime Dynamic Search

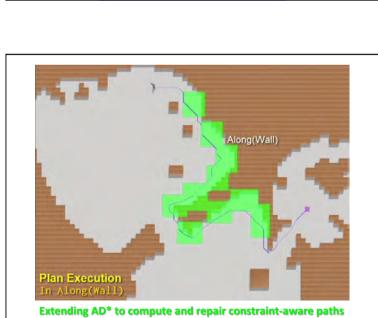
Planning with Constraints

Constraint-Aware Navigation in Dynamic Environments

Scaling to large worlds and many agents

Anytime Dynamic Search on the GPU

www.cs.rutgers.edu/~mubbasir



www.cs.rutgers.edu/~mubbasir

Global Navigation with Spatial Constraints in Dynamic Environments

Www.cs.rutgers.edu/~mubbasir

Challenges

Environment representation

Constraint specification

Constraint Satisfaction

Proposed Solutions

Environment representation

Hybrid representation for constraint-aware navigation

Constraint specification

Constraint Satisfaction

www.cs.rutgers.edu/~mubbasir

Proposed Solutions

Environment representation

Hybrid representation for constraint-aware navigation

Constraint specification

Cost multiplier fields used to represent qualitative constraints

Constraint Satisfaction

An anytime dynamic planner that computes and repairs constraint-aware paths

www.cs.rutgers.edu/~mubbasir

Proposed Solutions

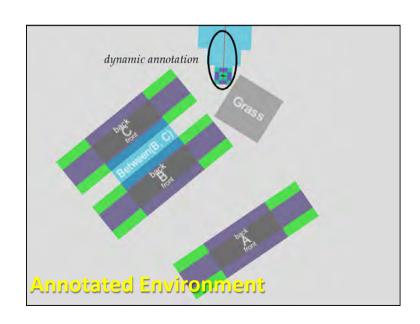
Environment representation

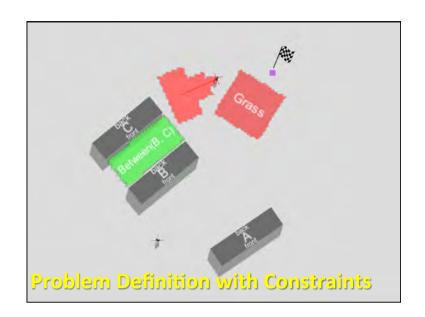
Hybrid representation for constraint-aware navigation

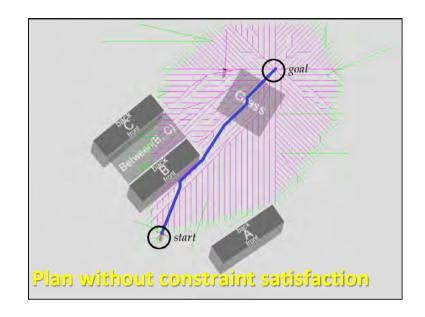
Constraint specification

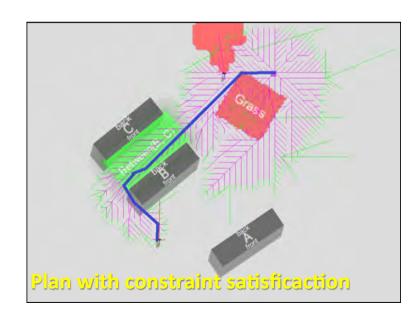
Cost multiplier fields used to represent qualitative constraints

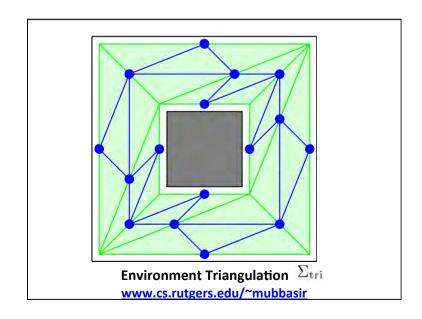
Constraint Satisfaction

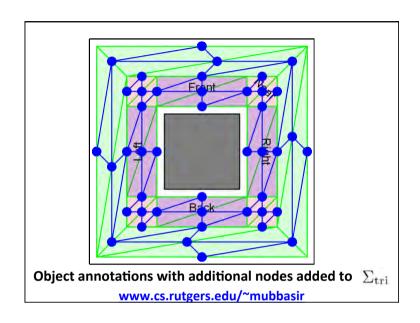


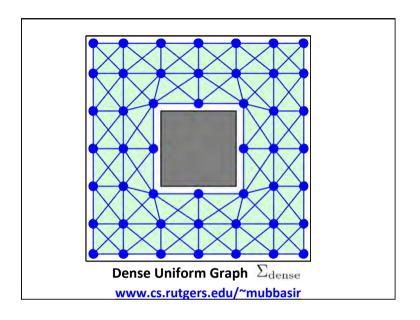


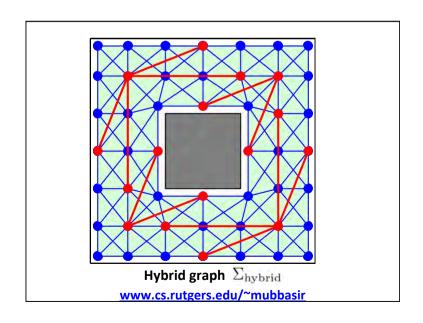


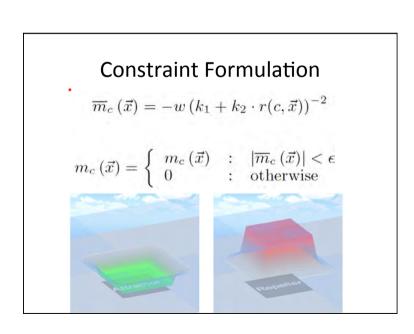








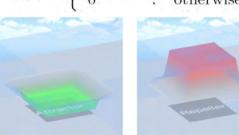




Constraint Formulation

$$\overline{m}_c(\vec{x}) = -\boldsymbol{w}(k_1 + k_2 \cdot r(c, \vec{x}))^{-2}$$

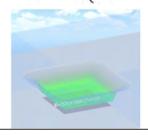
$$m_c(\vec{x}) = \begin{cases} m_c(\vec{x}) & : |\overline{m}_c(\vec{x})| < \epsilon \\ 0 & : \text{ otherwise} \end{cases}$$

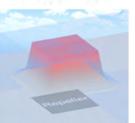


Constraint Formulation

$$\overline{m}_c(\vec{x}) = -w(k_1 + k_2 \cdot r(c, \vec{x}))^{-2}$$

$$m_c(\vec{x}) = \begin{cases} m_c(\vec{x}) & : |\overline{m}_c(\vec{x})| < \epsilon \\ 0 & : \text{ otherwise} \end{cases}$$

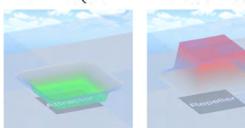




Constraint Formulation

$$\overline{m}_c(\vec{x}) = -w(\mathbf{k_1} + \mathbf{k_2} \cdot r(c, \vec{x}))^{-2}$$

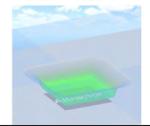
$$m_c(\vec{x}) = \begin{cases} m_c(\vec{x}) & : |\overline{m}_c(\vec{x})| < \epsilon \\ 0 & : \text{ otherwise} \end{cases}$$

