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The design and implementation of new techniques for navigation meshes can
play a significant role in the navigation capabilities of agents populating mod-
ern virtual worlds. This chapter reviews the main approaches used to compute
flexible and efficient navigation meshes for 3D virtual worlds, and discusses
the use of Local Clearance Triangulations as the underlying cell decomposition
representing the navigable surfaces in a virtual environment.

2.1 Introduction

Modern virtual worlds tend to be large and rich in details designed to max-
imize user engagement during interactive experiences. An important part of
modeling interactive virtual worlds is the inclusion of its semantic informa-
tion, which informs multiple modules of the simulation engine controlling the
virtual environment. One of the most basic type of semantic information is
the definition and representation of the accessible and navigable regions of the
environment. This is exactly the purpose of a navigation mesh.

The term navigation mesh [36, 38] has been coined by the computer games
community and in general refers to any polygonal mesh that describes navi-



gable surfaces for path planning and other navigation queries. While the term
is commonly employed to refer to a structure without any specific underlying
construction or property, recent research in the area has greatly contributed to
the definition of key approaches for different types of navigation meshes [16].

Choosing a suitable representation for a navigation mesh is important be-
cause it will directly influence the types of navigation queries that can be com-
puted, and how efficiently they are computed. A useful navigation mesh has to
be flexible to support a number of needed operations, without compromising
the ability to compute free paths efficiently. Recent advances have proposed
innovative solutions for supporting collision-free paths with arbitrary clear-
ance, real-time dynamic updates, robustness in geometric operations, etc. To
address these problems, classical methods from computational geometry and
discrete search have been re-visited with new solutions suitable for addressing
the real-time constraints of virtual worlds.

The recently introduced Local Clearance Triangulation (LCT) [15] pro-
poses to refine a Constrained Delaunay Triangulation until all narrow pas-
sages of the environment can correctly encode clearance information per tri-
angle traversal. The refinements are bounded so that the triangulation remains
with O(n) number of triangles, where n is the number of vertices needed to
describe all obstacles in the environment. In this way, an LCT can efficiently
answer path queries of arbitrary clearance, allowing the representation to be
shared by agents of multiple sizes without the need to compute and maintain
the medial axis of the environment (see Figure 2.1). Being a simplicial decom-
position, triangulations are flexible to support a number of operations and are
often chosen as the starting point for several geometric algorithms relevant to
navigation and environment processing.

FIGURE 2.1
Local Clearance Triangulation being shared by agents of different clearance
requirements. Agents are represented as cylinders. Paths are shown in gray as
thick paths delimiting the respective path clearance required by each agent.
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This chapter presents an overview of the stages involved in the process of
building navigation meshes for virtual worlds, and discusses the use of LCTs
as the underlying cell decomposition scheme.

2.2 Computing Navigation Meshes

The main function of a navigation mesh is to represent the navigable regions
of a virtual world and to efficiently support the computation of navigation
queries. By delimiting the free navigable regions, the navigation mesh also
provides important spatial limits that agents can use during collision avoid-
ance and behavior execution. This is a key advantage that navigation meshes
offer over graph-based representations such as waypoint graphs or roadmaps.

The process of constructing a navigation mesh can be subdivided in two
main phases: detection and extraction of the navigable surfaces in a given
3D virtual world, and cell decomposition and representation of the navigable
surfaces. An analysis of these two phases is given in the next subsections.
The presented analysis extends an equivalent analysis available in previous
work [17].

2.2.1 Detection and Extraction

A number of steps have to be taken into account in order to extract navigable
surfaces from a given environment. First of all, the navigation capabilities
of the agents to be simulated have to be clearly specified. Based on these
capabilities, surfaces that are acceptable for navigation can be then detected
and finally connected to each other according to the chosen representations.

Specifying Navigation Capabilities. The most common case involves
the specification of limits related to usual human-like locomotion behaviors:
the maximum step height that agents can accommodate when climbing stairs
or when walking over small obstacles, the maximum terrain slope that agents
can accept when navigating on a surface, the minimum height that agents
require for being able to pass under obstacles, the maximum jumping distance
that agents can overcome with a jumping behavior (when available), etc.

Clearly, depending on the scenario and application at hand, a number of
additional parameters can be considered. Different sets of parameters may also
be needed in order to specify specific limits for distinct locomotion modes. For
example, agents in walking and climbing modes will likely choose different
acceptable limits when considering a terrain slope. Agents driving cars or
riding bicycles may also be associated with different sets of parameters.

