
In Virtual Realities Dagstuhl Seminar 20013, 2015 (to appear). This is the manuscript of the
authors.

Content Creation and Authoring Challenges for
Virtual Environments: from User Interfaces to

Autonomous Virtual Characters

Ralf Dörner1, Marcelo Kallmann2, and Yazhou Huang2

1 RheinMain University of Applied Sciences, Wiesbaden, Germany
2 University of California, Merced, USA

Abstract. How is content for virtual environments (VEs) created? How
is behavior and motion in VEs specified? How are user interfaces designed
and implemented for VEs? Authoring is a crucial aspect for using VEs
successfully. This chapter addresses some of the current challenges in
authoring VEs and recent research directions that are being explored
in order to address these challenges. One highly relevant use case is
the definition of motions to be executed by virtual characters. For this,
motion modeling interfaces are presented that facilitate the process of
programming the motions of virtual agents in VEs.

Keywords: Authoring Process, Authoring Tools, Virtual Environments,
Motion Modeling, Virtual Characters, User Interfaces for Virtual Envi-
ronments

1 Introduction

Since the first virtual environment has been created in the 1960s [61] there have
been tremendous advances not only in the basic hardware and software but also
in the quality and complexity of the content. While the first VEs were static, most
VEs now contain animated scenes and autonomous entities. Whereas initially the
specification of animation was mostly based on methods such as user-triggered
keyframe animations, now the definition of animations has evolved to an abstract
behavioral level e.g. by describing overall goals. This leaves the execution of
low-level behavior (e.g. path finding, obstacle avoidance, object interaction) to
sophisticated methods from artificial intelligence that are capable of generating
complex emergent behavior. Today VEs are expected to contain not only 3D
models but highly complex entities such as autonomous virtual characters who
behave autonomously in complex scenarios. This evolution has led to exciting
new applications in strategy games, simulation-based training, and synthetically
populated scenes in movies. This chapter addresses a crucial issue that is directly
affected by the rising complexity: authoring of virtual environments.

A Virtual Environment (VE) allows users to experience a virtual world and
to feel present in it. Here, the term virtual world denotes the content of a VE.
Content consists of geometric 3D models of entities, their position and orienta-
tion in 3D space, other media (e.g. audio) associated with them, descriptions of

2 Content Creation and Authoring Challenges for VEs

their appearance and physical properties, descriptions of their behavior (e.g. in
the form of simulation models) and specifications how users can interact with
individual entities or the whole virtual world (e.g. navigation, selection, manip-
ulation). Authors create the content. For instance, in a Virtual Reality training
application for critical decision making such as [52] where agents engage the
learner in a game-like scenario, the authors needed to create a 3D model of a
virtual airport, create and animate 3D models of the agents, specify the behavior
of the agents and specify the simulation of the virtual world. Usually, there are
several authors involved which are required to possess different expertise. While
one author needs the ability to animate a virtual human, another author might
need knowledge in the application domain, e.g. to specify a training scenario.
Authoring of the content is only one aspect of creating a working VE. For exam-
ple, one integral part is the implementation of the underlying VR systems (e.g.
the realization of image rendering, collision detection or physics simulation).

Another integral part of VEs is the user interface. With the advances in
hardware, software and animated content of VEs, their user interfaces (UIs) also
became more complex and sophisticated. Every VE has to include an interface for
interaction between the user and the virtual world presented by the underlying
computer system. Hence, VEs can be considered as a specific research subject and
application field of human computer interaction (HCI). The HCI methodologies
used for VEs differ considerably from graphical UIs that often rely on the WIMP
(windows, icons, menus, pointer)-metaphor. The term post-WIMP UIs has been
coined for UIs that make use of advanced technology, e.g. tracking technology
[13]. They equip real time interactive systems with a plethora of interaction
techniques stemming not exclusively from virtual reality and augmented reality,
but also from gesture-based UIs, speech-based UIs, multi-touch and tangible user
interfaces (i.e. a user interface where real objects called props are used as proxies
for interaction). Post-WIMP UIs are becoming main stream with the advent of
reasonably prized hardware such as digital cameras in smart phones and smart
tablets, the Oculus Rift head mounted display [25], or the Leap Motion [24] or
Microsoft Kinect [47] depth sensor. This is a novel situation for UIs that are
employed by VEs which traditionally have been used only by small user groups.
With more people involved and commercial products available, the developments
in this area have become highly dynamic. As a result, UIs for VEs are rapidly
exploring new paradigms of interaction that are increasingly more difficult to
author. This also exceeds the scope of traditional 3D user interfaces [7] that
have been employed in VEs.

Why is authoring important for VEs? If authoring processes do not evolve
in a usable way, the potential of virtual and augmented reality might not be-
come fully realized, and the use of VEs will remain accessible only to specialized
users. There is a risk that only a small group of authors will possess the nec-
essary skills to create content and design VEs. This would directly impact the
costs of creating a VE; the sinking hardware costs would not compensate the
increasing authoring costs. But the consequences would be not only purely eco-
nomic. Many applications need flexible authoring solutions. For instance, in the

Content Creation and Authoring Challenges for VEs 3

training application example it is important that trainers are able to modify
and adapt the content or UI to their trainees’ needs [14]. This calls for the need
of dynamically updating the content in a way accessible to the non-specialized
user. All VEs are the result of an authoring process, hence VEs in general can
benefit from advances in authoring methodologies.

Given its importance, authoring was a topic of the 2013 Dagstuhl seminar
Virtual Realities. We report some of the current challenges in the area of au-
thoring identified in the seminar and some of the recent research directions that
are being explored in order to address these challenges. We focus on content cre-
ation and authoring of UIs for VEs. In the next section, we start by discussing
the challenges of recent approaches for authoring tools and processes, and we
also discuss the specific challenge of designing immersive interfaces for modeling
motions for autonomous virtual characters, which represents a highly relevant
example for the next generation type of content creation. In Sections 3 and 4
we discuss novel solutions for approaching these authoring challenges. This is
followed by a conclusion.

2 Challenges

The creation of content and UIs that today’s VEs require comprises a whole
range of authoring activities, from usual multimedia content, to 3D interac-
tion, and even motion specification for simulated autonomous entities. What
challenges need to be addressed in order to provide adequate support for these
activities? We start by characterizing eight of today’s challenges in authoring
post-WIMP UIs before we focus on challenges in authoring motions for virtual
characters. While promising approaches exist, those challenges are still serious
obstacles for using VEs in many real world applications.

2.1 Authoring Post-WIMP User Interfaces

For the creation of post-WIMP UIs, eight challenges were highlighted in the
Dagstuhl seminar. We refer to them as the design guideline challenge, stan-
dardization challenge, emulation challenge, visibility challenge, authoring pro-
cess challenge, tool challenge, event aggregation and abstraction challenge, and
uncertainty challenge.

The design guideline challenge is to collect and to compile experiences and
best practice in creating post-WIMP UIs and transform these pieces of informa-
tion into operational guidelines for interaction techniques to be successfully used
in each context and in each use case. User interfaces for virtual environments
and generally user interfaces that rely on the post-WIMP paradigm are usu-
ally more difficult to design, implement and test than graphical user interfaces
(GUIs). One reason is that post-WIMP UIs offer more options how to design a
certain interaction. The design space for interaction techniques not only com-
prises keyboard entries, mouse movements and mouse clicks but for example

4 Content Creation and Authoring Challenges for VEs

in-the-air gestures, multi-touch gestures on a surface, speech commands, manip-
ulation of props or movements of the head. Since GUIs have been used much
more extensively than post-WIMP UIs, this design space has not been explored
as thoroughly; much more experience is available about the design of GUIs and
GUI authors have become more proficient by using a limited set of interaction
techniques repeatedly. Consequently, there are fewer UI designers accustomed
to post-WIMP UIs. Equipping UI designers with the necessary knowledge shows
two sides of the design guideline challenge: the deduction of suitable guidelines
and processes how to inform authors about these guidelines and support them
in their application.

