
In Proceedings of the ACM SIGGRAPH Conference on Motion in Games (MIG), 2016. This is the manuscript of the authors.

Full-Body Behavioral Path Planning in Cluttered Environments

Alain Juarez-Perez∗

University of California, Merced
Marcelo Kallmann

University of California, Merced

Figure 1: From left to right: The computed paths are guaranteed to generate collision-free motions and they address the trade-off between
longer paths suitable for regular walking and paths through narrow passages which require motion adaptation. Point-obstacles are inserted
in narrow passages in order to force the path planner to consider alternate feasible paths. When needed the system handles narrow passages
with a lateral side-stepping behavior. Full-body collision detection with the environment is performed such that regular walking can occur in
narrow passages if no collisions are introduced.

Abstract

Character navigation in virtual environments is traditionally ap-
proached by first planning a path in the free portion of the en-
vironment and then employing steering behaviors that reactively
adapt to constraints encountered during path following. Unfor-
tunately a shortcoming of this approach is that the path planning
stage does not take into account locomotion behavior choices and
trade-offs during the path computation. We propose an approach
for incorporating the behavioral capabilities of the character in the
path planning stage. The produced paths address trade-offs related
to path length and navigation behavior for handling narrow pas-
sages. The proposed behavioral path planner uses a combination of
clearance-based path planning and character geometry collision de-
tection with the 3D environment in order to achieve results suitable
for interactive navigation in cluttered environments. The resulted
paths address the natural behavior of preferring paths with enough
clearance for regular walking when possible, while also consider-
ing shorter paths which need a combination of collision avoidance
and lateral steps to be executed.

Keywords: path planning, motion planning, path following, navi-
gation, real-time graphics applications.

Concepts: •Computing methodologies→Motion path planning;
Motion processing;

1 Introduction

Character navigation and locomotion in interactive virtual environ-
ments are often addressed by decoupling the overall problem in two

∗e-mail:ajuarez-perez@ucmerced.edu
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
MiG ’16, October 10-12, 2016, Burlingame, CA, USA
ISBN: 978-1-4503-4592-7/16/10
DOI: http://dx.doi.org/10.1145/2994258.2994281

independent stages: first, a path is planned in the free portion of
the environment with a given clearance value, and second, steer-
ing behaviors are used to control a path following behavior while
reactively adapting the behavior and trajectory of the character ac-
cording to constraints detected during locomotion.

One considerable shortcoming of this approach is that the path plan-
ning stage does not take into consideration possible locomotion be-
havioral choices and trade-offs during the path computation. There-
fore, behavior and trajectory adaptation are only decided reactively
during path execution. When environments are cluttered with ob-
stacles, this traditional approach often leads to characters employ-
ing difficult maneuvers in narrow passages while much more com-
fortable paths just slightly longer may be available.

We propose in this paper a new approach that incorporates behav-
ioral capabilities of the character in a path planning stage efficiently
executed at the navigation mesh level. The produced paths address
trade-offs related to path length and navigation behavior for han-
dling narrow passages. While several alternate paths can be quickly
evaluated at the navigation mesh level, full character-environment
collision checking is also performed when needed in order to ex-
plore arbitrary body movements that can be employed to overcome
3D narrow passages in the environment.

Our method relies on a character equipped with a collection of pa-
rameterized locomotion behaviors capable of performing path fol-
lowing. The output solution is an annotated path specifying which
behavior to be used for each step along the path, according to the
encountered environment constraints.

In order to remain efficient, our approach is based on planning over
a customizable horizon in a greedy fashion, such that a first feasi-
ble path quickly found is continuously improved according to the
defined behavioral preferences and rules, and at any given compu-
tational time threshold the current path solution can be returned.

The main contributions of our approach are two-fold. First, we pro-
pose a new method for planning navigation motions for interactive
virtual characters in cluttered environments that require full-body
adaptation to overcome narrow passages. Second, we introduce the
concept of relying on fast navigation mesh techniques that dynam-
ically update the navigation mesh in order to gradually impose be-
havioral and path constraints during the process of searching for the
most suitable path.

http://dx.doi.org/10.1145/2994258.2994281

2 Related Work

A typical classification of locomotion synthesis is to group the
methods as either physics-based or data-based. Methods that have
explored the integration of planning capabilities with full-body mo-
tion synthesis are mostly data-based; however, efficient path plan-
ning techniques based on navigation meshes have been mostly de-
veloped independently from full-body motion synthesis techniques.
This section makes an overview of relevant previous work in these
areas.