An added complexity appears when a single representation is sought for
different types of agents or locomotion modes. For example, if agents can
have different sizes, the free regions represented in the navigation mesh have
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to include narrow passages that only the smallest agents can traverse. Later at
run-time, additional tests will have to be performed for determining if larger
agents can pass or not at a given passage. The advantage is that the navigation
mesh can be shared by agents of different sizes. This is the case of LCTs [15]
and of representations based on the medial axis [8].

In some particular cases the navigation mesh can be optimized for a cer-
tain parameter value. For example, if all agents being simulated have the
same clearance requirement, the navigation mesh can be already built with
boundaries respecting the needed clearance from obstacles. The Recast nav-
igation mesh toolkit [28] offers this capability. In case of agents of different
sizes the minimum clearance requirement can still be taken into account in
the navigation mesh construction.

When agents can navigate different types of terrains, for example water,
grass or pavement, such information should be annotated in the virtual word
so that the boundaries between the different types of terrain can be automat-
ically detected and represented. These regions will generally lead to varied
traversal costs to be taken into account during path planning, and to locomo-
tion behavior transition points annotated in the navigation mesh. The work
of Ninomiya et al. [30] illustrates a number of navigation constraints that can
be taken into account, such as avoiding the line of sight of other agents and
defining attracting and repelling constraints.

Given the collection of parameters specifying navigation capabilities, the
environment can be then processed automatically. Although it is a pre-
processing step, fast processing times are important for allowing designers
to interactively edit the environment until achieving their design goals. In
certain virtual worlds the navigation characteristics of the environment are
key to the application. For instance, in strategy and exploration games sev-
eral regions of the environment are carefully designed with critical navigation
goals designed for achieving specific game play experiences. Depending on the
goals of the application multiple levels of representation can also be designed
in order to account for different types of locomotion behaviors [18].

Processing 3D Worlds. The typical approach is to analyze the virtual
world globally with the use of a volumetric decomposition of the whole space
occupied by the scene. A volumetric analysis is the most generic approach for
handling an environment described without any guarantees on the connectiv-
ity or correctness of its polygons. Because it is desirable to not impose any
restrictions on the work of designers, the processing has to be robust with re-
spect to degeneracies in the models such as interpenetrating geometry, gaps,
etc. The process can also adjust the vertex density describing the boundaries
of the navigable surfaces in the scene.

Oliva and Pelechano [33] use GPU techniques to quickly voxelize and pro-
cess an input scene. The approach first identifies voxels containing scene poly-
gons that respect the navigation capabilities of the agents, and then pro-
gressively joins voxels that should make part of a same navigable surface.
The result generates multiple navigable layers that are connected to compose
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the final navigation mesh. The method used by Recast [28] also relies on a
voxelization of the scene. It then partitions the scene with a cell and portal
identification method [10] based on the distance field of the voxelized scene.

When the input scene does not require generic volumetric processing, spe-
cialized methods operating directly on the input geometry can be developed.
For example, Lamarche [22] projects polygons from different layers in the low-
est layer to then compute a subdivision that encodes the heights of the layers
above it. The information allows to determine navigable regions with respect
to height constraints. Later, Jorgensen and Lamarche [14] further subdivide
the surfaces according to spatial reasoning metrics able to detect and annotate
information relative to rooms and doors.

Building a Unified Representation. Additional steps are required to
convert navigable surfaces into a unified navigation mesh representation. At
this point semantic information relative to special navigation or access fea-
tures are considered. For example, doors and elevators will create connections
between surfaces, and the connections can be turned on or off at run-time.

An example of a typical special navigation capability that may connect
disconnected layers are jumps. A jump can be specified as a simple behavior
able to overcome small obstacles, or as a complex behavior that can connect
relatively distant layers in varied relative positions. Given a jump specification,
layers that can be connected by the jump are typically augmented with special
links specifying the connection. These links are usually called off-mesh links,
as illustrated in Figure 2.2.

FIGURE 2.2
Example of off–mesh links representing feasible jumps between disconnected
surfaces [19].

The final step in the construction of a navigation mesh often involves
merging adjacent navigable surfaces, resulting in a multi-layer representation
with each layer represented in a chosen polygonal cell decomposition scheme.
Most of the approaches are developed as planar decompositions which are
extended to connect different layers [39, 33].
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2.2.2 Cell Decomposition

The chosen polygonal cell decomposition scheme will play a key role on the
properties, efficiency, and types of navigation and path planning queries that
can be handled. The analysis that follows is based on selected properties that
are important to be observed.