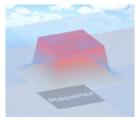


Constraint Formulation

$$\overline{m}_c(\vec{x}) = -w(k_1 + k_2 \cdot r(c, \vec{x}))^{-2}$$

$$m_c\left(\vec{x}\right) = \begin{cases} m_c\left(\vec{x}\right) & : & |\overline{m}_c\left(\vec{x}\right)| < \epsilon \\ 0 & : & \text{otherwise} \end{cases}$$





Multiple Constraints

$$m_{\mathbf{C}}(\vec{x}) = \max\left(1, m_0 + \sum_{c \in \mathbf{C}} m_c(\vec{x})\right)$$

Cost multiplier for a transition:

$$M_{\mathbf{C}}(s, s') = \int_{s \to s'} m_{\mathbf{C}}(\vec{x}) d\vec{x}$$

$$M_{\mathbf{C}}\left(s,s'\right) \approx m_{\mathbf{C}}\left(\frac{\vec{x}_s + \vec{x}_{s'}}{2}\right)$$

www.cs.rutgers.edu/~mubbasir

Multiple Constraints

$$m_{\mathbf{C}}(\vec{x}) = \max\left(1, \mathbf{m_0} + \sum_{c \in \mathbf{C}} m_c(\vec{x})\right)$$

Cost multiplier for a transition:

$$M_{\mathbf{C}}(s, s') = \int_{s \to s'} m_{\mathbf{C}}(\vec{x}) d\vec{x}$$

$$M_{\mathbf{C}}\left(s,s'\right) \approx m_{\mathbf{C}}\left(\frac{\vec{x}_s + \vec{x}_{s'}}{2}\right)$$

www.cs.rutgers.edu/~mubbasir

Multiple Constraints

$$m_{\mathbf{C}}(\vec{x}) = \max\left(\mathbf{1}, m_0 + \sum_{c \in \mathbf{C}} m_c(\vec{x})\right)$$

Cost multiplier for a transition:

$$M_{\mathbf{C}}(s, s') = \int_{s \to s'} m_{\mathbf{C}}(\vec{x}) d\vec{x}$$

$$M_{\mathbf{C}}\left(s,s'\right) \approx m_{\mathbf{C}}\left(\frac{\vec{x}_s + \vec{x}_{s'}}{2}\right)$$

www.cs.rutgers.edu/~mubbasir

Multiple Constraints

$$m_{\mathbf{C}}(\vec{x}) = \max\left(1, m_0 + \sum_{c \in \mathbf{C}} m_c(\vec{x})\right)$$

Cost multiplier for a transition:

$$M_{\mathbf{C}}(s,s') = \int_{s \to s'} m_{\mathbf{C}}(\vec{x}) d\vec{x}$$

$$M_{\mathbf{C}}\left(s,s'\right) \approx m_{\mathbf{C}}\left(\frac{\vec{x}_s + \vec{x}_{s'}}{2}\right)$$

Multiple Constraints

$$m_{\mathbf{C}}(\vec{x}) = \max\left(1, m_0 + \sum_{c \in \mathbf{C}} m_c(\vec{x})\right)$$

Cost multiplier for a transition:

$$M_{\mathbf{C}}(s, s') = \int_{s \to s'} m_{\mathbf{C}}(\vec{x}) d\vec{x}$$

$$M_{\mathbf{C}}\left(s,s'\right) \approx m_{\mathbf{C}}\left(\frac{\vec{x}_s + \vec{x}_{s'}}{2}\right)$$

www.cs.rutgers.edu/~mubbasir

Planner: Cost Computation

Modified cost of reaching state s:

$$g(s_{\text{start}}, s) = g(s_{\text{start}}, s') + M_{\mathbf{C}}(s, s') \cdot c(s, s')$$

$$g(s_{\text{start}}, s) = \sum_{(s_i, s_j) \in \Pi(s_{\text{start}}, s)} M_{\mathbf{C}}(s_i, s_j) \cdot c(s_i, s_j)$$

www.cs.rutgers.edu/~mubbasir

Accommodating Dynamic Constraints

Algorithm 1 ConstraintChangeUpdate $(c, \vec{x}_{prev}, \vec{x}_{next})$ 1: $\mathbf{S}_{c}^{prev} = \mathbf{region}(m_c, \vec{x}_{prev})$ 2: $\mathbf{S}_{c}^{next} = \mathbf{region}(m_c, \vec{x}_{next})$ 3: $\mathbf{for\ each}\ s \in \mathbf{S}_{c}^{prev} \cup \mathbf{S}_{c}^{next}$ do 4: $\mathbf{if\ pred}(s) \bigcap \text{VISITED} \neq \text{NULL\ then}$ 5: $\mathbf{UpdateState}(s)$ 6: $\mathbf{if\ } s' \in \mathbf{S}_{c}^{next} \land c \in \mathbf{C}_h \text{ then\ } g(s') = \infty$ 7: $\mathbf{if\ } s' \in \text{CLOSED\ then}$ 8: $\mathbf{for\ each}\ s'' \in \text{succ}(s') \text{ do}$ 9: $\mathbf{if\ } s'' \in \text{VISITED\ then}$ 10: $\mathbf{UpdateState}(s'')$

Proposed Solutions

Real time Planning in Dynamic Environments

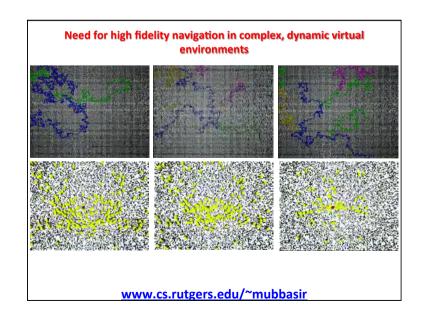
From Classical A* to Anytime Dynamic Search

Planning with Constraints

Constraint-Aware Navigation in Dynamic Environments

Scaling to large worlds and many agents

Anytime Dynamic Search on the GPU



Challenges

Large-scale, complex, dynamic environments

Strict optimality requirements

Scalability with number of agents

www.cs.rutgers.edu/~mubbasir

Proposed Solutions

Large scale, complex, dynamic environments

Massively parallel wave-front based search with efficient plan repair

Strict optimality requirements

Termination condition enforces strict optimality with minimum number of GPU iterations

Scalability with number of agents

www.cs.rutgers.edu/~mubbasir

Proposed Solutions

Large-scale, complex, dynamic environments

Massively parallel wave-front based search with efficient plan repair

Strict optimality requirements

Scalability with number of agents

www.cs.rutgers.edu/~mubbasir

Proposed Solutions

Large scale, complex, dynamic environments

Massively parallel wave-front based search with efficient plan repair

Strict optimality requirements

Termination condition enforces strict optimality with minimum number of GPU iterations