Physics-based methods provide the possibility of achieving realis-
tic motion adaptation to different events in the environment. For
instance, a recent work demonstrates motion adaptability to multi-
ple constraints while executing difficult tasks [Zimmermann et al.
2015]. Another relevant example is the work of Bai et al. [2012],
which employs physics-based controllers to handle coordination
between concurrent upper-body motions. However, this methods
are computationally intensive and they are usually avoided when
speed of computation is a priority.

The first methods designed to re-use data from a motion capture
database [Lee et al. 2002; Arikan and Forsyth 2002; Kovar et al.
2002] gave rise to motion graphs. Many variants were developed
to improve different aspects of the method. Interpolation of mo-
tion paths explored the solution space of the approach [Safonova
and Hodgins 2007] but at the expense of increasing the size of the
motion graph. Further improvements were proposed [Zhao and
Safonova 2008; Zhao et al. 2009] but mostly to construct motion
graphs with improved connectivity. Approaches such as the work
of Lau and Kuffner [2006] have relied on search pre-computation
of navigation behaviors in order to obtain interactive search perfor-
mances. Similarly, motion maps [Mahmudi and Kallmann 2012]
were pre-computed in order to achieve interactive motion synthesis
from an unstructured motion capture database. While these rep-
resent powerful methods, they require pre-computation procedures
that are time-intensive and memory-consuming.

A number of planning-based methods have been developed with the
purpose of generating character locomotion among obstacles. One
of the first approaches was based on deforming animation data to
cope with constraints while searching for paths using a probabilistic
roadmap [Choi et al. 2003]. Another approach was also developed
for supporting cooperation between characters [Esteves et al. 2006].
A more recent approach uses specialized deformation techniques
achieving a powerful mechanism that can be explored during navi-
gation [Choi et al. 2011]. While these methods are able to achieve
impressive results, their focus is on the motion synthesis generation
and not on improving the underlying trajectory planning method
that is employed. Our proposed method focuses on this problem
and proposes an improved path planner that considers constraints
and trade-offs that are defined from the motion controllers.

Our proposed motion planning methodology can be applied to any
given motion controller as long as it can follow paths with dif-
ferent navigation behaviors. While our motion controller has the
advantage of relying on only one example animation per behav-
ior, there are a number of possible data-based approaches based
on larger motion databases [Heck and Gleicher 2007; Lee et al.
2010], which have the potential to generate better-quality results.
Motion controllers can also be based on learning methods, such
as reinforcement learning. For instance, Treuille et al. [2007] and
Levine et al. [2011] have employed learning for achieving powerful
real-time character controllers. This methods are time-consuming
during learning and controllers have to remain in a very low dimen-
sional space. In any case, these methods could also be controlled
by our proposed multi-behavior path planner.

Our multi-behavior path planner relies on path queries performed
on an efficient navigation mesh representation called a Local Clear-
ance Triangulation (LCT) [Kallmann 2014]. It allows us to effi-
ciently perform path queries and dynamic mesh changes during the
process of searching for a path suitable for multi-behavior execu-
tion. Alternative navigation meshes can be employed as long as the
employed operations are supported. Texts discussing approaches
for navigation meshes are available [Kallmann and Kapadia 2016].

In summary, while powerful behavioral planning approaches have
been proposed in the past for addressing multi-behavior navigation
in cluttered environments, previous planning-oriented approaches
quickly become too expensive for interactive applications. On the
other hand efficient methods based on path planning with naviga-
tion meshes have not been extended to take into account constraints
or trade-offs emerging from a multi-behavior full-body motion con-
troller, which is exactly the approach introduced in this paper.

3 Method

Our method relies on the availability of a multi-behavior charac-
ter navigation controller and an efficient clearance-based naviga-
tion mesh path planner. Our proposed approach is to associate the
available navigation behaviors with their clearance requirements
and then employ the path planner with the different requirements
such that the solution path will allow collision-free multi-behavior
execution while remaining close to the shortest feasible path.

