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Abstract

We present in this paper a new GPU-based approach to compute
Shortest Path Maps (SPMs) from a source point in a polygonal do-
main. Our method takes advantage of GPU polygon rasterization
with shader programming. After encoding the SPM in the frame
buffer, globally shortest paths are efficiently computed in time pro-
portional to the number of vertices in the path, and length queries
are computed in constant time. We have evaluated our method in
multiple environments and our results show a significant speedup
in comparison to previous approaches.

CR Categories: I.3.7 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric Algorithms, languages,
and systems.
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1 Introduction

The computation of Euclidean Shortest Paths among obstacles is
a classical problem with applications in many areas. The Short-
est Path Map (SPM) [Lee and Preparata 1984; Mitchell 1993] is a
structure that efficiently captures all the shortest paths in a polygo-
nal domain, with respect to a given source point. While SPMs are
well-known in computational geometry, they are still little known in
other areas of computer graphics and their use in practical applica-
tions has not yet been much explored. One reason for this situation
is that efficient methods for computing SPMs are not straightfor-
ward to be implemented, what justifies alternative GPU-based ap-
proaches to be developed.

We introduce in this paper a new method for computing SPMs
based on GPU shader programming techniques. Our experiments
show that our method is significantly faster than previously reported
results. Our method first relies on standard CPU algorithms for
computing the shortest path tree of the obstacle set, and then ap-
plies the proposed shaders to encode the SPM in the frame buffer
with arbitrary resolution. This last step is performed entirely with
GPU operations. See Figure 1 for examples.

Given a polygonal environment of n vertices, our discrete (pixel-
based) SPM representation is then able to compute shortest paths
from the source point to any reachable point in the environment in
O(k), where k is the number of turns in the path; and to compute
shortest path length queries in constant time. In contrast, continu-
ous approaches for computing the SPM will answer these queries
in O(log(n) + k) and O(log(n)) time respectively.
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Figure 1: Example of Results. Left: example SPMs generated from
the source point marked with a small yellow cross. Each region in
the SPM has a single generator, which makes the reconstruction of
shortest paths very efficient. The red path is the shortest path to
an arbitrary target point. Right: geodesic flood-fill expansion from
the source point. The colors, from blue to dark red, represent the
distance to the source point, from close to far.

2 Related Work

The most common approach to solve Euclidean shortest path prob-
lems is to first build the visibility graph [Nilsson 1969; De Berg
et al. 2008] of the environment and then run standard graph search
algorithms on the graph. The visibility graph however is a graph of
O(n2) nodes, where n is the total number of vertices in the envi-
ronment [Welzl 1985; Storer and Reif 1994; Overmars and Welzl
1988]; and in addition, a new graph search is needed for each given
shortest path query.

Efficient approaches to the problem are based on the continuous
Dijkstra paradigm [Lee and Preparata 1984], which simulates the
propagation of a continuous wavefront maintaining equal length to
the source point. When applied to the whole environment the re-
sult is the Shortest Path Map (SPM), which is able to efficiently
answer shortest path queries with respect to the source point. Effi-
cient algorithms exist to build SPMs [Mitchell 1993; Hershberger
and Suri 1997]; however, they involve techniques and data struc-
tures not practical to be implemented.

Alternative to continuous approaches, a discrete pixel-based
method has already been developed taking advantage of the mas-
sive parallelization of GPUs. Like our approach, Wynters [2013]
first computes the visibility graph and the shortest path tree (SPT)
of the environment to then build the SPM. The SPM generation
however does not rely on rasterization with shaders like in our ap-



proach, and instead is based on a brute-force parallelized per-pixel
determination of the closest SPT point, leading to the subdivision
of the pixel space in SPM regions. The results obtained with our
proposed method demonstrate a significant speed-up, of about 20
times, in similar reported conditions [Wynters 2013]. We achieve a
level of complexity and detail not seen before in previous work.

With respect to previous work in shader programming techniques,
our work mainly relies on the use of shadow volumes [Eisemann
et al. 2009]. Algorithms for rendering hard shadows in real time can
be roughly sorted into three categories: shadow mapping [Williams
1978; Lauritzen et al. 2011; Lloyd et al. 2008], alias-free shadow
maps [Aila and Laine 2004; Johnson et al. 2005; Sintorn et al.
2011], and shadow volumes [Fuchs et al. 1985; Heidmann 1991].
Our work relies on the generation of shadow volumes with a vari-
ation of the z-fail approach [Carmack 2000; Bilodeau and Songy
1999; Everitt and Kilgard 2002]. This approach is known to be
slower than methods using shadow maps, due to higher overdraw
and the need for near and far clipping geometry [Laine 2005]; how-
ever, it does not suffer from (quite severe) resolution aliasing arti-
facts, and it is not camera-dependent, allowing in a single pass to
generate shadows in every scene direction.