The standardization challenge is to agree on suitable common standards for
post-WIMP UIs. No established set of interaction techniques comparable to GUI
widgets (e.g. radio buttons or sliders) is available. This is not only a problem
for UI designers, but also the users often need to familiarize themselves with the
interaction techniques they encounter in different VEs. Which standards will
emerge? Who will be able to define de facto standards such as the pinch gesture
that was made well-known by Apple? While researchers are usually not in the
position to set standards, especially de facto standards, they can make valuable
contributions in suggesting standards, providing evidence to assess and evaluate
standardization proposals, and catalyzing the standardization process.

The emulation challenge is to provide the authors with an authoring envi-
ronment that allow them to test the UI easily on the target platform and switch
between the author’s view and the user’s view. In addition, the authors need to
be equipped with methodologies for rapid prototyping to conduct user tests in
the early stages of the development (such as paper prototyping that is used for
quick GUI prototyping). A reason for this is that the hardware platform the au-
thor uses can be significantly different from the target platform. While an author
uses a software tool with a GUI in order to create a GUI, an author often does
not work in a CAVE or uses body tracking in order to realize a post-WIMP UI.
The target platform is used only occasionally for testing, making a WYSIWYG
(what you see is what you get) approach impractical. The question is how to
emulate aspects of post-WIMP UIs as well as necessary while still provding a
comfortable authoring environment and support the author to effortlessly put
themselves in the user’s position.

The visibility challenge is to identify metaphors that are helpful for authoring
entities in a user interfaces without visual representation. For authoring GUIs,
GUI builders are commonplace and often integrated in development environ-
ments such as Eclipse or Visual Studio. GUI builder tools are similar to each
other; they offer GUI components to the author together with means for chang-
ing parameters of the components (e.g. color, size), combining and arranging
them to form a UI. This way, a WYSIWIG approach is realized where the au-
thor can inspect the current state of the UI easily and also demonstrate it to
users in order to receive a feedback from them. With post-WIMP UIs, however,
this approach is not feasible. One reason is that not all components of the UI
(e.g. gestures) possess a graphical representation. For example, a thumbs-up ges-

Content Creation and Authoring Challenges for VEs 5

ture could be used to navigate forward in a VE. While there could be a kind of
explanatory text or pictorial information present that illustrate to the user how
the gesture is to be performed or remind them that this gesture can be used for
navigation, this type of graphical represenation is often omitted (e.g. in order
to save screen space or to avoid distraction). As a result, a WYSIWIG view
gives the author no clue that there is a certain component present in the UI. In
GUIs, standard mouse interactions such as the double click have also no visual
representation in the UI. But their number is small and they can be enumerated
easily. In post-WIMP UIs, a plethora of such interaction techniques might be
present.

The authoring process challenge is to define appropriate author roles and a
workflow outlining the cooperation of authors. Ideally, the creation of a UI is an
interdisciplinary effort. During the creation of a GUI, sometimes authors with
technical background and programming knowledge and authors with skills in
the arts and design work together. In the post-WIMP case, there is even more
need to divide the work between several authors with different skill sets [5, 4,
1]. This is due to the increased complexity of the authoring task. For instance,
interaction techniques are more difficult to realize [5, 33]. The authoring process
needs to provide common ground for the authors to work together seamlessly
and to reduce friction. By limiting the prerequisites for an author role, it should
also enable new groups of potential authors to contribute to the UI creation
(e.g. authors from the application domain who are able to adapt the UI within
certain limits).

The tool challenge is to support the different authors adequately. Because
the tools should allow the author to easily adopt the user’s point of view and
they should solve the emulation challenge, they need to have post-WIMP UIs
themselves. On the one hand, this makes the tools harder to build. On the other
hand, post-WIMP interaction techniques might have the potential to make a
significant contribution to mastering the tool challenge. Since a new authoring
process is needed for post-WIMP UIs, the tools available for GUI creation are
not sufficient.

The event aggregation and abstraction challenge is to provide events to the
application UI programmer on an adequate abstraction and aggregation level.
The underlying complexity of the sensor data and its fusion should be hidden
from this author role. A significant difference between WIMP and post-WIMP
UIs are the number of events that need to be processed in order to react on
a user’s action. Many sensors (e.g. gyroscopic sensors, depth cameras, tracking
devices, pressure sensors) are employed in post-WIMP UIs. They are able to
deliver complex information about users (e.g. the pose of different body parts of
a user), sometimes more than 1000 times per second. This is in contrast to an
occasional ’key pressed’ event in GUIs. But the problem is not only the amount
of events that need to be processed in real time in order to avoid a lag and
to not jeopardize usability. Events need to be aggregated since they may need
to be interpreted in context to each other [41]. For instance, the semantics of a
hand gesture could differ if there is a certain voice interaction within a time limit.

6 Content Creation and Authoring Challenges for VEs

Moreover, the application UI programmer might find it overwhelming to evaluate
hundreds of pieces of information on how users held different parts of their fingers
over the time in order to identify whether one of the users performed a ’high-five
gesture’ or not. Reacting on a single event that has been aggregated from low
level events and that states which user performed this gesture is preferable.

The uncertainty challenge is to inform the UI programmer about the proba-
bility that a specific event has occurred and to equip the author with strategies
how to handle the uncertainties. While it can be determined with nearly 100%
certainty whether a key was hit on the keyboard or not, this is often not the case
with other input devices. Uncertainty might be introduced e.g. due to noise, sam-
pling errors, and sensitivity of sensors to changes in environmental conditions or
users making ambiguous gestures.

That these challenges do present obstacles in today’s authoring of VEs does
not mean that these challenges are exclusive for VEs. For example, the standard-
ization challenge was already present before graphical user interfaces established
themselves. But the challenges may raise in VEs and solutions found to those
challenges in GUI authoring or authoring of 3D user interfaces may not be simply
transferable to post-WIMP UIs. While the uncertainty challenge, for instance,
is also an issue in GUI authoring (e.g. do two mouse clicks of the user constitute
a double-click or were they meant to be separate clicks), the higher number and
complexity of events in post-WIMP user interfaces aggravate this challenge.

2.2 Authoring Motions for Virtual Characters

While the many challenges listed in the previous section address a broad range
of needs when designing user interfaces, specific authoring metaphors have still
to be developed for types of content that are not easily defined with usual tools.
One important example is the definition of motions to be executed by virtual
characters.

Improved tools for programming virtual characters are increasingly impor-
tant in many applications of virtual environments. The challenges described in
the previous section still apply to the several sub-problems involved, for ex: def-
inition of agent behaviors, placement and customization of scenarios, etc. How-
ever, one particular new challenge that emerges is to design new approaches,
techniques and algorithms that can enable new paradigms of user interaction to
become effective user interfaces. While such a challenge can be classified as part
of the tools challenge, the involved processes and techniques can become sig-
nificantly complex to address modern still-emerging applications and solutions,
such as the problem of programing motions of virtual agents by demonstration.
We use this particular problem to illustrate the high complexity that can be
involved in a particular challenge of our overall challenge classification.

The process of programming the motion of virtual agents by direct demon-
stration is highly important because it opens a complex task to the generic user.
An effective interface will enable the creation of virtual characters that perform
motions as needed in a given application. Due to the great need of variations

Content Creation and Authoring Challenges for VEs 7

and precise control of actions and gestures in many scenarios, modeling and pa-
rameterization of realistic motions for virtual agents become key problems to be
addressed.

Common solutions to motion modeling rely on either hand-crafted motions
[63, 20, 60] with commercial modeling tools or algorithmically synthesizing ges-
tures with algorithmic procedures such as Inverse Kinematics [31, 28]. However
it remains difficult to achieve both controllable and realistic results, and every
attempt to solve the problem purely algorithmically will require specific adap-
tations and models for every new action and situation being modeled.

On the other hand, motion blending techniques with motion capture data
[53, 54, 32, 49] provide powerful interpolation approaches for parameterizing pre-
defined example animations according to high-level characteristics. While inten-
sive research has been dedicated to find suitable interpolation schemes and/or
motion style controls, less attention has been given to the development of tech-
niques that enable intuitive interfaces for building suitable motion databases
interactively, and that can well cover the simulated workspace with dedicated
blending and parameterization procedures. This is especially important for tasks
that require parameterizations with respect to spatial constraints within the en-
vironment. For instance, the interactive construction of real-time motion con-
trollers has been proposed before [11], but without the inclusion of immersive
interfaces for interactive edition and visualization of the obtained models during
the creation process.