Scalability with number of agents

Handles any number of moving agents at no additional computational cost

Method Overview

Algorithm 1 computePlan($*m_{cpu}$)

```
\begin{aligned} m_r &\leftarrow m_{cpu} \\ m_w &\leftarrow m_{cpu} \\ \textbf{repeat} \\ & flag \leftarrow 0 \\ & \textit{plannerKernel}(m_r, m_w, flag) \\ & \textit{swap} \ (m_r, m_w) \\ & \textbf{until} \ (flag = 0) \\ & m_{cpu} \leftarrow m_r \end{aligned}
```

www.cs.rutgers.edu/~mubbasir

Method Overview

Algorithm 1 $computePlan(*m_{cpu})$

```
\begin{aligned} m_r &\leftarrow m_{cpu} \\ m_w &\leftarrow m_{cpu} \\ \textbf{repeat} \\ & flag \leftarrow 0 \\ & \textit{plannerKernel}(m_r, m_w, flag) \\ & \textit{swap} \ (m_r, m_w) \\ & \textbf{until} \ (flag = 0) \\ & m_{cpu} \leftarrow m_r \end{aligned}
```

www.cs.rutgers.edu/~mubbasir

Method Overview

Algorithm 1 computePlan($*m_{cpu}$)

```
\begin{aligned} m_r &\leftarrow m_{cpu} \\ m_w &\leftarrow m_{cpu} \\ \textbf{repeat} \\ & flag \leftarrow 0 \\ & \textit{plannerKernel}(m_r, m_w, flag) \\ & \textit{swap} \ (m_r, m_w) \\ & \textbf{until} \ (flag = 0) \\ & m_{cpu} \leftarrow m_r \end{aligned}
```

www.cs.rutgers.edu/~mubbasir

Method Overview

Algorithm 2 plannerKernel(* m_r , * m_w , *flag)

```
\begin{split} s &\leftarrow threadState \\ &\textbf{if } s \neq obstacle \land s \neq goal \textbf{ then} \\ &\textbf{ for all } s' \textbf{ in } neighbor(s) \textbf{ do} \\ &\textbf{ if } s' \neq obstacle \textbf{ then} \\ &newg \leftarrow g(s') + c(s,s') \\ &\textbf{ if } (newg < g(s) \lor g(s) = -1) \land g(s') > -1 \textbf{ then} \\ &pred(s) \leftarrow s' \\ &g(s) \leftarrow newg \\ & \big\{ \textbf{ evaluate\_termination\_condition} \big\} \end{split}
```

$$g(s) = \min_{s' \in succ(s) \land g(s') \ge 0} (c(s, s') + g(s'))$$

Method Overview

Algorithm 2 plannerKernel(* m_r , * m_w , *flag)

```
s \leftarrow threadState
\text{if } s \neq obstacle \ \land s \neq goal \ \text{then}
\text{for all } s' \ \text{in } neighbor(s) \ \text{do}
\text{if } s' \neq obstacle \ \text{then}
newg \leftarrow g(s') + c(s,s')
\text{if } (newg < g(s) \lor g(s) = -1) \land g(s') > -1 \ \text{then}
pred(s) \leftarrow s'
g(s) \leftarrow newg
\left\{ \text{ evaluate\_termination\_condition} \right\}
```

$$g(s) = \min_{s' \in succ(s) \land g(s') \ge 0} (c(s, s') + g(s'))$$

www.cs.rutgers.edu/~mubbasir

Method Overview

Algorithm 1 $computePlan(*m_{cpu})$

```
m_r \leftarrow m_{cpu}
m_w \leftarrow m_{cpu}
repeat
flag \leftarrow 0
plannerKernel(m_r, m_w, flag)
swap (m_r, m_w)
until (flag = 0)
m_{cpu} \leftarrow m_r
```

www.cs.rutgers.edu/~mubbasir

Method Overview

Algorithm 2 plannerKernel(* m_r , * m_w , *flag)

```
\begin{split} s &\leftarrow threadState \\ &\textbf{if } s \neq obstacle \ \land s \neq goal \ \textbf{then} \\ &\textbf{for all } s' \ \text{in } neighbor(s) \ \textbf{do} \\ &\textbf{if } s' \neq obstacle \ \textbf{then} \\ &newg \leftarrow g(s') + c(s,s') \\ &\textbf{if } (newg < g(s) \lor g(s) = -1) \land g(s') > -1 \ \textbf{then} \\ &pred(s) \leftarrow s' \\ &g(s) \leftarrow newg \\ &\big\{ \ \text{evaluate\_termination\_condition} \big\} \end{split}
```

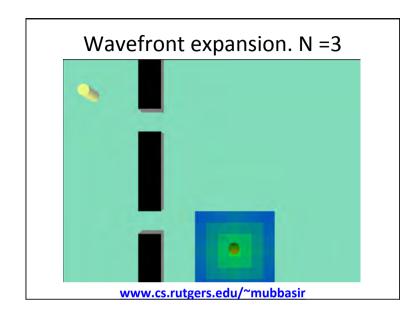
$$g(s) = \min_{s' \in succ(s) \land g(s') \ge 0} (c(s, s') + g(s'))$$

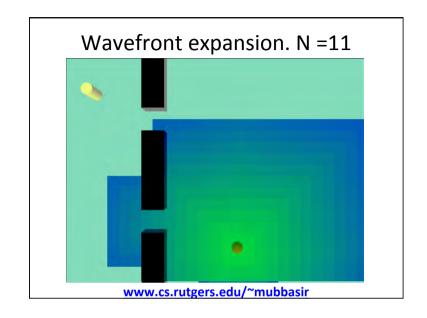
www.cs.rutgers.edu/~mubbasir

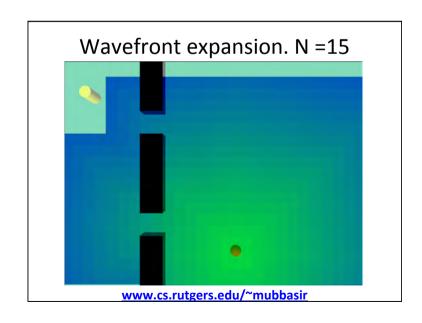
Method Overview

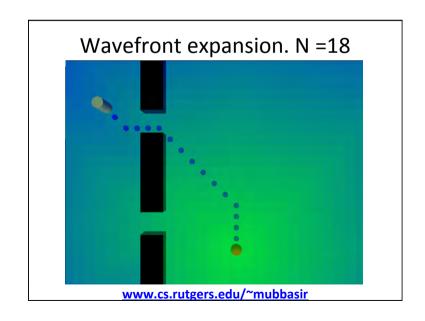
Algorithm 1 $computePlan(*m_{cpu})$

```
\begin{aligned} m_r &\leftarrow m_{cpu} \\ m_w &\leftarrow m_{cpu} \\ \textbf{repeat} \\ & \textit{flag} \leftarrow 0 \\ & \textit{plannerKernel}(m_r, m_w, \textit{flag}) \\ & \textit{swap} \ (m_r, m_w) \\ & \textbf{until} \ (\textit{flag} = 0) \\ & m_{cpu} \leftarrow m_r \end{aligned}
```









