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Figure 1: Our planner produces collision-free walking motions allowing reaching the handle, opening the door, and passing through it.

Abstract

We present a new approach for whole-body motion synthesis that
is able to generate high-quality motions for challenging mobile-
manipulation scenarios. Our approach decouples the problem in
specialized locomotion and manipulation skills, and proposes a
multi-modal planning scheme that explores the search space of each
skill together with the possible transition points between skills. In
order to achieve high-quality results the locomotion skill is de-
signed to be fully data-driven, while manipulation skills can be
algorithmic or data-driven according to data availability and the
complexity of the environment. Our method is able to automati-
cally generate complex motions with precise manipulation targets
among obstacles and in coordination with locomotion.
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1 Introduction

High quality human-like character animation has attracted a great
body of research in the past decades. Although many methods are
able to successfully generate motions for a variety of problems,
more work is needed in order to improve the capability of generat-
ing complex motions without impacting the realism of the obtained
solutions.

Improving the capability of handling complex tasks around obsta-
cles and at the same time obtaining realistic results is particularly
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challenging because improving one aspect often comes at the ex-
pense of deteriorating the other. Our present work is sensitive to
this trade-off and seeks to achieve a balance between the involved
constraints.

Previous methods in computer animation have rightfully put a
strong emphasis on realism. High fidelity, realistic and human-
like motions can be produced with the employment of data-driven
methods which reuse and combine motion capture data in order to
achieve high quality results. When properly designed, these meth-
ods can automatically provide a wide range of motions from a finite
set of previously captured motion capture data. Their main advan-
tage is that they are generic and work with different styles and types
of motions.

Although pure data-driven methods can easily synthesize highly re-
alistic motions, several complex tasks among obstacles will either
require a high amount of specific input motion to be collected and
included, or the integration of dedicated algorithmic solutions in
order to augment the capabilities of the original data-driven tech-
nique.

A typical example addressed in this paper is the problem of a char-
acter having to walk to a door, open it, and then walk through it
without collisions. Given the narrow passage to be addressed it is
difficult to utilize a generic data-driven method to solve such types
of problems. Moreover, finding valid solutions as the user changes
the position of the door handle relative to the door, or even how
wide the door is, can make the problem increasingly more difficult
to be solved. Even when additional example motions can be con-
sidered, data-driven methods typically do not scale well with the
size of their motion capture databases.

Our proposed planner addresses these issues by decomposing the
overall problem into sub-tasks, or modes of execution, which can
be solved by specialized motion skills. Our method is a hybrid ap-
proach that still produces high quality results because it is highly
based on a data-driven locomotion skill; but it also combines mo-
tion primitive skills based on specialized algorithmic planners. Our
planner can be used in such a way that if a motion capture database
is enough to represent the solution space of the task at hand, then a
pure data-driven solution might be found. At the same time, if the
problem is too complex or the data-driven skills are not sufficient,
algorithmic skills will be automatically used and multiple combi-
nations of skills will compete with each other until a solution is
found.

Our multi-modal planner is therefore a global planner able to co-
ordinate different motion skills in order to solve generic mobile-
manipulation problems. Our method is able to solve complex tasks
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among obstacles and is particularly able to automatically control
locomotion towards places that allow successful manipulations in
coordination with locomotion.

2 Related Work

There have been two major groups of approaches to address the
problem of realistic human-like motion generation for virtual char-
acters: data-driven and physics-based methods. Physics-based
methods, although more involved to be implemented and con-
trolled, provide the ability to react to unforeseen events in the envi-
ronment by taking into account external forces and automatic reac-
tions to it.

One relevant work is the work of Bai et al. [2012], which intro-
duced a method for planning actions involving concurrent object
manipulations. Physics-based controllers are used to handle the co-
ordination between the concurrent motions; however, without focus
on solving complex manipulations such as the ones we address. Our
proposed planner is mostly related to data-driven methods and we
therefore focus on analyzing related data-driven methods.

The first methods designed to re-use data in a motion capture
database were introduced a decade ago [Kovar et al. 2002; Lee et al.
2002; Arikan and Forsyth 2002; Arikan et al. 2003]. These works
introduced the motion graph data structure which is able to auto-
matically create transitions between similar frames in the database.
Using a search or optimization process, they were able to generate
motions which were numerically similar but semantically different
from the ones in the original database.