Linear number of cells. A navigation mesh layer should represent the
environment with O(n) number of cells in order to allow search algorithms to
operate on the structure at optimal running times. Here n denotes the total
number of vertices used to describe the planar polygonal obstacles in the layer.

A linear number of cells will allow the popular Dijkstra [7] and A* [9] graph
search algorithms to run on a cell adjacency graph that depends linearly on
the number of vertices in the obstacles. Graph search algorithms will then
typically run in O(n log n) time. This approach is followed by most of the
navigation meshes used in practice. Although the search time can be reduced
to O(n) with specialized planar graph search algorithms [21], implementation
attempts have not yet been reported in a navigation mesh.

Optimizations are also possible to reduce the number of cells to a minimum.
For example, it is possible to build a higher-level adjacency graph connecting
only the degree-3 cells, which are the junction cells that connect 3 or more
corridors. Such a higher level graph can be encoded in the structure with
additional links allowing search algorithms to visit a reduced number of cells.
Another optimization is to reduce the number of cells by relying on larger cells.
For example, the Neogen approach is based on large almost-convex cells [31].
The drawback is that there is less resolution to encode information or to ensure
properties in the mesh.

An important observation is that, while several graph search algorithms
will find a globally shortest path in the adjacency graph of a subdivision, a
shortest path in the graph will most often not be a globally shortest path in
the plane, as discussed next.

Optimality of Computed Paths. Computing globally shortest paths in
the plane, or Euclidean shortest paths (ESPs), from a generic cell decom-
position is not a simple task. Perhaps the most well-known approach for
computing ESPs among polygonal obstacles is to build and search the vis-
ibility graph [29, 25, 5] of the environment. This can be achieved in O(n2)
time [34, 37], and although several optimized algorithms exist, this time can-
not be reduced for the generic case because the number of edges in the graph
is O(n2).

Visibility graphs are also difficult to be efficiently maintained in dynamic
scenarios. The difficulty comes from the possibly high number of edges and
also because visibility is independent of vertex proximity. This leads to local
changes often having global effects. Despite these difficulties, visibility graphs
still represent the most direct approach for computing shortest paths in the
plane.

The ESP problem can however be solved in sub-quadratic time [26] and an
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algorithm running in O(n log n) time is available [12]. The approach is based
on the continuous Dijkstra paradigm, which simulates the propagation of a
wavefront maintaining equal length to the source point, until the goal point is
reached. After the environment is pre-processed in O(n log n) time for a given
source point, paths to any destination can be retrieved in O(log n) time. The
pre-processing generates the Shortest Path Map (SPM) of the environment,
a subdivision of the plane with boundaries being straight line segments or
hyperbolic arcs. The approach involves complex geometric computations but
GPU techniques recently developed [2] may lead to a practical alternative for
achieving optimal paths in applications, in particular when several paths for
a same source point are required. See Figure 2.3 for examples. In this case,
because the SPM is computed in the frame buffer, a query point can be located
in the SPM in constant time and its shortest path to the source will take time
proportional to the number of vertices in the path.

FIGURE 2.3
The shown SPM was computed with GPU rendering [2]. Clipped cones are
placed at generator vertices and at heights according to their distances to
the source point (left image). Cones are then rendered from an orthographic
vertical camera placed above the obstacle plane (center image). The result in
the frame buffer will encode the SPM with respect to the source point, which
is denoted as a yellow cross (right image). The SPM encodes globally shortest
paths to all points in the plane. Given a query point, it is connected to the
generator point of the region containing it, then progressively connected to
the parent generators until reaching the source node. The traversed sequence
of points is the shortest path.

While optimal algorithms for computing ESPs will require specific sub-
division structures (like the SPM), triangulations offer a natural approach
for cell decomposition and have been explored as the base decomposition for
several ESP algorithms. For instance, Kapoor et al. [20] have explored the
reduction of a triangulated environment in corridors and junctions in order to
compute the relevant subgraph of the visibility graph for a given path query.
The method computes globally optimal paths in O(n + h2 log n), where h is
the number of holes in the planar description of the environment. While other
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algorithms for computing ESPs from a triangulation have been explored, the
quadratic running time remains a difficult barrier to break.

Although several alternatives exist for computing ESPs, most navigation
applications in virtual worlds do not impose the computation of globally short-
est paths as a requirement. Fast, simple and robust approaches are often pre-
ferred, and the O(n log n) path computation time with standard graph search
algorithms has been the approach of choice.