3.1 Locomotion Behaviors

The motion generation relies on a set of deformable motion cap-
ture clips. In our case the clips define three locomotion behaviors:
regular frontal walking, arm-constrained frontal walking and lateral
walking. The motion capture set contains annotated clips of each
of the behaviors as well as the necessary transition clips between
each behavior. The arm-constrained frontal walking is implemented
by modifying the trajectory of the arms during the regular frontal
walking so that they remain close to the body. Examples of these
behaviors being used in our system are shown in Figures 1 and 6.

The first layer of our controller is based on the techniques presented
in [Juarez-Perez et al. 2014; Juarez-Perez and Kallmann 2016]. The
controller requires annotated transition points between data-based
behaviors and as well the general direction of motion. Motion de-
formations are employed with small motion modifications applied
incrementally at each frame of the motions, allowing us to pre-
cisely parameterize behaviors for achieving smooth path following.
Whenever we need to detect if a deformed motion introduces col-
lision we test if a limb of the character collides with itself or the
environment. For testing path validity with respect to collision we
test if there are collisions between limbs or between a limb and the
environment, at every frame of the motion that executes the path.

We have evaluated the parameterization space of the locomotion
behaviors employed in this work, which are based on incremental
rotation and orientation deformations. The evaluation is based on
the quality maps as shown in Figure 2. In the maps, red represents
the areas that generate self-collisions while blue and green repre-
sent areas that generate motions with slightly unreachable goals for
the employed Inverse Kinematics (IK) corrections which control
feet constraints enforcement during the motion parameterization.
The blue and green errors are considered imperceptible and repre-
sent regions that still produce acceptable motions. If we limit our
deformations to lie inside the the green and blue region of the qual-
ity maps, we can control the locomotion behaviors with flexibility
beyond the needs of the path following capabilities that are encoun-
tered in this work. In this way our parameterization is guaranteed to

Figure 2: Parameterization coverage maps for the frontal regu-
lar walking (left) and lateral walking (right) locomotion behaviors.
The maps are on polar coordinates. The angle coordinate repre-
sents motion deformation controlling the direction of the motion.
The radial coordinate represents the orientation deformation that
is applied to specify the final orientation of the character’s body, at
the end of one step cycle. The black boundary delimits the radius
representing no deformation on the final character orientation.

precisely follow the produced paths with good quality and without
generating self-collisions, and such that leg-leg collisions during
sharp turns do not occur.

At any point in time the controller can receive a new behavior to
be executed and the necessary transitions will be automatically ap-
plied. Motion blending is applied in order to smooth out any pos-
sible misalignment introduced by the deformations. At each con-
catenation point it is possible to generate a new path starting at the
current position and orientation or to switch to a different behavior,
such that a multi-behavior path can be executed, as it is required by
the planner described below.

3.2 Behavioral Path Planner

Our behavioral path planner receives as input a goal position, and
it then computes an annotated path from the current position of the
character to the goal position. If the goal position lies beyond a
distance threshold h, the planner improves the obtained path up to
this given distance h. This distance controls the planning horizon
of the overall behavioral planner.

We rely on a the local clearance triangulation (LCT) navigation
mesh, which supports computation of paths with arbitrary clearance
and dynamic insertion and removal of degenerate obstacles defined
as a single point. This feature is used for adding constraints to the
navigation mesh that reflect limitations of the locomotion behavior
of the character, forcing the LCT path planner to search for alternate
paths with new requirements.

We define the available behaviors of the locomotion controller as
the set of n behaviors {B1, . . . ,Bn}, each with its correspondent
clearance value ci, i ∈ {1, . . . , n}, such that c1 < · · · < cn. We
define Bn, our last behavior, to be the preferred locomotion behav-
ior. In our case Bn represents regular frontal walking. Behavior
B1 is defined as the least preferred behavior, usually an uncom-
fortable behavior to execute, but the most appropriate navigation
behavior for narrow passages. In our case B1 performs lateral walk
(or side-stepping). Any behavior in between will represent a trade-
off between capabilities of navigation and preference of execution.
In our current setup, we only have one intermediate behavior, B2,
which is a regular frontal walk but with the original arms swing mo-
tions modified to stay close to the body of the character, achieving
a walking with arms collision avoidance behavior. Additional nav-
igation behaviors or styles can be easily added to our framework.

Each behavior is then associated with its clearance requirements.