Many variants of motion graphs were then developed to improve
different aspects of the method. Parametrized motions clips and
techniques to transition between blended clips [Shin and Oh 2006;
Heck and Gleicher 2007] made possible for fast motion synthesis;
however, did not easily allow for planning motions in environments
with many obstacles. Time interpolation of motion paths in or-
der to improve the solution space of motion graphs [Safonova and
Hodgins 2007] improved the range of possible solutions but at the
expense of increasing the size of the motion graph. Furthermore,
complex tasks would require interpolation of more than two motion
paths, which would make the approach even more impractical. Fur-
ther improvements were proposed [Zhao and Safonova 2008; Zhao
et al. 2009] but mostly to construct motion graphs with improved
connectivity. None of these methods have been used for solving
mobile-manipulation tasks.

Other approaches, such as the work of Lau and Kuffner [2006],
have relied on precomputation and on a finite state machine of
behaviors in order to obtain a search tree for solving locomotion
tasks. Similarly, motion maps [Mahmudi and Kallmann 2012]
were precomputed for all the nodes of a motion graph in order to
achieve interactive motion synthesis from an unstructured motion
capture database. While these works can efficiently solve locomo-
tion problems, none of them have been extended to solve mobile-
manipulation tasks.

Blending motion examples in order to generate in-between exam-
ples is an effective way to solve object manipulation problems.
Kovar et al. [2004] automatically extracted similar motions from
large databases to then build parameterized motion skills. Rose et
al. [1998] constructed blend spaces with radial basis functions in or-
der to generate motions of different styles. Basten et al. [2011] built
a coordination model which realistically combined spliced motions.
While blending can generate a variety of motions, integration with
a locomotion planner has been only addressed once [Huang et al.
2011]. Our present work improves the approach and effectively

integrates heterogeneous motion skills in a single global planning
framework.

Another important approach is to employ reinforcement learning
methods. Treuille et al. [2007] and Levine et al. [2011] have em-
ployed learning in order to achieve complex real-time characters
controllers. Although reinforcement learning is a promising direc-
tion to generate controllable motion, it is time-consuming to learn
control policies and controllers have to remain in a low dimen-
sional space. While reinforcement learning is suitable for real-time
control of characters, it does not directly address planning long se-
quences of motions for solving complex tasks. In such cases, plan-
ning approaches are more suitable.

Relevant planning approaches have combined PRMs and motion
capture in order to address biped locomotion among obstacles [Choi
et al. 2002]. Yamame et al. [2004] employed planning for solving
various object manipulations. Pan et al. [2010] combined a hierar-
chical model decomposition with sampling-based planning. While
these methods have generated impressive results, they have not in-
corporated the ability to search for competing solutions involving
different combinations of locomotion and manipulation in order to
solve complex mobile-manipulation scenarios.

Several planning methods have been developed in the robotics do-
main. In particular, a multi-modal planning approach was used by
Hauser et al. [2007] to generate motions for humanoid robots. Kall-
mann et al. [2010] introduced the coordination of parameterized
motion skills to generate mobile manipulations. These works how-
ever did not include data-driven techniques.

In summary our approach reaches a unique balance between high
capability of planning complex solutions among obstacles while
maintaining the quality of data-driven methods.

3 Multi-Modal Planner

Our planner Π operates over a set Σ of parametrized motion skills.
We represent a motion skill as σi ∈ Σ. Each invocation of a motion
skill σi generates a motion mi. The global solution is produced by
appending and/or superimposing the partial motions mi. Motion
skills produce partial motions according to parameters πi:

σi(πi) = mi. (1)

Motion mi is encoded as a l by c keyframe matrix where l is the
number of frames and c is the dimensionality of the controlled con-
figuration space of a standard hierarchical character. Π also main-
tains a list of modes θ ∈ Θ, a function τ specifying mode transi-
tions, and an activation function λ which determines which motion
skills can be activated from any given mode:

τ : Θ→ Θ, (2)
λ : Θ→ Σ. (3)

The global planner Π(Σ,Θ, λ, τ) operates by expanding motion
skills and combining their partial motions until a solution is found.
The planner performs a multi-modal search which starts from the
initial location of the character and proceeds until the ground-
projected root position of the character is close enough to a given
target goal point. The search procedure maintains a search tree, and
the search frontier is prioritized using a A*-like heuristic [Hart et al.
1968] based on the given goal location.