A navigation mesh should however facilitate the computation of quality
paths. If ESPs cannot always be found, other guarantees on the type of paths
that are computed should be provided. A reasonable expectation is that lo-
cally shortest paths should be efficiently computed, and additional character-
izations related to quality may be adopted. Triangulations, including LCTs,
are suitable for computing locally shortest paths efficiently. After a graph
search determines a corridor containing a solution path, the shortest path in
the corridor can be computed with a linear pass in the triangles of the corridor
by using the funnel algorithm [3, 24, 11].

Paths with Arbitrary Clearance. Clearance is an important aspect of
navigation and a navigation mesh should provide an efficient mechanism for
computing paths with arbitrary clearance from obstacles. This means that the
structure should not need to know in advance the clearance values that will be
used. A weaker and less desirable way to address clearance is to pre-compute
information specifically for each clearance value in advance.

The most complete approach for addressing clearance is to explicitly rep-
resent the medial axis of the environment [1, 8]. The medial axis can be com-
puted from the Voronoi diagram of the environment, and methods based on
hardware acceleration have been developed to improve computation times [13].
One benefit of explicitly representing the medial axis is that locally shortest
paths can be easily interpolated toward the medial axis in order to reach max-
imum clearance when needed. Interpolation toward the maximum clearance
path may however not be the most appropriate way of adjusting path clear-
ance and several other approaches are possible. Section 2.4 further discusses
this point and presents one alternative approach.

LCTs do not encode the medial axis and instead offer a triangular mesh
decomposition that carries just enough clearance information to be able to
compute paths of arbitrary clearance, without the need to represent the in-
tricate shapes the medial axis can have. If a path of maximum clearance is
required, the medial axis of a triangulated path corridor can still be computed
in linear time with available algorithms [4].

Simple techniques for handling clearance directly from a standard Con-
strained Delaunay Triangulation (CDT) have also been explored, however no
simple method has been found to always produce correct results with only
local O(1) time tests. One approach to capture the width of a corridor is to
refine constrained edges that have orthogonal projections of vertices from the
opposite side of the corridor, adding new free CDT edges with length equal
to the width of the corridor [23]. However, such a refinement can only ad-
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dress simple corridors and the total number of vertices added to the CDT can
be significant. The LCT decomposition provides a solution that correctly and
efficiently determines clearance in a triangulation with straight edges. The ap-
proach is based on a novel type of refinement operation, and clearance values
can be pre-computed and stored in the free edges so that on-line clearance
tests are reduced to a simple value comparison per traversed edge. Details are
presented in Section 2.3.

Specific pre-computation per clearance value is usually needed when clear-
ance is addressed by structures not specifically designed to capture clearance
in all narrow passages of the environment. For example, in the Neogen ap-
proach the larger cells require specific computations at the portals for each
clearance value to be considered [32].

Representation robustness. A navigation mesh should be robust to
degeneracies in the description of the environment. This aspect is first handled
during the volumetric extraction of the navigable surfaces in the virtual world
(Section 2.2.1), but robustness issues may still arise at the planar level both
during construction time and during run-time operation.

It is well-known that the limited precision of floating point operations is
often not sufficient for achieving robustness in geometric computations. One
approach is to rely on arbitrary precision representation, however imposing a
significant performance penalty on the final system. Certain specific operations
can be implemented robustly with the use of exact geometric predicates [35, 6].

Robustness becomes particularly difficult when obstacles are allowed to be
removed and inserted in the navigation mesh at run-time. When obstacles are
inserted undesired self-intersections and overlaps may occur, and intersection
points computed with floating point operations may not exactly lie on the
intersecting lines. Such imprecision eventually leads to vertices placed at illegal
locations. Being robust is crucial for allowing dynamic updates to occur, in
particular when users are allowed to make arbitrary updates at run-time.

An approach for handling robust dynamic updates that can be extended to
any type of triangulation has been proposed as part of the LCT approach [15].
The solution is based on fast floating point arithmetic and relies on a carefully
designed combination of robustness tests, one exact geometric predicate, and
adjustment of illegal vertex coordinates. Robustness is achieved for any set of
input polygons, including self-intersecting or overlapping polygons, which are
robustly handled on-line in any configuration.

Dynamic updates. A navigation mesh should be able to efficiently up-
date itself in order to accommodate dynamic changes in the environment.
Dynamic updates are crucial for supporting many common events that hap-
pen in virtual worlds. Updates can reflect large changes in the environment
or small ones, such as doors opening and closing. An interesting example of
small updates is when agents decide to stop for a while and can thus become
obstacles for other agents, a situation encountered in specific multi-agent sim-
ulations such as in the computer game The Sims 4 [15].