Let c1 be the minimal path clearance that a character behavior can
handle. In our case this corresponds to behavior B1 and its required
clearance is equivalent to the radius of a cylinder enclosing only the
body of the character in a straight posture. While this clearance is
enough for passing narrow passages with confidence, we want to
avoid using it as much as possible. Clearance value c2 is the clear-
ance required for B2, which executes frontal walking with arms
collision avoidance. Finally, c3 is the clearance required for the pre-
ferred unconstrained regular frontal walking behavior. Throughout
this paper we may refer to it as the normal behavior. The clearance
values are expected to satisfy c3 > c2 > c1, which implies from
the assumption that the behaviors are ordered with respect to their
capabilities of handling narrow passages. This order is also used as
the inverse of the behavior preference order.

Algorithm 1 and 2 summarize the main steps of the overall be-
havioral path planner. They rely on several calls to the LCT
path planner FINDPATH(c;a, b), which returns a free path π of
clearance c between points a and b. Paths are computed accord-
ing to the needed clearance of each behavior and composed such
that the solution path is defined as a sequence of path sections
Π = {π1, . . . , πk}, where each section πi has an independent
clearance value.

The overall algorithm is designed to minimize path length and at
the same time maximize the employment of the preferred behav-
iors. These two objectives are contradictory because the preferred
behaviors require more clearance than the non-preferred ones, and
paths with high clearance will always be longer than ones with low
clearance.

Algorithm 1 starts by computing a path with the minimum accepted
clearance c1. The path is shortened according to the planning hori-
zon h, and then Algorithm 2 is iteratively called in order to eval-
uate and consider longer path sections that can be executed with
preferred behaviors, until the entire path is processed.

Algorithm 1 - Behavioral Path Planner Entry Point
Input: current position s, goal position g, and the number of avail-
able behaviors n (3 in our current work.)
Output: path from s to g with annotated behavior, or null path if a
feasible path does not exist.

1: procedure BHPATHMAIN(s, g, n)
2: Πcur = FINDPATH(c1; s, g);
3: if (Πcur == null) return null path;
4: if (length(Πcur) > h) Πcur is shortened to length h;
5: gh = final point of Πcur;
6: Πsol = {s};
7: ŝ = s;
8: while (character not at gh) do
9: Append BHPATH(ŝ, gh,Πcur, n) to Πsol

10: if (interactive mode) then
11: Update Πsol on the character execution queue;
12: ŝ = last point on Πsol

13: Πcur = Πsol

14: return Πsol;

Algorithm 1 is designed to operate in two modes: interactive char-
acter control, in which case path sections are sent for execution as
they are computed, or full path processing, where the entire multi-
behavior path is composed and returned, if one exists.

Algorithm 2 relies on the following 3 additional procedures:

• TESTCOLLISION(Π,p,B) starts testing for collision points
from point p onwards, along path Π, and employing behavior
B. The function returns the first collision point encountered.

Algorithm 2 - Behavioral Path Planner Main Iterations
Input: initial position ŝ, goal position gh, current path Πcur and
the number of available behaviors n (3 in our current work.)
Output: path section starting at ŝ with annotated behavior.

1: procedure BHPATH(ŝ, gh,Πcur, n)
2: // Evaluate if preferred behavior is feasible:
3: p = TESTCOLLISION(Πcur, ŝ,Bn);
4: if (p == null) return; // Done.
5: pobs = point between p and character;
6: Insert pobs as point-obstacle in LCT;
7: Πnew = FINDPATH(c1; ŝ, gh);
8: if (|length(Πnew)− length(Πcur)| > lt) then
9: // Πnew is too long

10: // Find the preferred navigation behaviors of Πcur:
11: Remove pobs from LCT;
12: q = FURTHEST(Πcur, ŝ,Bn);
13: for (i = n− 1 to 1) do
14: r = CLOSEST(Πcur, q,Bi);
15: if (r exists) then
16: Append FINDPATH(cn; ŝ, q) to Πsol;
17: Append FINDPATH(ci; q, r) to Πsol;
18: break; // exit for loop
19: else
20: Append Πnew to Πsol;
21: return Πsol;

• FURTHEST(Π,p,B) first calls TESTCOLLISION(Π,p,B)
to find the first collision point. The function will find the last
step along the path such that there are no collisions when fol-
lowing with behavior B.