Each skill is responsible for generating their partial motions mi,
which are supposed to be short segments of valid motions. On each



Figure 2: Motion capture database used by the locomotion skill.

iteration during the search the planner retrieves the lowest cost con-
figuration in the current search frontier, invokes each skill possible
to be activated (using λ), and concatenates and/or superimposes the
returned partial motions, updating the search tree accordingly. A
motion skill is allowed to return a null partial motion in order to
indicate that it was unable to generate a partial motion, what can
happen due collisions or any other constraints which were not pos-
sible to be met.

This overall approach allows motion skills to execute their own lo-
cal planners for generating partial motions while the search tree in
Π will make skills compete with each other during the search for
a global solution. This approach makes our planner able to solve
complex problems that cannot easily be handled with traditional
methods.

Since in this work our multi-modal planner is applied to mobile
manipulation tasks, it is important to rely on a well-designed loco-
motion skill able to move the character around and to prepare the
character for mode transition into manipulation skills.

3.1 Locomotion Skill

Our locomotion skill σloc is based on a feature-based motion
graph [Mahmudi and Kallmann 2013; Mahmudi and Kallmann
2011] and operates on the entire configuration space of the charac-
ter. The input motion capture database is shown in Figure 2. It con-
tains only locomotion and does not include motions such as opening
doors or picking up objects. After the motion graph is built we use
the connectivity of the graph to determine the parameter list of the
skill and also which modes may be invoked in from the locomotion
mode.

A locomotion skill can transition to another skill if transitional con-
straints can be satisfied. The transfer skill tests at each step whether
an object of interest such as a door or a shelf is within the close
vicinity of the character. If that is the case, the activation function λ
skill will invoke all available manipulation skills that can be activate
and that will lead to allowed modes according to τ .

The test performed by λ is mostly a fast check if the character is
close enough to an object accepting manipulation. If a manipulation
skill is successful in generating a partial motion, the partial motion
is integrated in the corresponding search branch of Π, and the mode
of the branch leaf is switched for the new one.

The mode transitions encoded in τ will ensure that consistent ma-
nipulations are achieved. For example, by specifying that after a
reaching mode we must have an opening mode we avoid generat-
ing motions where the character would reach the door handle and
then release it without opening the door. Function τ therefore en-
sures correct sequences of motion primitives to be activated.

Figure 3: Example of a typical multi-modal search tree. Red
segments represent unmodified segments generated by the locomo-
tion skill and blue segments represent motions modified by reaching
skills. The segments are ground-projections of the wrist (blue) or
root (red) joints, taken at the extremes of each corresponding par-
tial motion in the global search tree.

Overall, the locomotion skill will be expanded towards multiple lo-
cations around the object to be manipulated, generating several pos-
sible locomotion branches to be considered for starting manipula-
tions. Multiple manipulation skills will be invoked from the differ-
ent branches, until eventually a solution is found. See Figure 3. If
additional time is available, multiple solutions can be also obtained.

Every time Π expands a branch of the search tree in locomo-
tion mode, the locomotion skill is called with parameter πloc =
(n, j, α), where n is the current node of the motion graph to be ex-
panded n, j is the maximum number of children nodes of n to be
expanded, and α is a deformation vector indicating rotation values
to deform each branch of the motion graph expansion in order to
augment the number of generated partial motions.

Deformations are performed in order to improve the number and
resolution of the generated locomotion segments, greatly improving
the planner capability to find solutions in complex scenarios.

Given an original locomotion segment m associated with a node n
of the motion graph, m is deformed into mi motions according to
a list of αi deformation angles. The deformed motions will be then
appended to n in the corresponding search tree branch.

For a motion m and a deformation angle β, each frame mj of m
is deformed taking into account the root position pj and orientation
qj of the character at frame j, and the position differential vector
vj such that vj = pj+1 − pj . We then create a quaternion rotation
rj representing the rotation of β about the positive Y axis (which is
perpendicular to the floor plane). Then, for each frame j, the orien-
tation qj is incremented by rj , and the position pj+1 is updated to
pj +vj . In order to achieve improved variations, the deformation is
applied iteratively. In the first iteration all the frames of m are de-
formed. In the next iteration, only frames between the second and
the penultimate frame are deformed. See Figure 5 for an example.