The obvious approach to this challenge is to develop motion modeling in-
teraction metaphors with mechanisms that are similar to how people would
demonstrate motions to each other. Such modeling by demonstration approach
is necessary for achieving accessible interfaces that allow generic users to define
new motion content. Furthermore, given the recent developments in effective and
low-cost 3D sensing (for example with the Kinect) and 3D vision, modeling by
demonstration can now be seen as a highly feasible approach to any system.

The recently introduced immersive modeling solution by Camporesi et al [9]
implements an interactive motion modeling approach via direct demonstration
using an immersive multi-tile stereo visualization systm with full-body motion
capture capabilities. The system can be operated in two distinct phases: in the
modeling phase the expert, who has the specialized knowledge of how to correctly
perform the required motions, will demonstrate the needed motions to our system
interactively. Later, in the training phase, by relying on the database of motions
previously collected from the expert, the virtual human trainer is then able to
reproduce the motions in interactive sessions with apprentice users learning the
training subject, with the ability to reproduce the motions in respect to arbitrary
target locations inside the environment.

While this overall approach has the right elements for being very effective,
achieving intuitive interactive modeling interfaces has been critical for proving
the system to be useful in concrete applications. In particular for the motion
modeling phase, intuitive interfaces are important to allow expert trainers to fo-
cus on the motions being demonstrated rather than on irrelevant details. A good

8 Content Creation and Authoring Challenges for VEs

set of tools for inspection, parameterization and testing are also very important
in order for users to effectively build suitable motion databases. Existing motion
capture interfaces hardly offer any of these features, and in most cases the user
is required to work tedious hours in front of a computer using the keyboard and
mouse to perform post-processing operations after many motion capture session.

The needed technology for achieving such types of systems is currently avail-
able. As an example Figure 1 exemplifies two prototype configurations being
tested at the UC Merced Motion Capture and Visualization facility. It is now
the right time to start identifying the principles of a new class of interaction
operators and procedures that can achieve intuitive full-body motion demon-
stration, coverage inspection, parametrization, motion refinement, etc. Section 4
summarizes some of the approaches being investigated in this area.

Fig. 1. Example configurations for full-body motion demonstration platforms, from a
fully immersive system (left) to a desktop-based environment (right). In both scenarios
the demonstrated motions are captured from a reduced marker set placed on the user
and tracked by an optical multi-camera tracking system. The motions are then re-
targetted in real-time to the avatar in order to allow interactive construction of the
motion databases to be used by the virtual character [9]. Several variations on these
example configurations are possible and customization should be explored according
to the goals of a given specific application (see for instance Table 1).

3 Authoring Tools and Processes for Post-WIMP User
Interfaces

We present some approaches how to address all the challenges identified in sec-
tion 2.1. We do not restrict ourselves to 3D and spatial user interfaces [7]. These
can be considered a sub-class of the more general post-WIMP UIs. Related to
this, we do not require VEs to be fully immersive with using 3D input and out-
put devices. Elements of 2D UIs can become part of a VE [39]. In addition, VEs
can be presented as desktop VR, i.e. on a 2D display (e.g. a tabletop display)
and still achieve a characteristic goal of a VE: making the user feel present in
the virtual environment [46]. As a result, while being able to address authoring

Content Creation and Authoring Challenges for VEs 9

issues for VEs, the approaches presented are not exclusively applicable to the
authoring of VEs. As post-WIMP UIs are becoming more main stream (see sec-
tion 1), this could enable research in authoring of VEs to take advantage of the
resources and the developments in the area of post-WIMP UIs in general. We
start by providing an example of an authoring process, before we discuss frame-
works and tools that have been proposed in the literature. Finally, we review
some middleware solutions for the challenges.

3.1 An Example of an Authoring Process

One modern example of an authoring process for post-WIMP UIs was presented
at the Dagstuhl seminar Virtual Realities: the EMIL authoring process [43] de-
picted in Fig. 2. It follows the software engineering approach of an object-oriented
application framework [17]. The basic idea is to provide an application frame-
work that is initially ”‘empty”’ and needs to be filled with reusable components
that are collected in a component library. Components foster reuse. This is not
only economical and supports robustness but it is a strategy with regard to
the standardization challenge. In addition, there are always two author roles
involved when using a component: the author who created it and the author
who used it to fill the application framework. Hence, the usage of components
fosters the division of work between authors who may possess different skill sets.
Consequently, there are two different tools in EMIL: the component authoring
tool and the application authoring tool. In EMIL, a component represents an
interaction (e.g. a multi-touch gesture, a GUI widget or the interaction facilities
of a prop).

Application frameworks in EMIL are tailored to a specific application (e.g.
for financial counseling in a bank). They all have a base framework in common
that is built on some middleware (e.g. Adobe Flash). It offers an abstract in-
terface for handling user interaction and also for accessing the operating system
and the hardware. The base framework implements a mechanism that allows an
easy insertion of a component and its linking to the framework. Different author
roles are involved in creating the base framework and extending it to applica-
tion frameworks. All frameworks are always executable. This is in contrast to
approaches where components are considered building blocks that need to be
assembled first before runnable software is formed. Thus, the current state of
the application can always be demonstrated and tested with users even in the
very early project stages since every project starts with an empty but work-
ing application. Involving users in all stages of UI development and progressing
in an iterative manner is characteristic for user-centered design (ISO standard
human-centered design for interactive systems ISO 9241-210), today’s standard
for authoring UIs in general.

EMIL uses a component approach not only for developing software but also
for collecting information and fostering organizational learning. Therefore, ev-
ery interaction component is equipped with a meta-data component. While in
the application framework, the meta-data component executes code in order to

10 Content Creation and Authoring Challenges for VEs

Fig. 2. The EMIL authoring framework for post-WIMP user interfaces

collect information automatically, e.g. it counts how often an interaction com-
ponent was used, it records user errors that were detected or it measures lag
times. The knowledge browser is a tool that allows to import this data and to
visualize it to an author. Moreover, with this tool an author is able to prepare
an information sheet about this component in the form of an interaction pattern
[58]. For example, the author can add videos of user tests were the interaction
component was tested or give advice for using this component (e.g. concerning
the prerequisites for using the component or other components that have been
used successfully in combination with the component). These patterns can be
arranged hierarchically in order to form an interaction pattern language analo-
gous to [51]. In the knowledge browser, the author can create a new pattern or
augment an existing one that was already stored in the knowledge database. In
the application authoring tool, the author who is filling the application frame-
work with interaction components can access the knowledge data base in order
to search for and to identify interaction components that are potentially suitable

Content Creation and Authoring Challenges for VEs 11

for a given task. On the contrary, this author could also choose an interaction
component first. Since this component possesses meta-data, the author would
be able to access without searching all the experience already gathered by using
this interaction component in other projects. Thus, the access to the knowledge
about an interaction component is integrated seamlessly in the authoring pro-
cess. Using an interaction component multiple times and collecting and refining
its meta-data leads to the emergence of design guidelines. This is a strategy to
address the design guideline challenge.

Component based approaches only pay off if the components are reused fre-
quently and if there is a critical mass of components available in the library.
Considering the diversity of post-WIMP UIs, this might pose a problem. One
solution adopted in EMIL is to introduce a specific iteration at the beginning of
the iterative development process. This iteration is executed not on the target
platform of the post-WIMP UI to be created but on a carefully chosen platform
that supports a whole class of post-WIMP UIs, e.g. interactive surfaces or vir-
tual environments. Thus, components and application frameworks created for
this class can be reused in different projects in order to illustrate and discuss
different UI design alternatives by building prototypes rapidly. During the eval-
uation of EMIL, this was demonstrated to a team of experts in order to collect
qualitative feedback. This team consisted of a UI designer, a programmer and
a concept designer from an advertising agency versed in creating post-WIMP
UIs for interactive surfaces. They highlighted the ability of this approach for
quick design - test cycles with higher quality as even sophisticated interaction
techniques can be tried out realistically (e.g. in contrast to a paper prototype).
Particularly, they liked that authors involved in the design process can use this
prototyping platform to collaboratively assemble and modify the results of their
work directly (see Fig. 3 a). Providing each participant with a mobile device
is an approach to allow each author to have an individual author’s view of the
UI (see Fig. 3 b). For this, a magic lens metaphor [6] can be used. This means
that the user can apply a visual filter to reveal additional information. It can be
implemented by using Augmented Reality methdologies [40].