• CLOSEST(Π,p,B) finds the closest point r in the path Π be-
yond p such that π(ci; q, r) is a feasible subpath of Π and
the character can continue with the normal behavior Bn after-
wards. The function is called in a moment in which we are
sure that a behavior different than the preferred one has to be
used, so any attempted behavior switch can cause collisions
and we are interested in detecting the first time that this does
not happen.

The procedure greedily explores the possible behaviors that can
navigate the path. It begins by evaluating the path traversal until
a collision is found. We want to avoid this collision, but at the same
time, we do not want to vary too much from the original path. To
do this, the system adds a 2D point-obstacle to the navigation mesh
environment so that when a new path is found, this point is avoided,
and thus the previous collision is avoided. The point-obstacle loca-
tion is based on the collision point projected on the floor and the
root position of the character. The collision point cannot be added
as an obstacle, because it lies inside one already. If the root posi-
tion is used the path may change too much, specially in narrow pas-
sages. We therefore compute the point-obstacle as a point between
these two places. An example of this path modification procedure
is shown in Figure 3.

When a collision cannot be prevented by path modification, the al-
gorithm will eventually find a path that exceeds the length threshold
lt, at which point it will start to test different behaviors to overcome
the existing obstacle. Once a behavior is found, it annotates that
section of the path and iterates back to the frontal walking behavior
in order to continue the behavior search.

An example of a solution path obtained is shown in Figure 4. In
this image, the first time FURTHEST is called, the method returns
the last point along the first blue trajectory. Then it switches to B2

and calls CLOSEST, it then returns the last point along the green

Figure 3: The blue positions represent the projected joint position
of the limbs that collided with obstacles. The green positions are
the projected character root positions on the floor at the moment of
each collision. The red positions are the point-obstacles that were
inserted in the LCT navigation mesh as additional constraints to be
considered in subsequent path queries. The final path (marked by
the dark red corridor) takes into account the new point-obstacles
that were inserted.

trajectory on that path and the green path section will be annotated
with its corresponding behavior.

Figure 4: Example solution path found by our method. The blue
path sections can be executed with the preferred behavior B3. The
green section with B2 and the red sections with B1.

After successful completion the overall algorithm will return a path

Π = {π1(cj1 ;a1, b1), . . . , πn(cjn ;an, bn)},

where bi = ai+1, i ∈ {1, ..., n− 1}. The path sequence implicitly
defines a solution path with behavior transitions in the following
way: if ji = 3 regular walking is used for that section; if ji = 2,
constrained walking is used; otherwise lateral walking is used.

In summary, the overall procedure will start by finding the mini-
mum clearance path, which can be followed with the lateral step-
ping behavior, however since this behavior is slow and often un-
necessary, preference is given to path sections of higher clearance
whenever path length is not overly increased.

4 Results and Discussion

The proposed method was tested on three different scenarios and we
have designed an interactive application that computes at interactive
rates path following to arbitrarily given points in a given scenario.

4.1 Scenarios

In the first scenario the character has to find a path that crosses an
open door with obstacles on the way. The door has a geometry that
makes it impossible to be crossed without using a different behav-
ior than the preferred regular walking. The first area is cleared by
adding point-obstacles to modify the path. However, the door ob-
stacle could not be cleared by path modifications and so a behavior
switch to the arm avoidance behavior was selected, which was suf-
ficient to avoid collisions with the door. This example is illustrated
in Figure 5-right.

Figure 5: Left: The obstacle was avoided by adding extra point
obstacles to steer away the path. Right: The corridor is narrow so
an arm avoidance behavior was needed.

Figure 6: Behavior transition in a narrow corridor. From top to
bottom: arm avoidance behavior employed in the first section. In
the middle section regular walking could be used because no colli-
sions were detected even though the path has low clearance. In the
final section lateral side-stepping is required.

The second scenario was created to intentionally trigger our spe-
cific behaviors. It consists of a narrow corridor with specific areas
designed to be traversed only by each of the available behaviors.
The first area of the corridor forces an arm avoidance behavior. The
next one has less clearance for the path planner, but because the
obstacles don’t collide with the arms, the system allows a switch
to the normal behavior. Finally, the final section has the minimum
accepted clearance and lateral side-stepping is required to be em-
ployed. Figure 6 shows the environment and the obtained results.