Termination Conditions

Exit when goal reached

$$if(s == goal)flag = 0$$

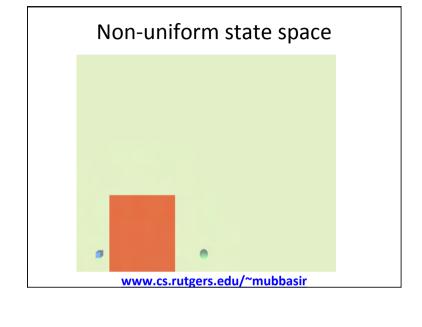
Exit when whole map converges

$$flag = 1$$

Minimal map convergence with optimality guarantees

$$\mathbf{if}(g(s) < g(start) \lor g(agent) = -1)flag = 1$$

www.cs.rutgers.edu/~mubbasir





Termination Conditions

Exit when goal reached

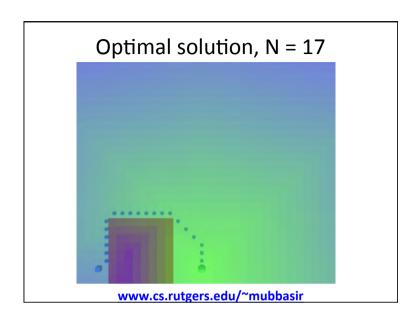
$$if(s == goal)flag = 0$$

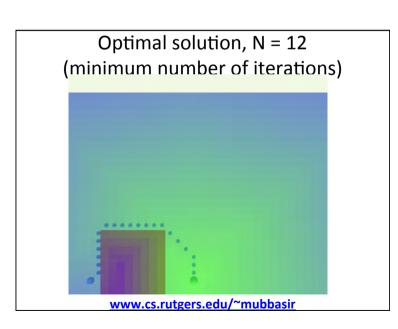
Exit when whole map converges

$$flag = 1$$

Minimal map convergence with optimality guarantees

$$\mathbf{if}(g(s) < g(start) \lor g(agent) = -1)flag = 1$$





Termination Conditions

Exit when goal reached

$$if(s == goal)flag = 0$$

Exit when whole map converges

$$flag = 1$$

Minimal map convergence with optimality guarantees

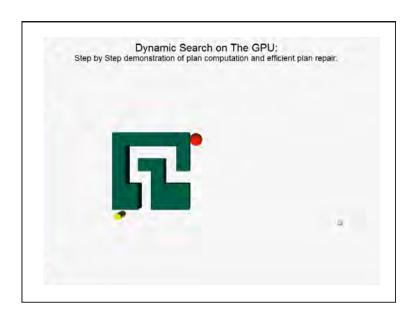
$$\mathbf{if}(g(s) < g(start) \lor g(agent) = -1)flag = 1$$

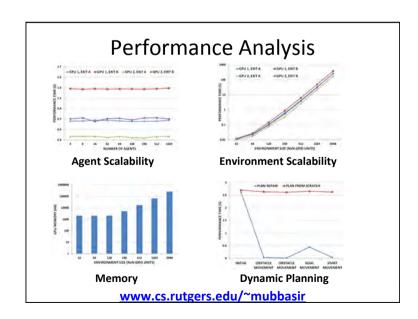
www.cs.rutgers.edu/~mubbasir

Efficient Plan Repair for Dynamic Environments & Moving Agents

Algorithm 3 Algorithm to propagate state inconsistency

```
s \leftarrow threadState
\textbf{if } pred(s) \neq NULL \textbf{ then}
\textbf{if } (g(s) == obstacle \lor pred(s) == obstacle \lor g(s) \neq g(pred(s)) + c(s,s')) \textbf{ then}
pred(s) = NULL
g(s) = -1
incons = \texttt{true}
```





Multi-Agent Planning

Extended Termination Condition

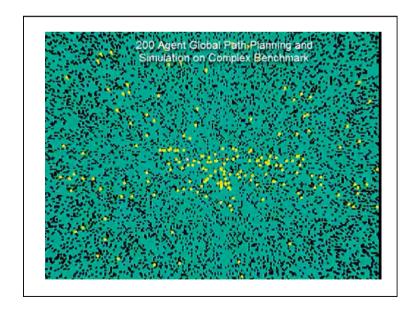
$$\mathbf{if}((g(s) < \max_{a_i \in \{a\}} g(a_i)) \lor (g(a_i) = -1 \forall a_i \in \{a\}))$$

Multi-Agent Simulation

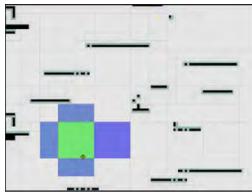
- Single map can be queried by all agents to compute path
- Movement along path using local collision avoidance

Multiple Target Locations

- A separate map required for each target
- · Significant memory overhead



GPU-based Dynamic Search on Adaptive Resolution Grids



GPU-based Dynamic Search on Adaptive Resolution Grids Francisco Garcia, Mubbasir Kapadia, and Norman I. Badler IEEE International Conference on Robotics and Automation, June 2014

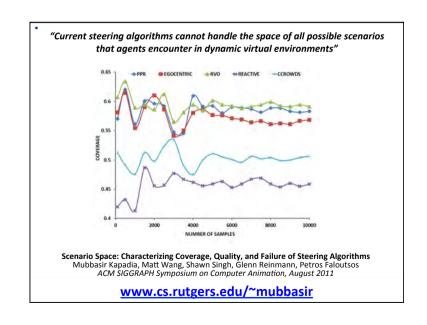
Planning Techniques for Character Animation

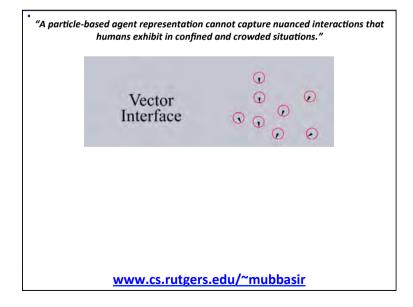
Mubbasir Kapadia

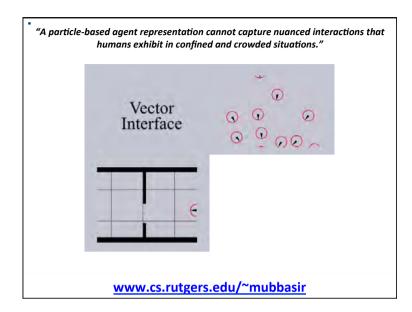
www.cs.rutgers.edu/~mubbasir

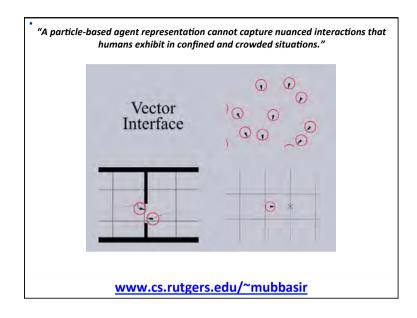
Outline

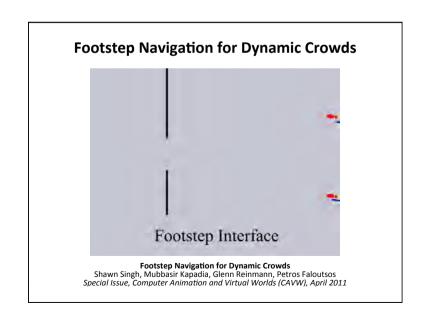
- Footstep Domain for Dynamic Crowds
- Precomputing Environment Semantics for Contact-Rich Character Animation
- Additional Application Domains







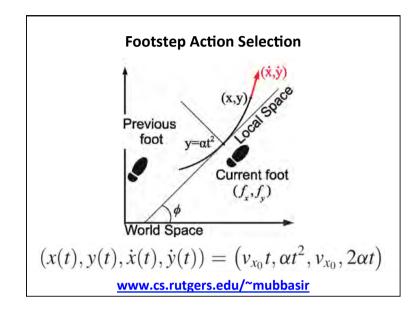


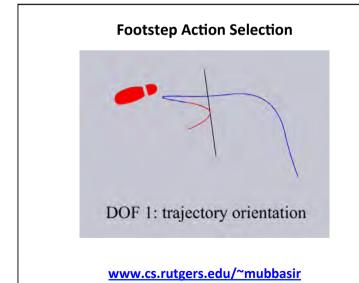


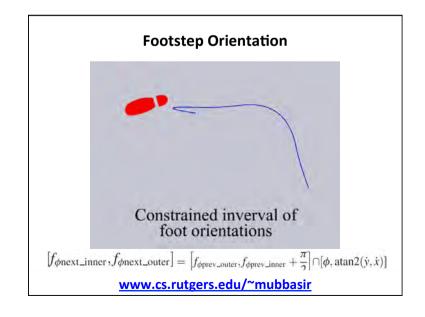
State and Action Space

$$\mathbf{S} = \{s | \mathbf{x}, \mathbf{v}, \mathbf{x}_f, \\ \theta_f, I \in \{L, R\}\} \\ \mathbf{A} = \{a | \phi, v_{des}, T\}$$