Moreover, the experts saw an application area in project acquisition where
customized prototypes could be used to convince a potential customer of the
advantages of post-WIMP UIs [43]. The prototypes can also be used for analyzing
the user requirements and for first user testing. The resulting well specified UI
can then be realized on the target platform. This is a step towards meeting the
emulation challenge.

3.2 Frameworks and Tools

In the literature, several frameworks and tools have been presented specifically
for the authoring of virtual reality and augmented reality applications. For ex-
ample, AMIRE [2] is a component-based framework for authoring augmented
reality. It draws from the idea of 3D components [15] that combine graphical
representation and behavior. APRIL [34] is a framework for creating augmented
reality presentations. Sinem and Feiner describe an authoring framework for

12 Content Creation and Authoring Challenges for VEs

Fig. 3. a) Collaboration of authors when using EMIL rapid prototyping b) Usage of
mobile devices for an author-specific view [43]

wearable augmented reality [59]. These frameworks, however, focus on solutions
for their specific application field. Moreover, the literature contains reports about
methodologies that can be applied to authoring, for example Lee et al. [35] show
that it is beneficial to perform the authoring of a VE in an augmented reality
environment. Case studies (e.g. [65]) that highlight some of the challenges in
authoring are rare.

For authoring post-WIMP UIs several frameworks have been proposed. Some
are targeted at certain authoring aspects. For instance, the focus of the OpenIn-
terface (OI) Framework [44] lies on the flexible usage of several input channels
for realizing multi-modality. OI is based on components. These can be used in an
authoring application where the author manipulates a graphical representation
of the user interface based on a data flow graph. Other frameworks focus on
specific methodologies. For example, the Designer’s Augmented Reality Toolkit
(DART) [45] is a framework supporting design activities in early project stages
of creating user interfaces employing methodologies from Augmented Reality. In
addition, DART aims to assist authors in a smooth transition from low-fidelity
prototypes to final products. One of DART’s key ideas is to provide behaviors
that can be easily attached to content. DART is one of the few approaches
where the authoring process is taken explicitly into consideration. More often,
not processes but tools are conceived. A tool always shapes an authoring process
indirectly.

Many authoring tools used for creating post-WIMP UIs are either used by
programmers or by artists. For programmers, text based integrated development
environments (IDEs) are commonplace, e.g. Microsoft’s Visual Studio [48] or
Eclipse [16]. Some tools for non-programmers are available which often employ
visual programming techniques [29]. A typical metaphor used is that of a wiring
diagram known from electrical engineering. Following the component idea, a set
of building blocks is made available. They possess input and output slots and
the author’s task is to connect them. Examples for such tools are Virtools [64]
and Quest3D [50]. Some promising results for such authoring tools are reported,
for instance [22] describes an AR authoring tool targeted at non-programmers
where tasks can be carried out more accurately and in less than half of the

Content Creation and Authoring Challenges for VEs 13

time compared to standard IDEs. The work of Broll et al. shows that visual
prototyping can be useful for prototyping VEs [8]. However, these tools are not
used widely.

Some IDEs offer functionality for authoring post-WIMP UIs. For example,
Apple’s Xcode [3] is more than a standard GUI builder. It offers some typical
multi-touch gestures that can be connected to the GUI. The connections are
visualized resulting in a better overview [38]. Some IDEs can be extended by
plugins. For instance, Gesture Studio [41] is a plugin that introduces new au-
thoring metaphors or paradigms to Eclipse, e.g. programming-by-example [55]
where the system is trained to recognize gestures by examples provided by the
author. However, all these authoring tools are limited to a subset of post-WIMP
interaction techniques. A small number of tools are tailored for creating VEs,
for example Autodesk’s VRED. In addition, tools initially intended for computer
game development, e.g. Unity 3D [62] or the sandbox editor of CryEngine3 [12],
are also equipped with specific functionality for creating the user interface of
VEs.

Only few tools offer comprehensive post-WIMP authoring. Squidy [30] is
a tool supporting visual programming under a unified working space. It uses a
metaphor based on data flow diagrams as well as a zooming metaphor to provide
information about components of the UI on several levels of detail. However,
Squidy focuses on technical issues such as the seamless connection of several
input and output devices. For example, it is not even possible to create a GUI.
A zooming metaphor is also supported by ZOIL (Zoomable Object-Oriented
Information Landscape) [67], a software framework for creating distributed post-
WIMP UIs. The work in the literature highlights the shortcomings of traditional
IDEs and the advantages of providing a dedicated authoring tool for post-WIMP
UIs. Still, tools are lacking that are able to address the whole range of post-
WIMP interaction techniques. The specific requirements of different authoring
roles and the need for supporting collaboration between authors are sometimes
not addressed at all.

CLAY (Cross Layer Authoring Tool) [21] explicitly acknowledges that there
are different author roles. It distinguishes several layers where each layer rep-
resents the work space of one author role. In CLAY, these author roles are
programmer, GUI designer, post-WIMP UI designer and end user, i.e. the tool
can not only be used during the development of the UI but also for configura-
tion and adaptation after deployment. A slider is used to switch between the
layers (see Fig. 4). The slider can also be set between two layers. Transparency
is used to blend between these layers making it feasible to view two layers in
parallel. Using the same tool and not switching between tools, it is therefore
possible to visualize the interfaces and dependencies between the work spaces of
different authors, e.g. programmers working on the code layer can see for which
GUI widgets (on the GUI layer) and which gestures (on the post-WIMP layer)
their methods are used as a callback. This supports collaboration between au-
thors who are assigned to different authoring tasks while working on creating
the same post-WIMP UI. Pursuing the idea of a single tool supports a move-

14 Content Creation and Authoring Challenges for VEs

Fig. 4. Screenshot of the CLAY authoring tool [21]

ment back and forth as the slider to switch between layers can be moved in two
directions. This is more suitable for user-centered design, where results of an
evaluation (e.g. a user test on the user layer) need to be fed back to all layers.
For example, the need to change a gesture can impact the code. Supporting
the different author roles with a single tool can solve problems due to incom-
patibilities and the need for data exchange between traditional tools. In CLAY,
the authors place entities (e.g. widgets or graphical representation of gestures)
on the layers and may combine them to form more complex entities. They can
also change individual parameters of the entities. CLAY is based on a matrix
metaphor, i.e. functionality is arranged in a tabular layout analogous to a ma-
trix. The rows represent different layers, e.g. a code layer or a post-WIMP layer;
the columns represent topics, e.g. content, layout, parameters, or behavior. For
example, the author can select a cell in the table representing the layout of the
GUI layer. In this cell, all according functionality is made available. While this
metaphor helps to reduce complexity (since it organizes the functionality and
sorts it for different author roles such as a GUI designer), it uses much screen
space and can only show connections between two neighboring layers.

Utari3D (Unified Tool for Authoring Realtime Interaction in 3D) is also re-
lying on layers. In contrast to CLAY, it is based on a 3D metaphor and utilizes
a specifically shaped 3D space where layers are arranged in parallel. The 3D
metaphor provides affordances for possible interactions of the author. In addi-
tion, it suggests visualizations. Authors can use a slider to move the layers back
and forth. Transparency is used to blend from one layer to the next. In addition,
authors can change to a pre-set camera position that allows for a birds-eye view
of the layers (see Fig. 5). In the space between the layers, dependencies are visu-
alized. For each switch, a transition animation is used. Utari3D has been used in
a user test where several experts built a post-WIMP UI. The evaluation shows
that the test users had no difficulty grasping the metaphor. Indeed, these users
appreciated an overarching metaphor tying together multiple tools for authoring;

Content Creation and Authoring Challenges for VEs 15

Fig. 5. The overview mode in Utari3D

this is more than just plug-in tools together. The 3D space offers more degrees of
freedom to place the camera. Hence, the authors can adopt different views, e.g.
look at layers perpendicularly and compare two layers or use the overview mode
where they can look in between the layers from a bird’s eye perspective. Ani-
mating the camera or transforming the layers’ position and orientation, smooth
transitions can be made between the views. Similar approaches are used for ex-
ample in Apple’s iOS 7 where all browser tabs can be viewed in a 3D space or the
cover flow metaphor that allows for browsing music. There is no sudden break
by switching between tools which might be confusing and makes it difficult to
understand dependencies from entities in one tool to entities in a separate tool.
The metaphor can be extended to use 3D layers which is particularly relevant
to author the spatial aspects of a VE. Authoring approaches for specific tasks
that have proven to be successful and that are used by many authors today (e.g.
text-based authoring of program code or visual layout of GUI widgets) can be
integrated seamlessly in Utari3D as it is used only for a high level of abstraction.
For instance, Utari3D does not impose that every authoring aspect needs to be
accomplished graphically and that the use of visual programming techniques is
mandatory on the code level. The users in the test appreciated that familiar
authoring processes have been complemented and not replaced. Thus, the tools
presented do not only address the authoring process challenge, but also the tool
challenge.