Finally we have implemented a randomized environment with ob-
stacles of varied dimensions (Figure 7). We can control the den-
sity of the obstacles in the scene, going from easy to traverse with
the normal behavior to highly cluttered and often requiring non-
preferred behaviors. We use this environment for performance eval-
uation of our method, as described in the next sub-section.

4.2 Performance Evaluation

We evaluate the performance of our planner on two different ran-
domized environments, one with a reasonable density of obstacles

Figure 7: Left: dense environment. Right: normal environment.
Computed solution corridors are shown in both environments for a
same goal point.

considered to be typical of normal cases, and the other is a denser
environment situation. Figure 7 illustrates the general appearance
of these two environments.

In order to test our environments, we defined 100 different goals at
the same linear distance from the starting point of the path queries.
The length of the planned paths was equivalent to 6 and 10 charac-
ter steps in the normal behavior. We then ran our behavioral path
planner in both environments and measured the computation time
taken to reach the solutions.

Our results are presented in Figure 8. The blue bars represent the
average time of each tested type of environment, and the black line
is the deviation of the results. Each bar is associated with a number
and a label specifying the environment type. The number repre-
sents the linear distance between the used starting point and the
goal point, and the label represents the corresponding environment.
The dense environment contained several regions not allowing a di-
rect path, generating longer paths and requiring more computation
time. Because of this reason there were some high values observed
and the variance in the first evaluation in the graph is considerably
higher than in the other tests.

0.541

0.079 0.099 0.061

-0.200

0.000

0.200

0.400

0.600

0.800

1.000

1.200

10, dense 10, normal 6, dense 6, normal

Se
co

n
d

s

Processing time

Figure 8: Performance evaluation. The graph presents the de-
viation and average times required to compute paths of different
lengths on dense and normal environments.

4.3 Interactive Path Following

In our interactive test application every time the user selects a reach-
able point in the environment, the system computes the correspond-
ing annotated path from the location at the end of the current motion
clip to the newly specified target.

As our evaluation shows, if we limit the horizon distance h of the
path that the algorithm is processing it is possible to run the system
interactively regardless of the complexity of the environment. We
are thus able to reach interactive results suitable for applications
that require a mouse-guided target selection for locomotion, as is
the case in several computer games. Our interactive application is
shown on the accompanying video.

4.4 Discussion and Extensions

The behavioral path planner, although fast under a limited horizon,
could be further improved by implementing the path search to oc-
cur during motion synthesis, allowing later portions of the path to
be upgraded to preferred behaviors while the initial path portion is
executed. Our current solution is based on a computation time limit,
with the current path being returned when the given time threshold
is reached.

Clearly a bottleneck of our approach is the full body collision detec-
tion with the environment at the mesh level. Currently we test full
collision detection at every frame of the produced motions. Op-
timizations at the collision detection level are possible and would
significantly improve the overall performance of the planner.

It is in principle possible to only rely on clearance parameters in or-
der to avoid inserting point-obstacles in the navigation mesh; how-
ever, additional techniques would be needed. The LCT navigation
mesh has been recently extended with the concept of extra clear-
ance [Kallmann 2016], which could be used in such an approach.
However, such an approach would not by itself allow exploring
different corridors of the environment. Our approach of inserting
point-obstacles provides a way to solve this problem.

Our system can be easily adapted to operate with a larger set of be-
haviors, in particular with reactive behaviors. We have a behavior-
associated measure related directly to the behavior selection mech-
anism, but this can be adapted to assign a priority to each behavior
in order to introduce behaviors with dynamic clearances.

5 Conclusion

We have presented a path planning system for priority-based be-
havior selection and path adaptation in order to achieve interactive
multi-behavior navigation in cluttered environments. The system
computes paths which can be precisely followed by locomotion
behaviors that adapt to the given environment in order to achieve
collision-free results. The computed solutions adapt to dense envi-
ronments with narrow passages and we have shown that our system
can run at interactive rates producing solutions that represent natu-
ral behavioral choices.

References

ARIKAN, O., AND FORSYTH, D. A. 2002. Interactive motion gen-
eration from examples. ACM Trans. Graph. 21, 3 (July), 483–
490.

BAI, Y., SIU, K., AND LIU, C. K. 2012. Synthesis of concurrent
object manipulation tasks. ACM Transactions on Graphics 31, 6
(Nov.), 156:1–156:9.