Footstep Domain







Cost Formulation

Cost Function

$$c(s, s') = \Delta E_1 + \Delta E_2 + \Delta E_3$$

$$\Delta E_1 = R \cdot T$$

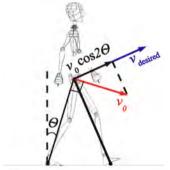
$$\Delta E_2 = \frac{m}{2} \left| (v_{\text{desired}})^2 - (v_0 \cos(2\theta))^2 \right|$$

$$\Delta E_3 = w \cdot \frac{dP}{dt} \cdot \text{length} = w \cdot m\alpha \cdot \text{length}$$

Heuristic Function

$$h(s) = c_{\text{expected}} \times n$$

Spherical Inverted Pendulum Model – Sagittal View



$$\Delta E_2 = \frac{m}{2} \left| \left(v_{\text{desired}} \right)^2 - \left(v_0 \cos(2\theta) \right)^2 \right|$$

Cost Formulation

Cost Function

$$c(s, s') = \Delta E_1 + \Delta E_2 + \Delta E_3$$

$$\Delta E_1 = R \cdot T$$

$$\Delta E_2 = \frac{m}{2} \left| (v_{\text{desired}})^2 - (v_0 \cos(2\theta))^2 \right|$$

$$\Delta E_3 = w \cdot \frac{dP}{dt} \cdot \text{length} = w \cdot m\alpha \cdot \text{length}$$

Heuristic Function

$$h(s) = c_{\text{expected}} \times n$$

Cost Formulation

Cost Function

$$c(s, s') = \Delta E_1 + \Delta E_2 + \Delta E_3$$

$$\Delta E_1 = R \cdot T$$

$$\Delta E_2 = \frac{m}{2} \left| (v_{\text{desired}})^2 - (v_0 \cos(2\theta))^2 \right|$$

$$\Delta E_3 = w \cdot \frac{dP}{dt} \cdot \text{length} = w \cdot m\alpha \cdot \text{length}$$

Heuristic Function

$$h(s) = c_{\text{expected}} \times n$$

Cost Formulation

Cost Function

$$c(s, s') = \Delta E_1 + \Delta E_2 + \Delta E_3$$

$$\Delta E_1 = R \cdot T$$

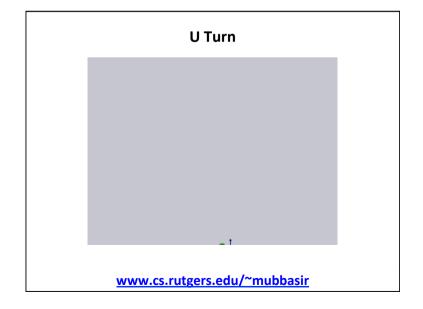
$$\Delta E_2 = \frac{m}{2} \left| (v_{\text{desired}})^2 - (v_0 \cos(2\theta))^2 \right|$$

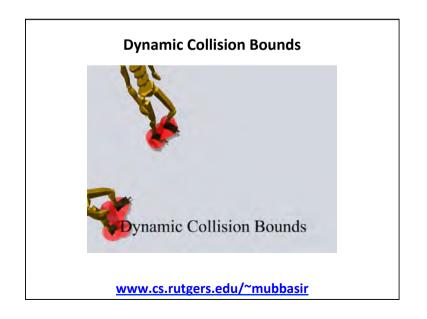
$$\Delta E_3 = w \cdot \frac{dP}{dt} \cdot \text{length} = w \cdot m\alpha \cdot \text{length}$$

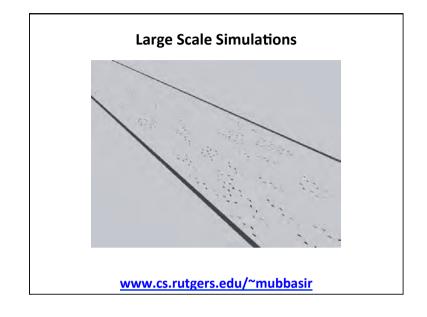
Heuristic Function

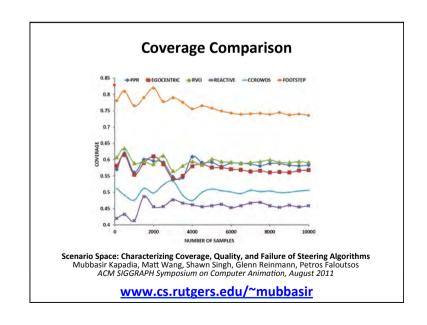
$$h(s) = c_{\text{expected}} \times n$$

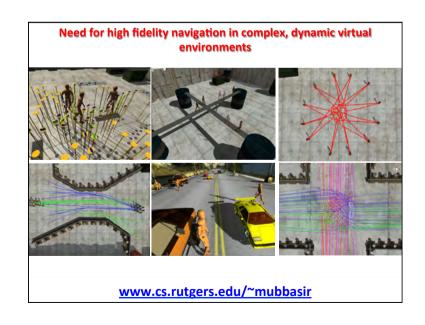
Short Horizon Space-Time Planner Short-horizon planner www.cs.rutgers.edu/~mubbasir











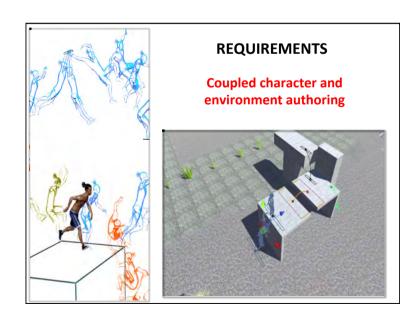
Outline

- Footstep Domain for Dynamic Crowds
- Precomputing Environment Semantics for Contact-Rich Character Animation
- Additional Application Domains

www.cs.rutgers.edu/~mubbasir

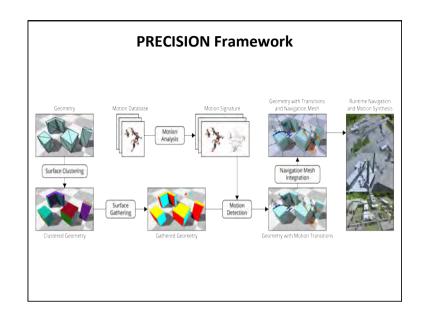
REQUIREMENTS

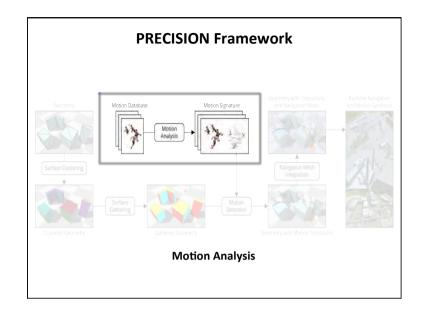
- Scalability in environment and motion complexity
- Interactivity
- Coupled character and environment authoring