In order to limit deformation amounts we provide a method to quan-
tify the effect of a deformation. The most undesirable artifact of
deformation is feet sliding. Therefore, we observe the toe and heel
joints of the skeleton and measure the averaged squared distances
of the corresponding toe and heel joint positions in the original and
the deformed motions. Figure 4 shows an example. We can see that
for the original motion (red points) the heel and toe joints appear
close to a point. As the deformation is increased (green and blue)
the heel and toe joints start drifting further away from their initial
fixed positions. The deformation quality is defined as the weighted
sum of squared distance averages. A deformed segment is then
only kept if the quality metric stays under a pre-specified thresh-



Figure 4: Left: Heel joint position projection for three stepping
motions. Red points represent the original motion, the green points
represent a deformed motion with α = 0.5◦ and blue represents a
deformed motion with α = 1.0◦. Right: Same comparison as in the
left image, however, in this instance for the toe joint.

old. In our experiments we have deformed each node of the motion
graph by α = {−0.2,−0.1, 0.1, 0.2} and used a very conservative
quality threshold which would not allow for visually disturbing feet
sliding.

3.2 Reach and Release Skills

The reach σreach and release σrelease skills are based on a time-
parameterized RRT planner. These skills control only the arm of
the character. The rest of the character’s posture is defined by the
locomotion, therefore reaching and releasing motions are superim-
posed to the last locomotion segment in the search branch being
expanded.

The skills take two parameters πreach = πrelease = (s, s′). The
first parameter s comes directly from the first posture of the loco-
motion segment to be superimposed. The second parameter s′ is the
posture we wish the character to assume at the end of the motion
generated by σreach or σrelease. This is usually a posture where
the character is considered touching or holding the target manipu-
lation location, as for example a door handle, a button, or a book.
Posture s′ is determined with the use of an analytical IK solver for
the arm of the character. Given a target position p and orientation
q at the manipulation point, the last frame of the locomotion is up-
dated with IK to have the hand of the character to reach the desired
target location t = (p, q). The value differences of the modified
arm joints are decreasingly distributed to previous frames in order
to achieve a smooth arm movement towards s′. Skills σreach and
σrelease therefore generate arm motions on top of locomotion se-
quences, achieving simultaneous walking and target reaching.

3.3 Displacement Skill

The displacement skill σdisp is implemented similarly to σreach

and σrelease, however it allows for a number of frames in the result-
ing motion to have the hand of the character attached to a moving
target location. This allows for the arm of the character to follow
the movements of an object. This is exactly the case needed for
achieving a door opening type of movement. The same IK solver
is used to compute the several arm postures needed to follow the
desired movement with the hand.

Displacement skills can be applied on top of the locomotion or
while the character stands still; however, a special collision avoid-
ance procedure has been integrated in order to allow our examples,
in particular the door opening cases, to be successfully computed.
Our collision avoidance procedure is applied to the torso joints of

Figure 5: Motion deformation at various angles. The green projec-
tion is the original motion, and the blue and red deformations show
the range of the motion when deformed between -1 and 1 degrees.

the character by small amounts at each frame, such that the spine
moves in the opposite direction to the object being manipulated.
The result not only looks more natural but at the same time makes
it possible for the character to fully open the door in many cases
that wold otherwise create collisions.

3.4 Generic Action Skills

Generic action skills can be easily added to our framework. For in-
stance, a number of actions can be implemented based on example
motions collected from motion capture, achieving realistic motions
for pointing, pouring, kicking, etc., which can be implemented by
a number of data-driven techniques [Rose et al. 1998; Kovar and
Gleicher 2004; Huang et al. 2011]. Our overall planner is generic
enough to incorporate generic actions in order to achieve complex
multi-modal motions.

4 Results

For our experimental setup we have built a motion graph from
a simple motion capture database which contained 6 motions: 1
straight walking motion, 1 gentle left turn, 1 gentle right turn, 1
sharp left turn, 1 sharp left turn and 1 U-turn motion. The mo-
tions were captured using 18 Vicon MX cameras in an environment
of 5.5m by 4m. All the motion were sampled at 60Hz. The total
number of frames in the database was 1543 which corresponded
to 25.7s of total motions. No door opening, book picking or lamp
motions where recorded. An snapshot depicting our database is
shown on Figure 2. The initial motion graph contained 125 nodes.
The maximum average transition threshold was set to 6cm. When
deformations were applied to all nodes the graph increased to 625
nodes. This motion graph was only used by skill σloc.