3 Method

Our overall method consists of three main steps: environment pre-
computation, visibility graph and SPT computation, and SPM gen-
eration and query, as summarized in Algorithm 1. See also Figure 2.

Algorithm 1 Main procedure including pre-computation stages.

1: procedure GENERATESPM
2: e← environment
3: p← source point
4: if (new environment) then
5: genEnvVolume(e) . Section 3.1
6: vg ← genVisGraph(e) . Section 3.2
7: else
8: vg ← current visibility graph
9: genSPM(p, vg, e) . Section 3.3

Each input polygonal obstacle is identified by a unique ID (pid).
We assume that obstacles are disjoint, represented by vertices in
counter clockwise order, and that they have at least 3 vertices.

Figure 2: After the SPT is computed from the visibility graph (left),
visible regions for each vertex are determined (center) and com-
posed following the SPT ordering to form the SPM (right).

3.1 Environment Pre-Computation

The first step of our algorithm is to generate extruded volumes of
the input polygons along the z-axis of the environment, which is the
orthogonal axis to the plane of the polygonal domain. See Figure 3.
Extruded polygons are represented as triangle meshes and they are
enhanced with triangle adjacency information [Shreiner et al. 2013]

in order to enable the generation of shadow volumes from any point
of view through geometry shaders.

3.2 Visibility Graph

Our generation of the visibility graph follows the standard approach
of connecting all pairs of vertices that are visible to each other,
with the optimization of only including edges that connect two con-
vex vertices. Our implementation determines visible vertices by
traversing a triangulation of the environment outwards from each
vertex. The method takes O(n3) time however in practice it effi-
ciently culls non-visible regions of the environment. Each node of
our visibility graph stores a list with the ids of all visible obstacles.

3.3 SPM generation

Each time a new source point is given, the point is first connected
with edges to its visible nodes of the visibility graph. An exhaustive
Dijkstra expansion starting from the newly inserted source node is
then executed and the resulting expansion tree is the SPT of the
polygonal environment. Each node of the SPT will correspond to
one specific obstacle vertex. See Figure 2-left.

During the SPT construction process each vertex is labeled to iden-
tify if the edges connected to the vertex are both visible (partially
or entirely) from its SPT parent vertex, or if one of them is com-
pletely occluded. SPT nodes adjacent to visible edges are removed
from the SPT because they will not be generators of a SPM re-
gion [Mitchell 1993]. The remaining nodes will be generators and
a unique color ID is assigned to them. The generator nodes are also
stored in a list sorted by the Euclidean geodesic distance of each
node to the source point.

Our approach for obtaining the SPM is inspired by the GPU
method of rendering cones as a way to represent distance to bound-
aries, originally proposed to compute generalized Voronoi dia-
grams [Hoff et al. 1999]. In our SPM case we use clipped 3D cones
to represent wavefront expansions from generator vertices of the
SPT. Each cone has its height equal to its radius. In the source
point case the cone does not need to be clipped. When cones are
rendered from an orthographic point of view the generated depth
buffer will contain distances to the generator point.

Cones are placed along the Z axis at different heights, according to
the geodesic distance from their generators to the source point. See
Figure 3-b. Using these settings, if two intersecting cones (with
different color IDs) are rendered the Z-buffer depth test will only
keep, for each Z-buffer pixel, the depth value of the closest cone
geometry to the camera’s point of view. Each value in the Z-buffer
is still linked to the cone’s geometry that generated it, so that the
cone’s color can be assigned to its specific pixel in the frame buffer
during the rendering step. The final image produced consists of
colored regions where the color of each pixel is an ID that directly
gives access to its closest SPT generator node, and the depth value
in the Z-buffer contains, for each pixel, the geodesic distance to the
source point of the SPM.

One important observation is that it is not enough to simply place
a cone at its apex generator vertex at the correct height because it
may intersect with unrelated cones placed in the environment, lead-
ing to wrong results. To address this issue we have to ensure that
each cone propagation will not affect regions that are not visible
from the generator vertex of the cone. This process could be ad-
dressed by generating clipped cones per vertex, however imposing
CPU computation of specific shapes per vertex, which would have
to be computed and passed to the graphics hardware for each new
SPM source.



Figure 3: Cone placement and obstacle extrusion. (a) Cones ren-
dered with flat shading and projected to the obstacle plane; the red
rectangle is the obstacle. (b) Perspective view of the clipped cones
and the extruded obstacle. Cones are clipped against their visibility
regions. The gray plane is the obstacle plane. (c) Perspective view
without the obstacle plane. (b) Sliced view of the clipped cones
showing the internal part of the extruded polygon. The gray box
shows the clipping volume.