In general, all approaches for navigation meshes can be extended to accom-
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modate dynamic operations. The general trade-off is the more complex the
structure is, the more complex and expensive it is to maintain it dynamically.
For instance there are several hierarchical representations that are possible to
be implemented for speeding up path search; however, if a navigation mesh is
associated with a hierarchical structure the hierarchy has also to be updated
for every change in the navigation mesh.

The overall chosen approach to address dynamic updates should take into
account how often path queries and dynamic updates are executed, and the
correct representations and methods should be determined accordingly.

2.3 Local Clearance Triangulations

The properties discussed in the previous section summarize basic needs that
navigation meshes should observe in typical virtual world simulations. This
section defines Local Clearance Triangulations and later in Section 2.4 the
use of LCTs as a flexible and efficient underlying representation for naviga-
tion meshes is discussed. A full exposition of LCTs is available in previous
work [15].

2.3.1 Definition

Let S = {s1, s2, ..., sm} be a set of m input segments describing polygonal
obstacles. Segments in S may be isolated or may share endpoints forming
closed or open polygons. The number of distinct endpoints is n1 and the set
of all endpoints is denoted as P. When inserted in a triangulation, the input
segments are also called constraints.

Let T be a triangulation of P, and consider two arbitrary vertices of T to
be visible to each other if the segment connecting them does not intercept the
interior of any constraint. Triangulation T will be a Constrained Delaunay
Triangulation (CDT) of S if: 1) it enforces the constraints, i.e., all segments
of S are also edges in T , and 2) it respects the Delaunay criterion for visible
points to each triangle, i.e., the circumcircle of every triangle t of T contains
no vertex in its interior which is visible from all three vertices of t.

Although CDT (S) is already able to well represent a given environment, an
additional property, the local clearance property, is needed in order to achieve
correct and efficient clearance determination per triangle during path search.

Let T = CDT (S) and π be a free path in T between points p and q. Path
π is considered free if it does not cross any constrained edge of T . A free path
may cross several triangles sharing unconstrained edges and the union of all

1Here the term distinct endpoints is used to clarify that shared endpoints, when existent,
should only be considered once when counting the total number of points n.
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traversed triangles is called a channel. Let t be a triangle in the channel of π
such that t is not the first or last triangle in the channel. In this case π will
always traverse t by crossing two edges of t. Let a, b, c be the vertices of t and
consider that π crosses t by first crossing edge ab and then bc. This particular
traversal of t is denoted by τabc, where ab is the entrance edge and bc is the
exit edge. The shared vertex b is called the traversal corner, and the traversal
sector is defined as the circle sector between the entrance and exit edges, and
of radius min{dist(a, b), dist(b, c)}, where dist denotes the Euclidean distance.
Edge ac is called the interior edge of the traversal. The local clearance of a
traversal is now defined.

Definition 1 (Traversal Clearance.) Given a traversal τabc, its clear-
ance cl(a, b, c) is the distance between the traversal corner b and the closest
vertex or constrained edge intersecting its traversal sector.

Because of the Delaunay criterion, a and c are the only vertices in the
sector, and thus cl(a, b, c) ≤ min{dist(a, b), dist(b, c)}. In case cl(a, b, c) is
determined by a constrained edge s crossing the traversal sector, as illustrated
in Figure 2.4, then cl(a, b, c) = dist(b, s) and s is the closest constraint to
the traversal. If edge ac is constrained, then ac is the closest constraint and
cl(a, b, c) = dist(b, ac). If the traversal sector is not crossed by a constrained
edge then cl(a, b, c) = min{dist(a, b), dist(b, c)}.

a

b

c

s b’

sector.pdf
margins: 2.15, 4.55, 2.5, 5.4

FIGURE 2.4
The triangle traversal with entrance edge ab and exit edge bc is denoted as τabc.
Segment s is the closest constraint crossing the sector of τabc, thus cl(a, b, c) =
dist(b, s) = dist(b, b′), where b′ is the orthogonal projection of b on s.

The closest constraint to a traversal is now formalized in order to take into
account relevant constraints that may not cross the traversal sector of τabc.

Definition 2 (Closest Constraint.) Given a traversal τabc, its closest
constraint is the constrained edge s that is closest to the traversal corner b,
such that s is either ac or s lies on the opposite side of ac with respect to b.