CHOI, M. G., LEE, J., AND SHIN, S. Y. 2003. Planning biped lo-
comotion using motion capture data and probabilistic roadmaps.
ACM Transactions on Graphics 22, 2 (Apr.), 182–203.

CHOI, M. G., KIM, M., HYUN, K. L., AND LEE, J. 2011. De-
formable Motion: Squeezing into Cluttered Environments. Com-
puter Graphics Forum.

ESTEVES, C., ARECHAVALETA, G., PETTRÉ, J., AND LAU-
MOND, J.-P. 2006. Animation planning for virtual characters
cooperation. ACM Transaction on Graphics 25, 2, 319–339.

HECK, R., AND GLEICHER, M. 2007. Parametric motion graphs.
In Proceedings of the symposium on Interactive 3D graphics and
games (I3D), ACM Press, New York, NY, USA, 129–136.

JUAREZ-PEREZ, A., AND KALLMANN, M. 2016. Modeling
data-based mobility controllers with known coverage and quality
properties. In Digital Human Modeling.

JUAREZ-PEREZ, A., FENG, A., KALLMANN, M., AND SHAPIRO,
A. 2014. Deformation, parameterization and analysis of a single
locomotion cycle. In Proceedings of the Seventh International
Conference on Motion in Games, ACM, New York, NY, USA,
MIG ’14, 182–182.

KALLMANN, M., AND KAPADIA, M. 2016. Geometric and Dis-
crete Path Planning for Interactive Virtual Worlds. Morgan and
Claypool Publishers.

KALLMANN, M. 2014. Dynamic and robust local clearance trian-
gulations. ACM Transactions on Graphics (TOG) 33, 5.

KALLMANN, M. 2016. Flexible and efficient navigation meshes
for virtual worlds. In Simulating Heterogeneous Crowds with In-
teractive Behaviors, N. Pelechano, J. Allbeck, M. Kapadia, and
N. Badler, Eds. Taylor & Francis.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. ACM Transactions on Graphics 21, 3 (jul), 473–482.

LAU, M., AND KUFFNER, J. J. 2006. Precomputed search trees:
planning for interactive goal-driven animation. In Proceedings
of the ACM SIGGRAPH/Eurographics symposium on Computer
animation (SCA), 299–308.

LEE, J., CHAI, J., REITSMA, P., HODGINS, J. K., AND POL-
LARD, N. 2002. Interactive control of avatars animated with
human motion data. Proceedings of SIGGRAPH 21, 3 (July),
491–500.

LEE, Y., WAMPLER, K., BERNSTEIN, G., POPOVIĆ, J., AND
POPOVIĆ, Z. 2010. Motion fields for interactive character lo-
comotion. ACM Transactions on Graphics 29, 6 (Dec.), 138:1–
138:8.

LEVINE, S., LEE, Y., KOLTUN, V., AND POPOVIĆ, Z. 2011.
Space-time planning with parameterized locomotion controllers.
ACM Trans. Graph. 30, 3 (May).

MAHMUDI, M., AND KALLMANN, M. 2012. Precomputed mo-
tion maps for unstructured motion capture. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, SCA ’12, 127–136.

SAFONOVA, A., AND HODGINS, J. K. 2007. Construction and
optimal search of interpolated motion graphs. ACM Transactions
on Graphics (Proceedings. of SIGGRAPH) 26, 3.

TREUILLE, A., LEE, Y., AND POPOVIĆ, Z. 2007. Near-optimal
character animation with continuous control. In Proceedings of
ACM SIGGRAPH, ACM Press.

ZHAO, L., AND SAFONOVA, A. 2008. Achieving good
connectivity in motion graphs. In Proceedings of the 2008
ACM/Eurographics Symposium on Computer Animation (SCA),
127–136.

ZHAO, L., NORMOYLE, A., KHANNA, S., AND SAFONOVA, A.
2009. Automatic construction of a minimum size motion graph.
In Proceedings of ACM SIGGRAPH/Eurographics Symposium
on Computer Animation.

ZIMMERMANN, D., COROS, S., YE, Y., SUMNER, R. W., AND
GROSS, M. 2015. Hierarchical planning and control for com-
plex motor tasks. In Proceedings of the 14th ACM SIGGRAPH
/ Eurographics Symposium on Computer Animation, ACM, New
York, NY, USA, SCA ’15, 73–81.