3.3 Middleware Solutions

In order to address the event aggregation and abstraction challenge and uncer-
tainty challenge often middleware solutions are proposed. Several approaches

16 Content Creation and Authoring Challenges for VEs

have been already explored. For instance, the Midas [57] / Mudra [26] system
supports the processing of event streams from different sources ranging from
low-level, simple raw data streams to higher-level, complex semantic events. It
employs a fact base and also a declarative language to specify how facts, i.e.
events, are automatically processed. However, this approach has several draw-
backs. First, with every event the fact base needs to be constantly updated.
As input events are usually short lived and transient in nature this approach
requires additional maintenance functions which have to be added to the fact
base. Second, the processing rules are realized using the inference engine CLIPS
[56], an expert system tool. The inference engine is also not designed for con-
tinuous evaluation and thus has to be also modified. Third, the interface to
the application layer does not support selection of events based on application
defined rules (such as complex Boolean expressions). This is a prerequisite to
deal with large amounts of events on different abstraction levels. Lastly, this ap-
proach has difficulties in reaching an acceptable performance. Instead of a fact
base, [19] used a multi-agent architecture [66] for analyzing all input modalities
to find out what the user actually wants to accomplish. While this might be a
general approach (such as the Open Agent Architecture [10]), this work focuses
on speech input that is accompanied by other types of sensor data in order to
resolve ambiguous situations. It remains questionable if this can be transferred
to other kinds of post-WIMP interactions. The approaches mentioned above are
domain specific approaches to the challenges in the field of HCI. A more general
approach is taken by complex event processing (CEP). The term CEP refers to
the detection, analysis, and general processing of correlated raw or simple events
and their transformation in more abstract and meaningful complex events [42].
CEP is based on the concept of the event driven architecture (EDA), in which
loosely coupled components communicate by emitting and consuming events.
The methodologies of CEP and EDAs have rarely been applied to interactive
systems [23].

UTIL [36] is a middleware that is based on CEP, in particular the interaction
event processing architecture [37] and the CEP engine Esper. It applies CEP to
interactive systems and provides an abstraction between code of an application’s
UI and the input devices of a system. It also provides an interaction layer that
manages the access of applications to any event from the event processing layer.
This middleware can be used for instance as a foundation for the EMIL base
framework (see Fig. 2). UTIL offers several benefits. Detection, aggregation, fu-
sion and selection of input events is based on a declarative specification (using
the Event Processing Languange EPL). This declarative approach facilitates the
specification of post-WIMP interactions on a high level of abstraction. More-
over, it lets the CEP engine perform the actual processing and maintenance of
current and past events. This abstraction also makes it possible to benefit from
optimizations and other improvements the engine can perform without chang-
ing the application’s code. Continuous queries enable applications to precisely
specify which kinds of events are expected. This allows reducing the amount
of post-processing within user interface code to a minimum, thus possibly im-

Content Creation and Authoring Challenges for VEs 17

proving the software quality. It is also feasible to write rules that determine the
uncertainty of an aggregated event based on the uncertainty of its base events.

UTIL was evaluated in a representative usage scenario [36]. In this scenario,
4,384 raw input events and 27 rules were used, implementing various gesture-
based interaction techniques. In order to also measure the impact of the event
delivery, 1,000 unspecific queries for all events on the interaction layer were
added. For each raw event passed into the middleware, the time it took the
middleware to accept the next event was measured. This round-trip time includes
all query evaluations as well as calling all registered event listeners. For the
evaluation, a notebook computer (MacBook Pro with an 2.66 GHz Intel Core 2
Duo with 4 GB of RAM) was used. An average roundtrip time of 12.35 µs per
event with a standard deviation of 4.8 µs was measured, i.e. an average event
throughput of 80,973 event/s. This can be considered sufficient for post-WIMP
UIs, as input event rates typically range from hundreds to a few thousand events
per second.

4 Motion Modeling Interfaces for Virtual Environments

Among the many functions a user interface may have for content preparation
in virtual environments, one that has particular potential to take advantage of
a post-WIMP paradigm is the process of programming the motions of virtual
agents in virtual environments. With the increased availability of motion capture
devices, motion modeling has the clear potential to evolve from an expert-only
tedious activity relying on specialized modeling software to a modeling by direct
demonstration approach accessible to most users.

Such an approach is extremely important for allowing users to update their
content and achieve effective virtual characters in their simulated environments.
One particularly important class of applications is the motion modeling of virtual
trainers and assistants that can learn, train and assist people in interactive ap-
plications of virtual environments. In these applications, facilitating the process
of motion content creation is very important. The topic of motion modeling by
demonstration represents a good example of a non-traditional type of interface
that modern applications are starting to address. This section discusses possible
solutions to address this area.

A generic system for interactive motion modeling will have typically two
distinct modes: a capture interface and a motion modeling interface. When the
user demonstrates new motions on-the-fly during capture, the user can then
immediately playback, crop, reject or accept each captured motion segment.
This is similar to recording video sequences from a video camera and preparing
the sequences for later editing. The motion modeling mode will allow the user
to organize the captured motions according to the intended use.

The focus here is on the particular organization of motion segments that is
suitable for motion blending and parameterization. The approach creates param-
eterized gestures or actions from clusters of aligned example motion segments of
the same type, but with variations with respect to the spatial parameterization

18 Content Creation and Authoring Challenges for VEs

to be considered. For example, a gesture cluster for a certain way of pointing
will typically consist of several examples of similar pointing gestures, but with
each pointing motion pointing to a different location. Different motion blending
techniques can be used with motion capture data in order to achieve parame-
terization, and a recent comparison study provides a good overview of the most
popular methods [18]. The solutions presented on this chapter are based on the
inverse blending technique [27, 18].

One first issue that has to be addressed by the interactive system is to pro-
vide appropriate feedback of the coverage achieved by the current cluster of
motions and the employed motion blending technique. The goal is to allow the
user to quickly observe the coverage of the database inside the target virtual
environment with different visualization tools, and to allow the user to improve
the database coverage as needed. The coverage of a database here refers to how
well parameterized motions interpolated from the discrete motion examples in
the current database are able to satisfy precise spatial constraints as needed in
the environment. With the appropriate visualization tools the user is able to
quickly switch between capture and modeling modes until the needed coverage
is achieved, therefore guaranteeing correct execution in the target environment.

Figure 6 shows one example scenario where the user is modeling a pouring
motion cluster with a motion vest motion capture interface based on inertial
sensors. For the illustrated pouring action the spatial parameterization needs to
well cover the target container, which can be placed anywhere on the table in
the scenario. By providing a few pouring actions for key locations on the table
inverse blending procedures can then precisely interpolate the given example
motions towards arbitrary targets on the table.

Motion

Database
User Virtual

Agent

GestureVest interface

Immersive Visualization and Editing

Fig. 6. The main components for an interactive motion modeling by demonstration
system.

Content Creation and Authoring Challenges for VEs 19

The definition of clusters for collecting example motions is an important
concept of system based on motion blending. Clusters are necessary for specifying
each parameterized action or gesture. When the user selects to start a new
cluster, every recorded motion becomes associated with that cluster. Motions
in a cluster will be blended and therefore they have to consistently represent
variations of a same type of motion. The capture process is straightforward and
it just requires a button to notify start and stop signals. The user first initializes a
new motion cluster, and then holds down the capture button to begin recording.
A button in the WiiMote controller is used in the presented examples. The
button is then released after performing the motion.