In certain situations, the closest constraint of a traversal may generate
narrow passages that are not captured by the clearance value of the traversal.
The clearance value only accounts for the space occupied by the traversal sec-
tor. If a triangle happens to be too thin and long, other vertices not connected
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to the traversal may generate narrow passages that are not captured by any
clearance value of the involved traversals.

The essence of the problem is that when a triangle is traversed it is not pos-
sible to know how the next traversals will take place: if the path will continue
in the direction of a possibly long edge (and possibly encounter a narrower
space ahead) or if the path will rotate around the traversal corner. Each case
would require a different clearance value to be considered. For example, Fig-
ure 2.7-left shows an example with long CDT triangles where their clearance
values are not enough to capture the clearance along the direction of their
longest edges. The LCT refinements will fix this problem by detecting these
undesired narrow passages and breaking them down into sub-traversals until
a single clearance value per traversal can handle all possible narrow passages.
The vertices that cause undesired narrow passages are called disturbances,
and they are defined below.

Definition 3 (Disturbance.) Let τabc be a traversal in T such that its ad-
jacent traversal τbcd is possible, i.e., edge cd is not constrained. Let s be the
closest constraint to τabc and let v be a vertex on the opposite side of bc with
respect to a. Among the vertices connected to v, let d and e be the ones form-
ing 4dve ∈ T crossed by segment vv′, where v′ is the orthogonal projection of
v on s. In this situation, vertex v is a disturbance to traversal τabc if:
1. v is not shared by two collinear constraints,
2. v can be orthogonally projected on ac,
3. segment vv′ crosses ac and bc,
4. dist(v, s) < cl(a, b, c), and
5. dist(v, s) < dist(v, e).

Figure 2.5 illustrates the definition. A disturbance will always be paired
with a constraint disturbing the traversal. A disturbed traversal may contain
an arbitrary number of edges between bc and v, however, disturbed traversals
will in most cases appear in simpler forms.

Disturbances can occur on any side of a triangle but only need to be defined
with respect to the exit edge of a traversal. In this way the set of exit edges for
all the possible traversals of a given triangle will address the disturbances that
may occur on any traversable side of a triangle. For example, with respect to
Figure 2.5, disturbances on the left side of 4abc will be detected with respect
to τcba, but not τabc.

The local clearance triangulation (LCT) can be now defined with the fol-
lowing definitions.

Definition 4 (Local Clearance.) A traversal τabc in T has local clearance
if it does not have disturbances.

Definition 5 (LCT.) A Local Clearance Triangulation is a CDT with all
traversals having local clearance.
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disturbance.pdf 
margins: 1.35, 2.6, 1.3, 4.8
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C(dce)

C(dve)

C(bdc)FIGURE 2.5
The shown traversal τabc is disturbed by vertex v because dist(v, v′) <
dist(b, b′) = cl(a, b, c) and dist(v, v′) < dist(v, e). The dashed lines show the
orthogonal projections of several vertices on s. Vertices d, e and r are not dis-
turbances since dist(d, d′) > cl(a, b, c), dist(e, s) > dist(e, c), and r is shared
by two collinear constraints.

2.3.2 Computation

A first approach for computing LCT (S) is based on iterative refinements of
disturbed traversals. The algorithm starts with the computation of triangula-
tion T0 = CDT (S). A linear pass over all traversals of T0 is then performed,
and traversals detected to have a disturbance are refined with one subdivi-
sion point pref added to the current CDT. Every time a constraint s ∈ S is
refined, s is replaced by two new sub-segments. After all disturbed traversals
are processed, a new (refined) set of constraints S1 is obtained. Triangulation
T1 = CDT (S1) is the result of the first global refinement pass. T1 however
may not be free of disturbances and the process has to be repeated until
Tk = CDT (Sk) is free of disturbances, in which case Tk is the desired LCT (S).
The number of iterations k mainly depends on the existence of multiple dis-
turbances with respect to a same constraint. The process basically subdivides
long edges in order to achieve the local clearance property. Alternatively, the
LCT can be built incrementally, maintaining the needed refinements for each
segment inserted. In general, incremental operations are more suitable for dy-
namic updates while global processing of an input CDT is more efficient when
computing the LCT for the first time [15].