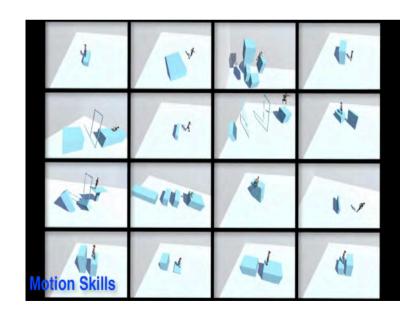


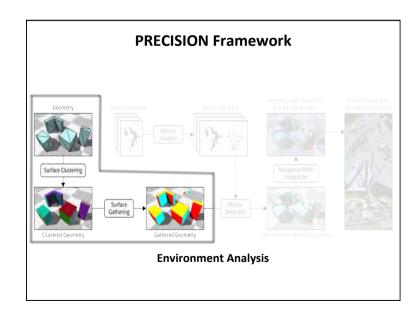
SOLUTIONS

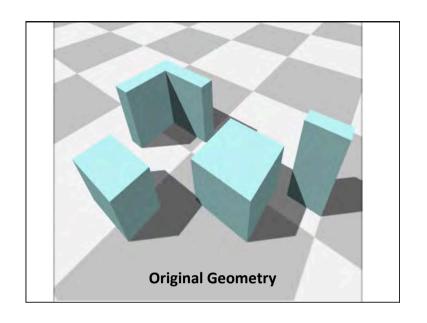
- Motion Analysis: Identify contact semantics
- **Environment Analysis:** Identify how characters can interact with geometry
- Runtime Navigation & Motion
 Synthesis: Seamless integration with existing approaches

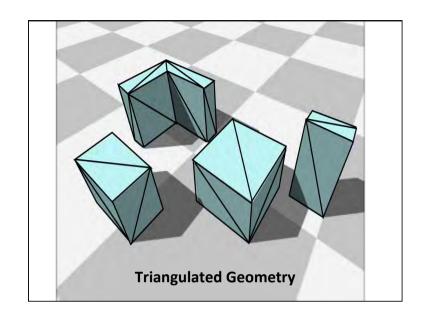


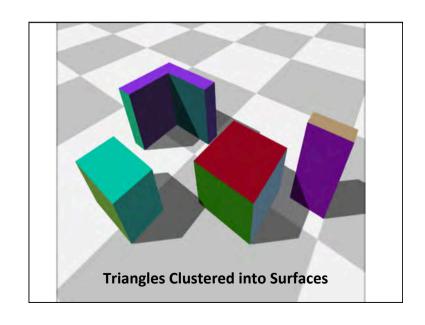


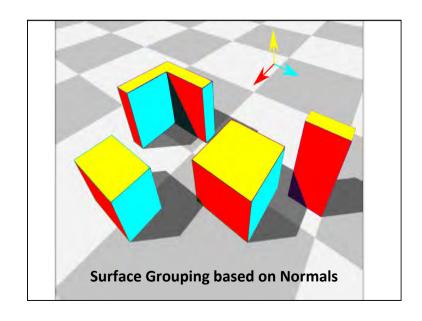


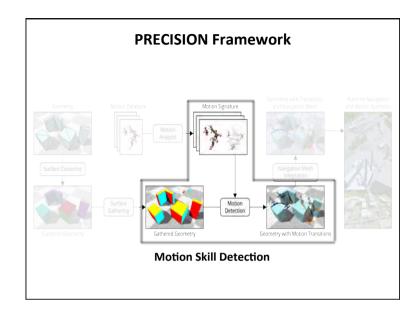


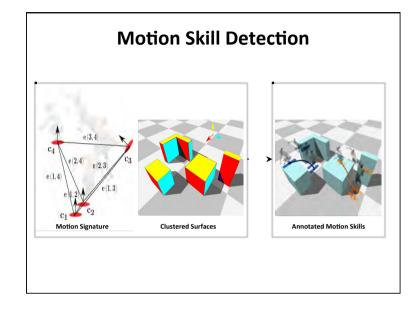




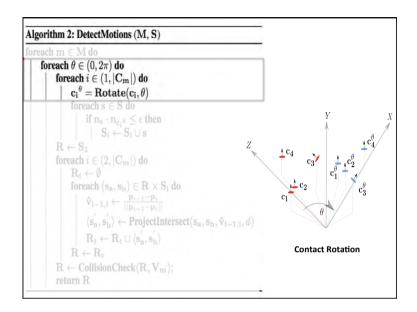






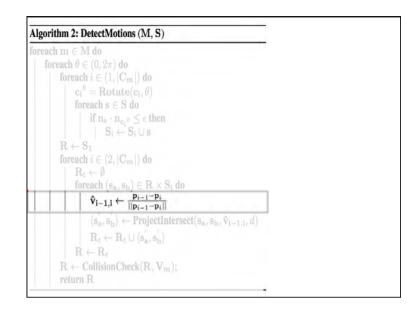


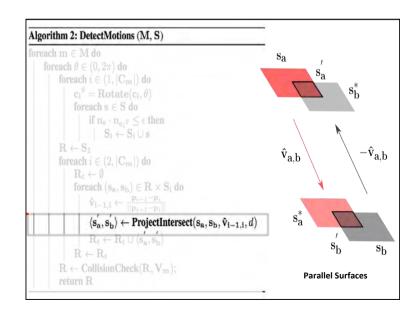
```
Algorithm 2: DetectMotions (M, S)
for each m \in M do
        foreach \theta \in (0, 2\pi) do
                  foreach i \in (1, |\mathbf{C_m}|) do
                           \mathbf{c_i}^{\theta} = \mathbf{Rotate}(\mathbf{c_i}, \theta)
                           for each s \in S do
                                    if n_s \cdot n_{c_i^{\ \theta}} \leq \varepsilon then
                               | S_i \leftarrow S_i \cup s
                   R \leftarrow S_1
                  foreach i \in (2, |\mathbf{C_m}|) do
                           \mathbf{R}_t \leftarrow \emptyset
                           foreach (\mathbf{s_a},\mathbf{s_b}) \in \mathbf{R} \times \mathbf{S_i} do
                                    \mathbf{\hat{v}_{i-1,i}} \leftarrow \frac{\mathbf{p}_{i-1} - \mathbf{p}_i}{||\mathbf{p}_{i-1} - \mathbf{p}_i||}
                                     \langle \mathbf{s}_{\mathbf{a}}^{'}, \mathbf{s}_{\mathbf{b}}^{'} \rangle \leftarrow \mathbf{ProjectIntersect}(\mathbf{s}_{\mathbf{a}}, \mathbf{s}_{\mathbf{b}}, \hat{\mathbf{v}}_{\mathbf{i-1}, \mathbf{i}}, d)
                                    \mathbf{R}_t \leftarrow \mathbf{R}_t \cup \langle \mathbf{s}_{\mathbf{a}}^{'}, \mathbf{s}_{\mathbf{b}}^{'} \rangle
                           \mathbf{R} \leftarrow \mathbf{R}_t
                  R \leftarrow CollisionCheck(R, V_m);
                   return R
```