4.1 Door Opening

Opening doors represent a particularly challenging problem for
data-driven methods because they cannot easily accommodate
slight variations in the character’s position during motion synthe-
sis, and these variations are important to solve problems involving
narrow passages. In our approach we add deformations to the mo-
tion graph and decouple manipulation motions from the locomotion
in order to successfully solve door opening problems.

The problem is encoded in four different modes: locomotion mode,
handle reaching mode, door opening mode, door release mode and
back to locomotion mode. The user specifies the start and goal
positions for the character to be on the opposite sides of the door.
The skill set Σ for the door opening problem contains the following



parametrized motion skills: Σ = {σloc, σreach, σdisp, σrelease}.

At the beginning, for each locomotion segment expanded, planner
Π repeatedly tests if a transition to the next mode is possible. This
involves IK reaching tests in order to reach for the handle of the
door. After the handle is reached, σdisp will have the arm of the
character to follow the door opening motion, until the door cannot
be further opened without breaking contact with the handle, or until
a (self-)collision is detected. The goal is to open the door as much
as possible without introducing collisions. Whether the character
can successfully walk through the door in the next mode transition
will be determined by the search expansion of Π in the following
iterations. Many different alternatives involving varied body posi-
tions are evaluated by the planner, until the right combination of
skills is found. See Figure 6 for an example.

Solutions also depend on the collision avoidance mechanism which
rotates the torso of the character while the displacement skill is try-
ing to open the door. The introduced rotation improves the chances
of opening the door enough for the character to pass through it.

Skill σrelease works similarly to σreach; however, its function is to
move the arm from a posture where the arm is holding the handle to
a posture back to the last frame of the current locomotion segment
generated by σloc. This brings back the character to locomotion
mode where it can then attempt to pass through the door.

As a result the overall planner invokes several skills maintaining a
multi-modal search tree where the sorted frontier is associated with
an A*-like cost in order to order the next nodes to be expanded.
One technique that can be used to improve the performance of the
overall procedure is to implement a grid on the floor plan and keep
track of the number of nodes that reach each cell of the grid. By
limiting a maximum number of nodes per cell it is possible to cull
branches of the search concentrating in only one region, thus forc-
ing the search to also visit nearby positions. The culling parameter
(maximum number of nodes per cell) provides a mechanism to ex-
plore the trade-off between exploration and exploitation that arises
during the search and should be tuned according to the difficult of
the problem, which is mainly related to how narrow is the door pas-
sage.

4.2 Book Reaching and Relocation

In this scenario the character walks towards a bookshelf and tries to
pick up a book and then replace it to another location on the shelf.
The motion skills used in this example are the same as the ones
explained for the door opening case. This shows that our primitive
motion skills are generic enough to be used for a variety of mobile-
manipulation tasks.

The main difference with respect to the door opening example is
that σdisp is used to relocate books instead of opening doors. The
key difference is that, instead of following with the hand a fixed
door motion, σdisp can generate any collision-free trajectory that is
able to relocate the book from its initial position to the new posi-
tion specified on the shelf. In the presented book manipulation ex-
amples we have integrated our bi-directional RRT planner in σdisp,
therefore being able to compute generic collision-free trajectories
for relocating the book. Whenever a relocation trajectory cannot
be found, the skill returns null, which will force the planner to ex-
pand other branches of the search tree and eventually find other
body placements that will allow the displacement to be successfully
computed.

The overall task of the character is to first approach the bookshelf
to a distance where it can reach the book, then it will pick the book
from the shelf and move it to a new place specified on the shelf,
while avoiding collisions with other books and items on the shelf.

The character will then release the book it may then go back to
locomotion and perform any additional tasks.

Several book manipulation scenarios could be successfully solved
with our planning framework. See Figure 7 for an example.

5 Conclusion and Future Work

The presented results demonstrate that our multi-modal planner is
able to successfully coordinate skills in order to solve complex
mobile-manipulation problems. This work also includes an accom-
panying video which presents several additional results obtained
with our planner.

A number of areas deserve consideration for future work, as for
example, integration of stepping motions for supporting manipula-
tion, and coordination rules between primitives, in order to improve
the task-level quality of solutions.
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