Let v′ be the orthogonal projection of disturbance v on constraint s. A
suitable refinement point pref for solving disturbance v with respect to τabc
and s can be obtained with the mid-point of the intersections of s with the
circle passing by vertices d, v and e, where dve is the triangle crossed by
segment vv′. See Figure 2.6-left. Most often v will be directly connected to b
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and c, and in such case the circle passing by b, v and c is taken. In case of
multiple disturbances, v is selected such that no other disturbance on the left
side of vv′ is closer to s.

b b

x1

a

s pref

d
v

c

refpoint.pdf
margins: 1.55, 3.85, 2.5, 1.3

x2
a

s pref

v

e
c
e

d

FIGURE 2.6
Vertex v is a disturbance to traversal τabc and therefore constraint s is subdi-
vided. Points x1 and x2 are the intersection points of s and the circle passing
by d, v and e. The subdivision point pref is defined as the midpoint between
x1 and x2. After refinement, all vertices between b and v will connect to pref .

Given a desired clearance radius r, the achieved local clearance property
guarantees that a simple local clearance test per triangle traversal is enough
for determining if a path π can safely traverse a channel with clearance r
from constraints. Path π will have enough clearance if 2r < cl(a, b, c) for
all traversals τabc of its channel. Figure 2.7 presents an example where local
clearance tests are not enough to produce correct results in a CDT, while
correct results are obtained in the corresponding LCT.

Lazy Clearance Computation. A lazy approach is used to compute
clearance values stored in the edges of the LCT. There are 8 possible traversals
passing by an edge, and among them 4 traversals may have distinct values.
Each traversal passes by two edges (the entrance and exit edges) and thus
only 2 of the 4 values have to be stored per edge.

Clearance values stored in the edges are initialized with a flag (or a negative
value) indicating that they have not yet been computed. The values are then
computed and stored as needed during path search queries. Every time a
path search is launched, each clearance value that is not yet available will
be computed and stored in its corresponding edge in order to become readily
available for subsequent queries. With this approach, clearance values are only
computed in regions reachable by the path queries, avoiding computations in
parts of the environment that are not used. The strategy is also valuable during
LCT construction and during dynamic updates. Clearance values associated
with modified traversals are simply marked as invalid, and later recomputed
only when needed by a path query.

Bounded Clearance. One important optimization is to consider the lo-
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FIGURE 2.7
The left triangulation is a CDT showing an illegal path that however satisfies
all its local clearance tests per traversed triangle. The traversal sectors are
highlighted and they all have enough clearance. This example shows that
local clearance tests per traversal are not enough in CDTs. However, once
the existing disturbances are solved and the corresponding LCT is computed
(triangulation on the right), local clearance tests become sufficient.

cal clearance property only up to a given maximum value M representing the
maximum clearance allowed to be used in path queries. In most cases, M will
be the clearance required by the largest agent that needs a path. The triangu-
lation can be then optimized accordingly. Let traversal τabc be disturbed with
respect to disturbance v and constraint s. In order to perform the bounded
clearance optimization, refinement operations are adapted to only refine τabc
if dist(v, s) < min{cl(a, b, c),M}, instead of the original dist(v, s) < cl(a, b, c)
condition in Definition 3. This optimization can greatly reduce the number
of required refinements, leading to faster computation of the corresponding
LCTM and to less cells processed during path search.

2.3.3 Path Search

Once a LCT of the environment is available, a graph search can be performed
over the adjacency graph of the triangulation in order to obtain a channel
of arbitrary clearance r connecting two input points p and q. During channel
search, a search expansion is only accepted if the clearance of the traversal
being expanded (which is precomputed in the free LCT edges) is greater or
equal to 2r.

In addition, LCTs can be safely searched assuming that every cell will
be traversed by a given path only once, allowing search algorithms to mark
visited triangles and to correctly terminate after visiting each triangle no more
than once. Figure 2.8 shows that this is not always the case for all types of
cell decompositions.

The example of Figure 2.8 illustrates a situation that is often overlooked
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by cell decompositions which are not carefully designed, and that nevertheless
has to be addressed in order to guarantee that the employed path search
algorithm will correctly execute. A simple proof showing that the situation
illustrated in Figure 2.8 cannot happen in CDTs (and in LCTs) is available
in previous work [15].

d’u’
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c

b’

d

v

v
v’

singletrav.pdf
margins: 1.5, 3.8, 1.05, 5

For every path p, each triangle in Ch(p) will 
only be traversed once.
Suppose by contradiction:
If tr(acb) and tr(cba) passable, and both can 
make part of a same channel C => tr(cab) 
passable.
Proof:
r<cl(acb)=>r<d(a,c),r<d(b,c) (1)
r<cl(cba)=>r<d(a,b),r<d(b,c) (2)
Sec(cab) is free by CDT (3)

If a channel passes by tr(acb) => a disc of 
radius r can fit behind bc => no constraint s can 
exist behind bc and since by CDT, no vertex is 
in sector(cab) => cl(cab)>r => passable.

b

q

p

FIGURE 2.8
The shown path is the only solution with clearance r and in the given cell
decomposition it traverses 4abc and 4bcv twice. Clearly, the given triangu-
lation is not a LCT and not a CDT since the circumcircle of 4abc has visible
vertices in its interior.