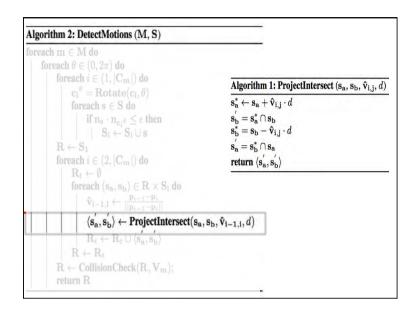


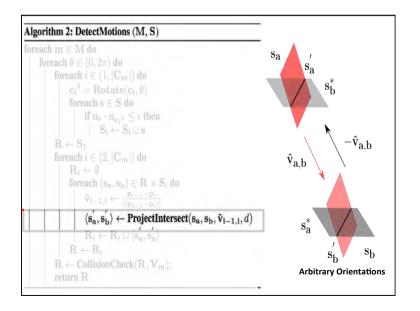
```
\begin{aligned} & \textbf{Algorithm 2: DetectMotions} \, (M,S) \\ & \text{for each } m \in M \, do \\ & \text{for each } i \in (0,2\pi) \, do \\ & \text{for each } i \in (1,|C_{\mathrm{m}}|) \, do \\ & c_{i}{}^{\theta} = \text{Rotate}(c_{i},\theta) \\ & \textbf{for each } s \in S \, do \\ & & | \text{if } n_{s} \cdot n_{c_{i}\theta} \leq \epsilon \, \text{then} \\ & & | S_{i} \leftarrow S_{i} \cup s \\ & & \text{R} \leftarrow S_{1} \\ & \text{for each } i \in (2,|C_{\mathrm{m}}|) \, do \\ & & R_{t} \leftarrow \theta \\ & \text{for each } (s_{a},s_{b}) \in R \times S_{i} \, do \\ & & | \hat{v}_{i-1,i} \leftarrow \frac{p_{i-1}-p_{i}}{||p_{i-1}-p_{i}||} \\ & & \langle s_{a}^{'},s_{b}^{'} \rangle \leftarrow \text{ProjectIntersect}(s_{a},s_{b},\hat{v}_{i-1,i},d) \\ & & R_{t} \leftarrow R_{t} \\ & R \leftarrow \text{CollisionCheck}(R,V_{\mathrm{m}}); \\ & \text{return } R \end{aligned}
```

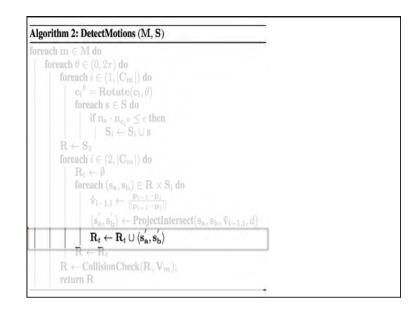
```
 \begin{split} & \textbf{Algorithm 2: DetectMotions} \, (M,S) \\ & \textbf{foreach} \, m \in M \, do \\ & \textbf{foreach} \, \theta \in (0,2\pi) \, do \\ & \textbf{foreach} \, i \in (1,|C_m|) \, do \\ & \textbf{c}_i{}^{\theta} = \textbf{Rotate}(\mathbf{c}_i,\theta) \\ & \textbf{foreach} \, s \in S \, do \\ & \textbf{if} \, \mathbf{n_s} \cdot \mathbf{n_{c_i}}_{\theta} \leq \epsilon \, \text{then} \\ & \textbf{S}_i \leftarrow S_i \cup s \\ & \textbf{R} \leftarrow S_1 \end{split}   & \textbf{R} \leftarrow S_1   & \textbf{foreach} \, i \in (2,|C_m|) \, do \\ & \textbf{R}_t \leftarrow \emptyset \\ & \textbf{foreach} \, (\mathbf{s_a},\mathbf{s_b}) \in \mathbf{R} \times \mathbf{S}_i \, do \\ & \textbf{v}_{i-1,i} \leftarrow \frac{\mathbf{p}_{i-1} - \mathbf{p}_i}{||\mathbf{p}_{i-1} - \mathbf{p}_i||} \\ & \textbf{s}_a, \mathbf{s}_b' \leftarrow \textbf{ProjectIntersect}(\mathbf{s_a},\mathbf{s_b}, \hat{\mathbf{v}}_{i-1,i}, d) \\ & \textbf{R}_t \leftarrow \mathbf{R}_t \cup (\mathbf{s}_a', \mathbf{s}_b') \\ & \textbf{R} \leftarrow \mathbf{R}_t \\ & \textbf{R} \leftarrow \text{CollisionCheck}(\mathbf{R}, \mathbf{V}_m); \\ & \textbf{return} \, \mathbf{R} \end{split}
```

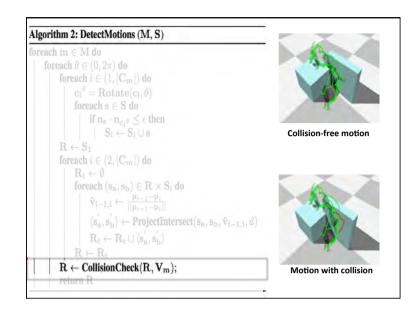


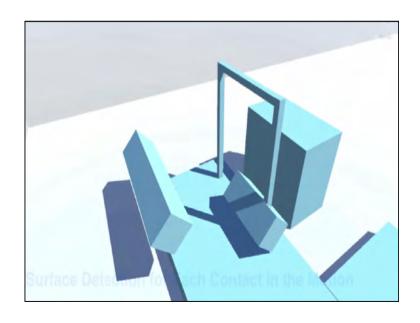


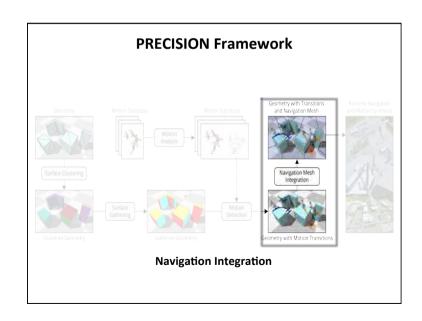




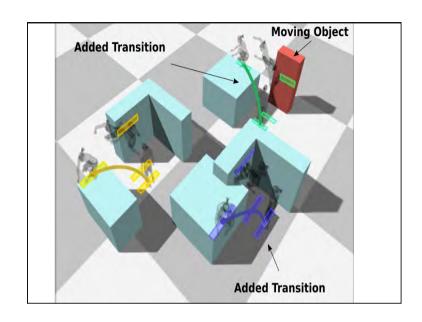


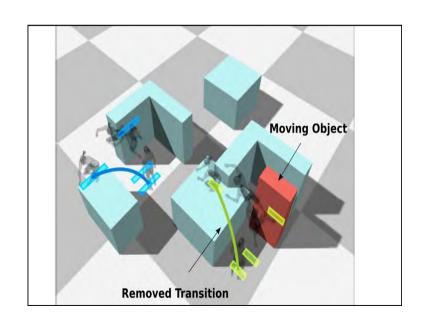


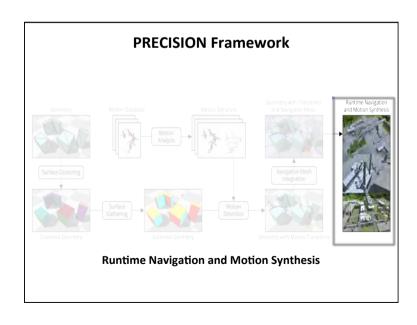








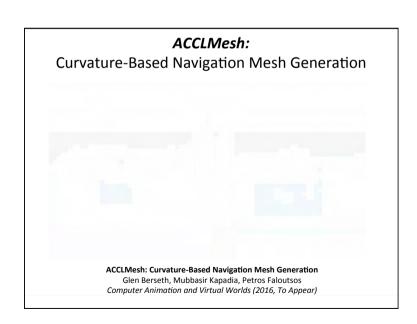




Dynamic Game Worlds

Outline

- Footstep Domain for Dynamic Crowds
- Precomputing Environment Semantics for Contact-Rich Character Animation
- Additional Application Domains