Using the WiiMote controller, the user can instantly switch from on-line
capture mode to playback/editing, scroll through the already captured motions,
delete unwanted clips from memory, mark the start and end of each motion
segment to crop out unnecessary parts, and most importantly mark the stroke
frames (stroke times) for each segment before populating them into clusters in
the database. The stroke frame of each captured motion is then used as the point
in the motion (the main stroke point) to be parameterized.

4.1 Motion Database Inspection

Since great variations can be found among different gestures and actions, an
easy way to go through each motion cluster and to quickly crop lead-in/lead-
out frames and annotate the motion strokes is needed. We have experimented
with buttons to skip over motions captured and with an editing interaction
mode where the trajectory of the user’s hand is captured and mapped into a
linear horizontal movement in real-time, and the movement directly controls the
motion playback slider. This enables the user to quickly visualize the available
motions with a simple horizontal hand movement, allowing the user to remain
inside the capture area and conveniently validate and edit the motion cluster.
Figure 7 shows several snapshots of the playback interface being used to analyze
a recently captured pointing motion.

Fig. 7. This example interface allows the user to easily scroll through captured motions,
crop out unwanted frames, and most importantly mark stroke frames to be parame-
terized. This image shows the user inspecting one motion segment with a simple hand
movement.

20 Content Creation and Authoring Challenges for VEs

4.2 Workspace Coverage Visualization

The ability to enforce constraints using inverse blending greatly depends on
the existing variations among the example motions being interpolated. In gen-
eral, the size of motion database is proportional to the volume of the covered
workspace. In order to produce quality motions satisfying many possible con-
straints spanning the whole workspace, it is important to determine which ex-
ample motions to capture during the capture process. This will ensure that a
well-built cluster of motions is formed, with good coverage of the regions of
interest (ROIs) inside the workspace.

On the other hand, defining an overly fine subdivision of the constraint space
with too many examples is inefficient and impractical as it requires capturing
too many example motions to populate a database. Not only the database would
be redundant, this would also impose a huge workload on the user. Instead, since
similar examples can often be interpolated to produce valid new motions with
good quality, a small number of carefully selected example motions is better in
providing good coverage for the ROIs in the workspace. Achieving an efficient
database is also key to ensure lag-free interactivity of the system.

The approach of using a palette of colors to quantify error inside the workspace
is explored here in order to intuitively guide the user during the process of adding
new motions to the database. A global coverage visualization of the workspace
volume can be achieved with a coarse uniform sampling of workspace points.
Each point is assigned a color that quantifies the error achieved by the inverse
blending routine when addressing the target point.

Consider a pointing database as example. In this case the constraint is the
target locations for the finger tip to reach. The user can visualize how accurate
the current cluster of motions can be parameterized to cover the entire area in
front of the virtual character. This example is shown in Figure 8. In the example,
the error measures the distance between each sampled pointing target (small
color cubes) and the position that can actually be reached by the finger tip,
using the current database. While the visualization may be of a large portion
of the workspace, the computed colors come from the interpolation errors in
the current database independent of the quantity of example motions in the
database.

Fig. 8. Volume visualization with global workspace sampling at different sampling
densities. The error threshold can be adjusted to only display regions with large errors
and thus help the user to focus on improving those regions.

Content Creation and Authoring Challenges for VEs 21

This visualization method requires some computation time, normally a few
seconds, depending on the fineness/coarseness of the sampling. After this initial
computation, it can be visualized from different points of views interactively in
real-time without any lag. This solution provides a good overview of the whole
cluster coverage in the given environment.

4.3 Local Coverage Visualization

It is possible to observe that the global error-based volume visualization is not
needed when the user is fine tuning the coverage of a small region, or when
only a small local region is of interest. In addition, even if using the global
cluster coverage visualization is always helpful, the pre-computation time can
impose undesirable wait times when editing large motion sets since every time
new motions are added to the cluster visualizer nodes have to be re-computed.

A possible second coverage inspection method is local and allows the user
to interactively place a colored mesh geometry in the scene for precise coverage
visualization in a specific region. See Figure 9 for an example using the same
pointing motion database as in Figure 8. When switched to the local coverage
visualization mode, the system renders a transparent colored mesh geometry in
the approximate form of a sphere covering a small ROI inside the workspace,
which follows the movement of the user’s hand. In this case, the motion cluster
coverage evaluation is performed only within the specific region delimited by the
mesh geometry volume.

Fig. 9. The local coverage visualizer can be interactively placed over a small ROI during
the motion modeling phase, enabling the user to instantly visualize the current motion
cluster coverage at important locations. The user can then easily further improve the
cluster as needed. The right-most image shows the user interactively placing the local
coverage visualizer close to the control panel of the sound system to inspect the cluster
coverage in those specific regions.

The mesh color computation is very efficient. Only the vertices of the mesh
are evaluated for error computation, and the obtained color on the mesh sur-
face comes from color interpolation with Gouraud shading. Mesh size, shape
and resolution can be easily changed during the interactive inspection by using
the WiiMote controller. The user can select different mesh sizes for either fast

22 Content Creation and Authoring Challenges for VEs

sweeping of areas of interests, or for carefully checking small spots of interests.
The local coverage visualization mode is particularly useful for close examina-
tion of coverage within small local ROIs. This mode easily takes into account
any new demonstrated motions dynamically added to the database without any
pre-computation lag.

5 Conclusion

The eight challenges for authoring VEs (design guideline challenge, standardiza-
tion challenge, emulation challenge, visibility challenge, authoring process chal-
lenge, tool challenge, event aggregation and abstraction challenge and uncer-
tainty challenge) identified are still serious obstacles for a more widespread use
of virtual environments in various application areas. In addition to these broad
challenges, there is a lack of specific authoring metaphors for addressing new
emerging types of content and content creation. One highly relevant example
is immersive motion modeling, i.e. the authoring of motions to be executed by
virtual characters. The techniques discussed in this paper provide an overview
of solutions implementing an immersive motion modeling interface.

It is important to observe that for the overall approach of immersive motion
modeling to be most effective the involved design choices have to be customized
according to the target application. Table 1 provides an analysis of several types
of relevant applications and their respective relevant characteristics. Table 1 was
built from the experience of the authors working with the described system.

stereo

vizualization

scene in

100% scale
tracking scope

tracking

precision
motion modeling

coverage

visualization
challenges

high-precision procedures with

object manipulation, ex: virtual

surgery training

important important

full upper-

body with

fingers

high precision

important

direct interaction

important
important

VR system alone

will not provide

force feedback

procedures where object

manipulation is not crucial, ex:

demonstration of machine

operations

maybe

important

maybe

important

full upper-

body with

fingers

medium

precision may

be enough

both direct

interaction and

avatar display

useful

important

need effective

interface for

virtual objects

manipulation

generic demonstrative

gestures for delivery of

information, ex: giving

directions or object info.

maybe

important

maybe

important

single arm

with fingers

medium

precision may

be enough

both direct

interaction and

avatar display

useful

important
current

solutions should

be sufficient

modeling generic

motions/exercises without

reference to objects, ex:

exercises for physical therapy

less

important

less

important

full body

no fingers

medium

precision may

be enough

modeling

motions with

only avatar

display may be

more effective

may not be

needed

current

solutions should

be sufficient

Types of Applications

Design Choices

Table 1. Analysis of possible types of applications, their main characteristics, and the
design choices relevant to immersive modeling interfaces.

Even if the described underlying algorithmic solutions based on motion blend-
ing are replaced by other methods, a user-driven motion capture based interface

Content Creation and Authoring Challenges for VEs 23

will need to integrate basic motion segmentation editing tools, quick motion
database traversal tools, and coverage/quality of results visualization. The dis-
cussed examples only provide a first exploration of techniques into this broad
realm.

Likewise, the examples for authoring processes, authoring framework and
authoring tools for creating virtual environments in general and their user in-
terfaces in particular that were presented can also be considered only first steps
towards solving the wide-ranging challenges. More research efforts are necessary
in this area and the novel approaches to authoring and modeling need to be
employed and evaluated more extensively in field tests. One important issue for
the future research roadmap is to not only examine every authoring task and
authoring challenge idependently but to provide authors with a consistent and
coherent authoring framework.