Our approach makes use of the concept of point light propagation
and shadow. We consider each SPT node to be an omni-directional
light source and we generate directly in GPU shadow volumes that
will be used to identify, during each cone’s rendering, which spe-
cific portions of the cone should be used for rendering and therefore
for updating only the relevant color and depth buffer values. We
have used an optimized version of the z-fail shadow volume algo-
rithm to generate shadowed regions in the scene to be used for cone
clipping. Figure 2-center exemplifies the visible region generated
by the shadow volume algorithm and applied to the cone of a source
point. Figure 3 shows multiple views of the SPM generation from
several cones placed and clipped by our method.

This approach relies on sequentially updating the buffers and in our
setup it is required that the cone rendering follows the strict order
given by its sorted geodesic distance from the SPM source. The
sorted list of vertices is created during the SPT computation step.
Farthest cones have to be rendered first.

Cone rendering has been implemented in two passes. The first pass
updates the stencil buffer with the shadow volume information gen-
erated from each light source (a SPT generator vertex) against the
polygonal obstacles extrusion geometry. This stage is also opti-
mized to pre-cull occluded polygons using the pid defined in sec-
tion 3.1. The second pass consists of the actual rendering of the
cone’s geometry with the stencil operation enabled. A cone is ren-
dered only where its shadow volume was not present in the scene.
The overall method is detailed in Algorithm 2.

We use two shader programs. The first shader technique (techFlat)
simply renders the cones with the assigned color without applying

Algorithm 2 Pseudocode of the SPM rendering routine. The pseu-
docode below draws to the frame buffer but the actual implementa-
tion is extended to render in a frame buffer object.

1: procedure DRAWSPM
2: techShad← shadow volume technique
3: techFlat← flat color technique
4: polyVol← extruded obstacles . details in section 3.1
5: nlist← SPT nodes . nodes are sorted by dis-

tance in reverse order.
6: VP ← view ∗ projection matrix
7: begin:
8: glEnable(Stencil, Depth, DepthClamp)
9: glDepthFunc(LeEqual)

10: for all n : nlist do
11: pass1: . updates the stencil buffer
12: glClear(StencilBufferBit)
13: glDrawBuffer(None)
14: glColorMask(False)
15: glDepthMask(False)
16: glDisable(CullFace)
17: glStencilFunc(Always, 0, 0xFF)
18: glStencilOpSeparate(Back,Keep, IncrWrap,Keep)
19: glStencilOpSeparate(Front,Keep,DecrWrap,Keep)
20: glColorMask(False)
21: p← n.position . the node position already in-

cludes the correct height place-
ment

22: M ← polyVol.M . poly extrusion’s model matrix
modified so that the volume’s
height is scaled to a dimension
double than the cone’s height
and the center of the volume is
placed at the same height of the
light source

23: techShad.set(M,VP , p)
24: polyVol.draw()
25: glEnable(CullFace)
26: glDrawBuffer(Back)
27: pass2: . updates the back buffer
28: glColorMask(True)
29: glDepthMask(True)
30: glStencilOpSeparate(Back,Keep,Keep,Keep)
31: glStencilFunc(Equal, 0, 0xFF)
32: M ← n.coneInstance.M . model matrix to place

the cone instance in the
scene

33: techFlat.set(M,VP )
34: n.coneInstance.draw()

any shading information from the geometry. The second shader
program (techShad) is responsible to compute the shadow volume
projecting the environment geometry silhouette to infinite (the pro-
jection point is a SPT generator node or the SPM source point).
This shader is a modified version of the most common silhouette
generation algorithm. The algorithm presents a generic method to
create shadows from any point of view using geometry with adja-
cency information. We have also developed a specialized version
from the orthogonal camera point of view using only generic ge-
ometry (without adjacency information).

To approximate a vertex projection to infinite, the shader employs
the simple solution of using an ε value that is very close to 0
to be the w homogeneous component of the normalized direction
defined by the light source and the vertex. An alternative tech-
nique that does not depend on an ε is also possible to be employed
here [Everitt and Kilgard 2002].



Four additional considerations have to be taken into account, as
explained below.

Graphics Card Numerical Precision The light source position
passed to the shader is often an SPT node (thus exactly at a polygon
vertex), and due to precision errors, it can be incorrectly considered
by the graphics card to be inside a polygon and in such cases in-
correct results may be generated. We avoid this issue by slightly
placing the source light outside the obstacle along the bisector vec-
tor between the two adjacent edges to the vertex.

Z-Buffer Precision The proposed algorithm relies on the depth
buffer precision, which directly depends on the zNear and zFar
values. To take full advantage of the depth buffer precision we
adaptively compute the zFar value according to the maximum
depth dimension needed by the algorithm. We also appropriately set
the zNear value considering the camera point of view to correctly
render the entire scene when rendering the scene from a generic
point of view for debugging purposes.