2.4 Discussion and Extensions

LCTs address all the expected properties analyzed in Section 2.2.2. Most
importantly, although it adds refinements to the underlying CDT, the decom-
position remains of linear size. As established in previous work [15], the total
number of refinements is limited by the upper bound of 3n, what translates
into a cell decomposition of no more than 6n triangles since, using the Euler
formula, t = 2n − 2 − k ⇒ t < 2n, where t is the number of triangles in a
triangulation and k is the number of edges in the boundary, i.e., the floor map
border (k = 4 in all presented examples). In practice, the number of added
vertices has shown to be much lower than the bound of 3n, and the number
of triangles remains close to 2n [15].

Because the underlying structure is a triangulation, LCTs provide a
straightforward solution for computing locally shortest paths. Solution chan-
nels are already triangulated and can be quickly processed by the funnel al-
gorithm in order to produce a path that is locally optimal and respecting the
desired clearance without the need of any additional data structures or repre-
sentation conversions. If needed, there are algorithms available for extracting
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globally shortest paths directly from a triangulation [20, 27]; however, with
either not so simple implementations or with running times worse than O(n2).

Clearance information is compactly encoded in LCTs and paths of arbi-
trary clearance can be efficiently extracted. While LCTs require the mainte-
nance of refinements in the underlying triangulation, it achieves a structure
that maintains less nodes than the medial axis [15]. LCTs basically compute
refinements just as much as needed in order to determine the maximum clear-
ance (bounded or not) of all its passages. A triangulation is also a simpler
structure than the medial axis and algorithms for dynamic updates robust to
intersections are available [15].

Although the medial axis is not represented, it can be computed in linear
time from a channel by using available algorithms [4]. In practice however
there is little need for computing exact paths of maximum clearance. A typ-
ical path for agents in virtual worlds will be more likely to be one that has
a minimum clearance requirement and a desired additional clearance, to be
kept when possible, in order to avoid passing too close to obstacles when there
is extra space available. Since LCTs encode acceptable clearances for all tri-
angle traversals, path clearance can be adjusted at each traversal as needed.
Figure 2.9 exemplifies such a path with customized extra clearance, computed
during the funnel algorithm pass by taking into account different clearance
values at traversal corners. Additional criteria for further customizing paths
can certainly be devised.

Another aspect that is important to be addressed in several virtual world
applications is to take into account regions of different types of terrain. In the
LCT formulation obstacles are only described by constrained edges, and edges
of non-obstacle regions can be equally inserted in the LCT and have their in-
teriors triangulated in the same way as in the free regions of the environment.
The insertion algorithms will guarantee that regions defined as closed poly-
gons will remain watertight after insertion, and so flood fill algorithms can
be applied to annotate the region type in the interior triangles. In this way,
path search can take into account different traversal weights when travers-
ing triangles of different terrain types. Clearance checks during path search
have however to be updated to only take into account clearance to obstacle
boundaries, since in this case not all constrained edges will be representing
obstacles.

2.5 Conclusion

LCTs introduce a new approach for modeling and computing navigation
queries with clearance constraints, and at the same time being able to ad-
dress key requirements: fast computations, robustness, and dynamic updates.
Being a recently developed approach, future work is still needed in order to

c©2001 by CRC Press LLC



achieve complete solutions integrating LCTs in multi-layered environments
and taking into account non-planar surfaces, boundaries of weighted regions,
different agent capabilities, etc. Nevertheless, the presented results and possi-
bilities for extensions demonstrate that LCTs achieve a flexible and efficient
approach for representing navigation meshes.
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(a) Locally shortest path respecting its minimum clearance requirement.

(b) Path with small extra clearance added at each path corner.

(c) Large extra clearance added, reaching maximum in narrowest passages.

(d) Same path as in the previous case but shown together with the medial
axis. Only in the narrowest passages the path converges to the medial axis.

FIGURE 2.9
Different approaches are possible for customizing path clearance. In this exam-
ple additional clearance is added to a LCT path in order to make it converge
towards the medial axis only in the narrowest passages. This is typically an
appropriate clearance criterion for paths in virtual worlds.
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