Acknowledgements Marcelo Kallmann and David Huang were partially
supported in this work by NSF award IIS-0915665. Ralf Dörner was partially
supported in this work by the German Federal Ministry of Education and Re-
search (BMBF) grant 17043X10.

References

1. Abawi, D.F., Dörner, R., Grimm, P.: A component-based authoring environment
for creating multimedia-rich mixed reality. In: Proceedings of the Seventh Euro-
graphics Conference on Multimedia. pp. 31–40. EGMM’04, Eurographics Associa-
tion, Aire-la-Ville, Switzerland, Switzerland (2004), http://dx.doi.org/10.2312/
EGMM/MM04/031-040

2. Abawi, D.F., Dörner, R., Grimm, P.: A component-based authoring environment
for creating multimedia-rich mixed reality. In: Proceedings of the Seventh Euro-
graphics Conference on Multimedia. pp. 31–40. EGMM’04, Eurographics Associa-
tion, Aire-la-Ville, Switzerland, Switzerland (2004), http://dx.doi.org/10.2312/
EGMM/MM04/031-040

3. Apple: Xcode (Jan 2014), developer.apple.com/xcode
4. Bastide, R., Navarre, D., Palanque, P.: A model-based tool for interactive prototyp-

ing of highly interactive applications. In: CHI ’02 Extended Abstracts on Human
Factors in Computing Systems. pp. 516–517. CHI EA ’02, ACM, New York, NY,
USA (2002), http://doi.acm.org/10.1145/506443.506457

5. Beaudouin-Lafon, M.: Instrumental interaction: An interaction model for designing
post-wimp user interfaces. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. pp. 446–453. CHI ’00, ACM, New York, NY, USA
(2000), http://doi.acm.org/10.1145/332040.332473

6. Bier, E.A., Stone, M.C., Pier, K., Buxton, W., DeRose, T.D.: Toolglass and magic
lenses: The see-through interface. In: Proceedings of the 20th Annual Conference on
Computer Graphics and Interactive Techniques. pp. 73–80. SIGGRAPH ’93, ACM,
New York, NY, USA (1993), http://doi.acm.org/10.1145/166117.166126

7. Bowman, D.A., Kruijff, E., LaViola, J.J., Poupyrev, I.: 3D User Interfaces: Theory
and Practice. Addison-Wesley, Boston, MA, USA (2004)

8. Broll, W., Herling, J., Blum, L.: Interactive bits: Prototyping of mixed reality
applications and interaction techniques through visual programming. In: 3D User
Interfaces, 2008. 3DUI 2008. IEEE Symposium on. pp. 109–115. IEEE (2008)

24 Content Creation and Authoring Challenges for VEs

9. Camporesi, C., Huang, Y., Kallmann, M.: Interactive motion modeling and pa-
rameterization by direct demonstration. In: Proceedings of the 10th International
Conference on Intelligent Virtual Agents (IVA) (2010)

10. Cheyer, A., Martin, D.: The open agent architecture. Autonomous Agents and
Multi-Agent Systems 4(1-2), 143–148 (Mar 2001), http://dx.doi.org/10.1023/
A:1010091302035

11. Cooper, S., Hertzmann, A., Popović, Z.: Active learning for real-time motion con-
trollers. ACM Transactions on Graphics (SIGGRAPH 2007) 26(3) (Aug 2007)

12. Crytech: Cryengine 3 (Jan 2014), cryengine.com
13. van Dam, A.: Post-wimp user interfaces. Commun. ACM 40(2), 63–67 (Feb 1997),

http://doi.acm.org/10.1145/253671.253708

14. Dörner, R., Grimm, P.: Etoile - an environment for team, organizational and in-
dividual learning in emergencies. In: Proceedings of the 9th IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises.
pp. 27–34. WETICE ’00, IEEE Computer Society, Washington, DC, USA (2000),
http://dl.acm.org/citation.cfm?id=647068.715502

15. Dörner, R., Grimm, P.: Three-dimensional beanscreating web content using 3d
components in a 3d authoring environment. In: Proceedings of the fifth symposium
on Virtual reality modeling language (Web3D-VRML). pp. 69–74. ACM (2000)

16. Eclipse: Eclipse foundation homepage (Jan 2014), eclipse.org
17. Fayad, M., Schmidt, D.C.: Object-oriented application frameworks. Commun.

ACM 40(10), 32–38 (Oct 1997), http://doi.acm.org/10.1145/262793.262798
18. Feng, A., Huang, Y., Kallmann, M., Shapiro, A.: An analysis of motion blending

techniques. In: Proceedings of the Fifth International Conference on Motion in
Games (MIG). Rennes, France (2012)

19. Flippo, F., Krebs, A., Marsic, I.: A framework for rapid development of multi-
modal interfaces. In: Proceedings of the 5th International Conference on Mul-
timodal Interfaces. pp. 109–116. ICMI ’03, ACM, New York, NY, USA (2003),
http://doi.acm.org/10.1145/958432.958455

20. Gebhard, P., Kipp, M., Klesen, M., Rist, T.: What are they going to talk about?
towards life-like characters that reflect on interactions with users. In: Proc. of the
1st International Conference on Technologies for Interactive Digital Storytelling
and Entertainment (TIDSE’03) (2003)

21. Gerken, K., Frechenhäuser, S., Dörner, R., Luderschmidt, J.: Authoring support
for post-wimp applications. In: Kotz, P., Marsden, G., Lindgaard, G., Wesson,
J., Winckler, M. (eds.) Human-Computer Interaction INTERACT 2013, Lecture
Notes in Computer Science, vol. 8119, pp. 744–761. Springer Berlin Heidelberg
(2013), http://dx.doi.org/10.1007/978-3-642-40477-1_51

22. Gimeno, J., Morillo, P., Orduna, J., Fernandez, M.: A new ar authoring tool
using depth maps for industrial procedures. Computers in Industry 64(9),
1263 – 1271 (2013), http://www.sciencedirect.com/science/article/pii/

S0166361513001267, special Issue: 3D Imaging in Industry
23. Hinze, A., Sachs, K., Buchmann, A.: Event-based applications and enabling tech-

nologies. In: Proceedings of the Third ACM International Conference on Dis-
tributed Event-Based Systems. pp. 1:1–1:15. DEBS ’09, ACM, New York, NY,
USA (2009), http://doi.acm.org/10.1145/1619258.1619260

24. Homepage: Leap motion (Jan 2014), leapmotion.com
25. Homepage: Oculus rift (Jan 2014), oculusvr.com
26. Hoste, L., Dumas, B., Signer, B.: Mudra: A unified multimodal interaction frame-

work. In: Proceedings of the 13th International Conference on Multimodal Inter-

Content Creation and Authoring Challenges for VEs 25

faces. pp. 97–104. ICMI ’11, ACM, New York, NY, USA (2011), http://doi.acm.
org/10.1145/2070481.2070500

27. Huang, Y., Kallmann, M.: Motion parameterization with inverse blending. In: Pro-
ceedings of the 3rd International Conference on Motion in Games (MIG) (2010)

28. Kallmann, M.: Analytical inverse kinematics with body posture control. Computer
Animation and Virtual Worlds 19(2), 79–91 (2008)

29. Kelleher, C., Pausch, R.: Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers. ACM Comput.
Surv. 37(2), 83–137 (Jun 2005), http://doi.acm.org/10.1145/1089733.1089734

30. König, W.A., Rädle, R., Reiterer, H.: Squidy: A zoomable design environment
for natural user interfaces. In: CHI ’09 Extended Abstracts on Human Factors
in Computing Systems. pp. 4561–4566. CHI EA ’09, ACM, New York, NY, USA
(2009), http://doi.acm.org/10.1145/1520340.1520700

31. Kopp, S., Wachsmuth, I.: Synthesizing multimodal utterances for conversational
agents: Research articles. Computer Animation and Virtual Worlds 15(1), 39–52
(2004)

32. Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions
in large data sets. ACM Transaction on Graphics (Proceedings of SIGGRAPH)
23(3), 559–568 (2004)

33. Lawson, J.Y.L., Coterot, M., Carincotte, C., Macq, B.: Component-based high
fidelity interactive prototyping of post-wimp interactions. In: International Con-
ference on Multimodal Interfaces and the Workshop on Machine Learning for Mul-
timodal Interaction. pp. 47:1–47:4. ICMI-MLMI ’10, ACM, New York, NY, USA
(2010), http://doi.acm.org/10.1145/1891903.1891961