Conclusion

ACM SIGGRAPH/EG Symposium on Computer Animation, 2013

- Planning not limited to simple navigation problems or non-interactive applications.
- Challenges
 - Discretizing problem representation
 - Defining problem domain (state, action space, costs, heuristics)
 - Choosing right planning strategy

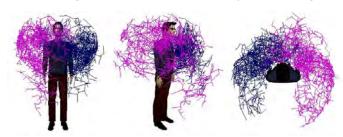
Module III – Planning Techniques for Character Animation

Marcelo Kallmann mkallmann@ucmerced.edu

http://graphics.ucmerced.edu/
M. Kallmann

Planning in High Dimensions

- Build graph representation of free space by sampling valid poses/configurations
 - Example graph/roadmap built by sampling:



Planning Collision-Free Reaching Motions for Interactive Object Manipulation and Grasping, Eurographics, 2003

· When to use full-body motion planners?

- To achieve automatic motion synthesis for virtual characters among obstacles
 - 3D collision detection always needed (bottleneck)
- Planners can be integrated on top of motion controllers
 - Leveraging the quality for several powerful approaches developed in computer animation
 - Ex.: Motion Control session yesterday

Planning in High Dimensions

Planning Collision-Free Reaching Motions for Interactive Object Manipulation and Grasping, Eurographics, 2003

M. Kallmann

Planning locomotion with motion capture data

Adding Motion Capture Data

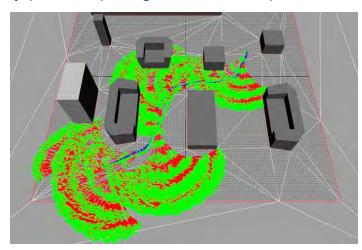
Example approach

- Build a motion graph from motion capture data
 - Search on the motion graph (graph unrolling)
 - · Good quality, but often slow to use directly
- Possible to improve speed with
 - search precomputation
 - and 2D path planning
- Extensive literature available on the area
 - Representative references in course notes

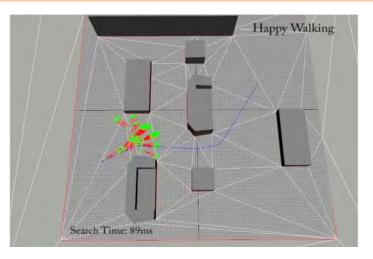
M. Kallmann

Speeding up motion search

• By pre-computing search trees per node:



Precomputed Motion Maps

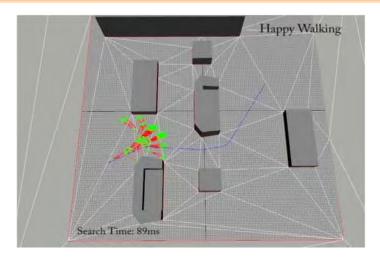


Analyzing Locomotion Synthesis with Feature-Based Motion Graphs, IEEE TVCG 2012 Precomputed Motion Maps for Unstructured Motion Capture, SCA 2012 Feature-Based Locomotion with Inverse Branch Kinematics, best paper at MIG 2011

M. Kallmann

M. Kallmann

Precomputed Motion Maps



Analyzing Locomotion Synthesis with Feature-Based Motion Graphs, IEEE TVCG 2012 Precomputed Motion Maps for Unstructured Motion Capture, SCA 2012 Feature-Based Locomotion with Inverse Branch Kinematics, best paper at MIG 2011

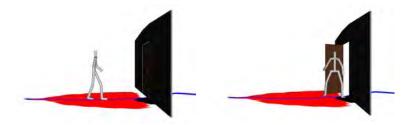
M. Kallmann

Integrating manipulation planning with locomotion

M. Kallmann

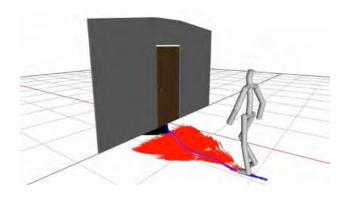
Addressing Full-Body Manipulations

- Integration of two planners
 - Motion capture concatenation search for locomotion
 - Sampling-based planning for the arm



Multi-Modal Data-Driven Motion Planning and Synthesis Mentar Mahmudi and Marcelo Kallmann ACM SIGGRAPH Conference on Motion in Games (MIG), 2015

Addressing Full-Body Manipulations



Multi-Modal Data-Driven Motion Planning and Synthesis Mentar Mahmudi and Marcelo Kallmann ACM SIGGRAPH Conference on Motion in Games (MIG), 2015

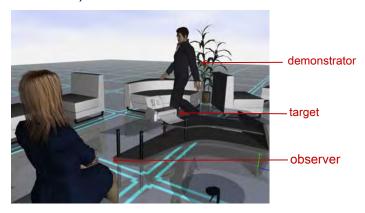
M. Kallmann

Addressing application-specific coordination constraints

M. Kallmann

Ex. Application: Virtual Demonstrators

 Determine suitable locations for delivering information, and then animate a solution



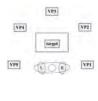
Planning Motions and Placements for Virtual Demonstrators
Yazhou Huang and Marcelo Kallmann
IEEE Transactions on Visualization and Computer Graphics (TVCG), 2015

M. Kallmann

Behavioral Model

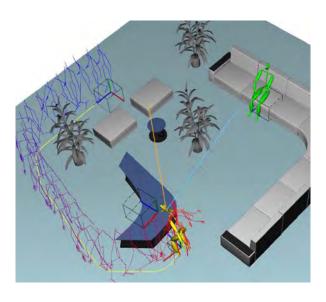
· Model derived from human subjects

- 4 participants, actions to 6 objects, for 5 observers at different locations
 - Action: pointing and delivering info about the object



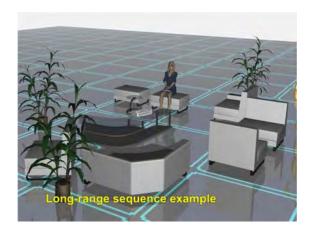
Placement Determination

M. Kallmann



M. Kallmann

Additional Results



Planning Motions and Placements for Virtual Demonstrators

Yazhou Huang and Marcelo Kallmann IEEE Transactions on Visualization and Computer Graphics (TVCG), 2015

M. Kallmann

Acknowledgements

- Grad students and Collaborators
 - Mentar Mahmudi, Yazhou Huang, Carlo Camporesi, Amaury Aubel
- Funding Agencies
 - CITRIS Seed Funding (#12, #14)
 - National Science Foundation (IIS-0915665, BCS-0821766, CNS-0723281, CNS-1305196)

Additional Information

- Additional Material
 - SIGGRAPH course notes
 - Webpages of the authors:

http://graphics.ucmerced.edu/ http://www.cs.rutgers.edu/~mubbasir/

- Recent book published by the authors:

Geometric and Discrete Path Planning for Interactive Virtual Worlds Morgan & Claypool, 2016

Thank You!

M. Kallmann M. Kallmann