Z-Fighting Since each cone mesh has the same slope and the
cone placement of children expansions are exactly at the parent’s
frontier, polygons belonging to different cones but with a parent-
children relationship may generate Z-fighting artifacts. To avoid
this issue we add to the children’s cone height a tiny gap. This gap
ensures a clipped cone mesh to be always rendered underneath the
parent’s clipped cone mesh. This value is also adaptively computed
since it depends on the depth buffer precision.

Cone Mesh Resolution For correct results the resolution of the
cone meshes need to be appropriately set. Adaptive resolutions are
also useful to optimize the results [Hoff et al. 1999].

4 Results

We have implemented our shaders in OpenGL 3.3 or above and
with C++ for the CPU portion. Our performance evaluations used
a GeForce 570 GTX GPU and a single Intel Core i7-2600K CPU
at 3.40 GHz. For the frame buffer object render pass we used a
32-bit RGBA render target (to store colors) and a 24-bit depth and
8-bit stencil render target (to store the depth and stencil informa-
tion respectively). The test resolutions of the render targets (FBO,
depth and stencil buffers) were set at 512x512, 1024x1024 and
2048x2048 pixels. We also varied the resolution of the cones to
512, 1024, 1598, 2048, 4196 triangles per cone.

We have evaluated 7 maps with a varying number of square obsta-
cles, and using the center point as the SPM source. We have also
tested a generic environment with complex obstacles (map 8). The
maps and their SPMs are shown in Figure 5. Table 1 summarizes
the statistics. (For additional results see accompanying video avail-
able at http://graphics.ucmerced.edu/publications.html.)

Table 1: Evaluated environments. The number of vertices in the
input polygon set is n, and nf refers to the number of triangles rep-
resenting all extruded volumes from the polygonal obstacles. Time
tpr is the environment pre-computation time, which includes the
computation of the visibility graph. Column tspt shows the compu-
tation time taken to generate the SPT in each given environment.

map name obsts n nf cones tpr (ms) tspt (ms)
1 2x2 4 16 48 17 0.12 0.03
2 4x4 16 64 192 53 0.4 0.12
3 6x6 36 144 432 109 6.4 0.28
4 8x8 64 256 768 197 3.19 0.63
5 10x10 100 400 1200 307 24.23 1.18
6 14x14 198 784 2352 577 88.97 3.55
7 20x20 400 1600 4800 1207 163.6 12.2
8 Gen. 144 1647 6012 761 60.76 3.25

Figure 4: Computation times taken to run our SPM shaders in sev-
eral environments and resolutions. The reported times are in sec-
onds. The horizontal axis in each graph represents the number of
triangles used to render each cone mesh.

In comparison to previous results [Wynters 2013], our approach
shows to be over 20 times faster, for a same number of obstacles,
map resolution and a slightly less powerful graphics card (480 com-
putational cores instead of 512 cores). Figure 4 shows the time
(in seconds) to generate the SPMs in different conditions. Each
time has been calculated after flushing the graphics card rendering
pipeline with glFinish. In normal settings this command is not nec-
essary and the rendering time for querying will be even smaller.

As in Wynters [2013], our SPM representation supports constant
time distance queries for any discrete point in the SPM, and paths
can be returned in time proportional to the number of turns along
the path. To test this we have developed a geodesic particle simula-
tion environment where particles efficiently travel along their short-
est paths to the source point. See Figure 6.

We have also developed a shader that simulates the continuous
geodesic flood-fill expansion using a color map representation. The
process replaces the techFlat shader by the geodesic flood-fill pro-
gram, which translates the geodesic distance of each pixel to a spe-
cific color value considering its shortest path to the source point.
The shader uses HSV color representation to uniformly map dis-
tances to colors and white spaces are added to highlight the bound-
aries of the propagated waves. Results can be seen in Figure 1-right
and Figure 7.

5 Conclusion and Future Work

We have introduced a novel approach to generate discrete Shortest
Path Maps from polygonal domains using GPU shader program-
ming. The proposed algorithm has shown to be over 20 times faster
than previously reported results. This improvement has allowed us
to generate more complex results, and to obtain images of SPMs
with complexity and detail not shown before in previous work. Our
results help to provide a deeper understanding of SPMs and their
applications.

We believe that many improvements to the presented shader pro-
grams can be achieved and many extensions to the proposed al-
gorithms are possible. For instance, Pixel Buffer Objects instead
of Frame Buffer Objects may result in faster non-blocking SPM
queries, and stencil-based 2D shadow projection using quads ex-
truded from visible edges instead of full 3D shadows may also gen-
erate faster results.
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Figure 5: Environments used in the reported performance evaluations. Each image shows the polygonal domain and its resulting SPM.

Figure 6: Geodesic particle simulation: each particle, randomly placed in the scene, is traveling to the source point along its shortest path.
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