34. Ledermann, F., Schmalstieg, D.: April: a high-level framework for creating aug-
mented reality presentations. In: Virtual Reality, 2005. Proceedings. VR 2005.
IEEE. pp. 187–194. IEEE (2005)

35. Lee, J.Y., Seo, D.W., Rhee, G.W.: Tangible authoring of 3d virtual scenes in
dynamic augmented reality environment. Computers in Industry 62(1), 107–119
(2011)

36. Lehmann, S., Doerner, R., Schwanecke, U., Haubner, N., Luderschmidt, J.: Util:
Complex, post-wimp human computer interaction with complex event processing
methods. In: Proceedings of the 10th Workshop Virtual and Augmented Reality
of the GI Group VR/AR. pp. 109–120. Shaker Verlag, Aachen (2013)

37. Lehmann, S., Doerner, R., Schwanecke, U., Luderschmidt, J., Haubner, N.: An
architecture for interaction event processing in tabletop systems. In: Proceedings
of the first workshop Self Integrating Systems for Better Living Environments,
Sensyble 2010. pp. 15–19. Shaker Verlag, Aachen (2010)

38. Li, P., Wohlstadter, E.: View-based maintenance of graphical user interfaces.
In: Proceedings of the 7th International Conference on Aspect-oriented Soft-
ware Development. pp. 156–167. AOSD ’08, ACM, New York, NY, USA (2008),
http://doi.acm.org/10.1145/1353482.1353501

39. Lindeman, R.W., Sibert, J.L., Hahn, J.K.: Towards usable vr: An empirical study of
user interfaces for immersive virtual environments. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. pp. 64–71. CHI ’99, ACM,
New York, NY, USA (1999), http://doi.acm.org/10.1145/302979.302995

40. Looser, J., Grasset, R., Billinghurst, M.: A 3d flexible and tangible magic lens in
augmented reality. In: Proceedings of the 2007 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality. pp. 1–4. IEEE Computer Society
(2007)

26 Content Creation and Authoring Challenges for VEs

41. Lü, H., Li, Y.: Gesture studio: Authoring multi-touch interactions through demon-
stration and declaration. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. pp. 257–266. CHI ’13, ACM, New York, NY, USA
(2013), http://doi.acm.org/10.1145/2470654.2470690

42. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (2001)

43. Luderschmidt, J., Haubner, N., Lehmann, S., Dörner, R.: Emil: A rapid proto-
typing authoring environment for the design of interactive surface applications.
In: Proceedings of the 15th International Conference on Human-Computer Inter-
action: Human-centred Design Approaches, Methods, Tools, and Environments -
Volume Part I. pp. 381–390. HCI’13, Springer-Verlag, Berlin, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-39232-0_42

44. Luderschmidt, J., Haubner, N., Lehmann, S., Dörner, R.: Emil: A rapid proto-
typing authoring environment for the design of interactive surface applications.
In: Proceedings of the 15th International Conference on Human-Computer Inter-
action: Human-centred Design Approaches, Methods, Tools, and Environments -
Volume Part I. pp. 381–390. HCI’13, Springer-Verlag, Berlin, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-39232-0_42

45. MacIntyre, B., Gandy, M., Dow, S., Bolter, J.D.: Dart: A toolkit for rapid design
exploration of augmented reality experiences. In: Proceedings of the 17th Annual
ACM Symposium on User Interface Software and Technology. pp. 197–206. UIST
’04, ACM, New York, NY, USA (2004), http://doi.acm.org/10.1145/1029632.
1029669

46. McMahan, A.: Immersion, engagement and presence. The video game theory reader
pp. 67–86 (2003)

47. Microsoft: Kinect homepage (Jan 2014), xbox.com/kinect
48. Microsoft: Microsoft visual studio (Jan 2014), visualstudio.com
49. Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. In: ACM SIG-

GRAPH. pp. 1062–1070. ACM, New York, NY, USA (2005)
50. Quest3d: Act-3d b.v.: Quest3d (Jan 2014), quest3d.com/
51. Remy, C., Weiss, M., Ziefle, M., Borchers, J.: A pattern language for interactive

tabletops in collaborative workspaces. In: Proceedings of the 15th European Con-
ference on Pattern Languages of Programs. pp. 9:1–9:48. EuroPLoP ’10, ACM,
New York, NY, USA (2010), http://doi.acm.org/10.1145/2328909.2328921

52. Richards, D., Porte, J.: Developing an agent-based training simulation using game
and virtual reality software: Experience report. In: Proceedings of the Sixth Aus-
tralasian Conference on Interactive Entertainment. pp. 9:1–9:9. IE ’09, ACM, New
York, NY, USA (2009), http://doi.acm.org/10.1145/1746050.1746059

53. Rose, C., Bodenheimer, B., Cohen, M.F.: Verbs and adverbs: Multidimensional
motion interpolation. IEEE Computer Graphics and Applications 18, 32–40 (1998)

54. RoseIII, C.F., Sloan, P.P.J., Cohen, M.F.: Artist-directed inverse-kinematics us-
ing radial basis function interpolation. Computer Graphics Forum (Proceedings of
Eurographics) 20(3), 239–250 (September 2001)

55. Rubine, D.: Specifying gestures by example. In: Proceedings of the 18th Annual
Conference on Computer Graphics and Interactive Techniques. pp. 329–337. SIG-
GRAPH ’91, ACM, New York, NY, USA (1991), http://doi.acm.org/10.1145/
122718.122753

56. Savely, R., Culbert, C., Riley, G., Dantes, B., Ly, B., Ortiz, C., Giarratano, J.,
Lopez, F.: Clips (Jan 2014), clipsrules.sourceforge.net

Content Creation and Authoring Challenges for VEs 27

57. Scholliers, C., Hoste, L., Signer, B., De Meuter, W.: Midas: A declarative multi-
touch interaction framework. In: Proceedings of the Fifth International Conference
on Tangible, Embedded, and Embodied Interaction. pp. 49–56. TEI ’11, ACM, New
York, NY, USA (2011), http://doi.acm.org/10.1145/1935701.1935712

58. Seffah, A., Taleb, M.: Tracing the evolution of hci patterns as an interaction design
tool. Innov. Syst. Softw. Eng. 8(2), 93–109 (Jun 2012), http://dx.doi.org/10.
1007/s11334-011-0178-8

59. Sinem, G., Feiner, S.: Authoring 3d hypermedia for wearable augmented and virtual
reality. In: 2012 16th International Symposium on Wearable Computers. pp. 118–
118. IEEE Computer Society (2003)

60. Stone, M., DeCarlo, D., Oh, I., Rodriguez, C., Stere, A., Lees, A., Bregler, C.:
Speaking with hands: creating animated conversational characters from recordings
of human performance. ACM Transactions on Graphics 23(3), 506–513 (2004)

61. Sutherland, I.E.: The ultimate display. IFIP’65 International Federation for Infor-
mation Processing 2, 506–508 (1965)

62. Technologies, U.: Unity3d (Jan 2014), unity3d.com
63. Thiebaux, M., Marshall, A., Marsella, S., Kallmann, M.: Smartbody: Behavior re-

alization for embodied conversational agents. In: Seventh International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS) (2008)

64. Virtools: Daussault systemes: 3dvia virtools (Jan 2014), 3ds.com/de/

products-services/3dvia/3dvia-virtools/

65. Wojciechowski, R., Walczak, K., White, M., Cellary, W.: Building virtual and
augmented reality museum exhibitions. In: Proceedings of the ninth international
conference on 3D Web technology. pp. 135–144. ACM (2004)

66. Woolridge, M.: An Introduction ot MultiAgent Systems. John Wiley & sons, Hobo-
ken, NJ, USA (2002)

67. Zoellner, M., Jetter, H.C., Reiterer, H.: Zoil: A design paradigm and soft-
ware framework for post-wimp distributed user interfaces. In: Gallud, J.A.,
Tesoriero, R., Penichet, V.M. (eds.) Distributed User Interfaces, pp. 87–94. Human-
Computer Interaction Series, Springer London (2011), http://dx.doi.org/10.

1007/978-1-4471-2271-5_10

