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Abstract. In order to deliver information effectively, virtual human demonstra-
tors must be able to address complex spatial constraints and at the same time
replicate motion coordination patterns observed in human-human interactions.
We introduce in this paper a whole-body motion planning and synthesis frame-
work that coordinates locomotion, body positioning, action execution and gaze
behavior for generic demonstration tasks among obstacles.
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1 Introduction

Virtual humans and embodied conversational agents are promising in the realm of
human-computer interaction applications. One central goal in the area is to achieve
virtual assistants that can effectively interact, train, and assist people in a wide variety
of tasks. The need to demonstrate objects and procedures appears in many situations;
however, the underlying motion synthesis problem is complex and has not been specifi-
cally addressed before. Simple everyday demonstrations involve a series of coordinated
steps that a virtual agent needs to replicate. The agent needs to walk while avoiding
obstacles along the way, stop at an appropriate demonstration location with clear view
to the target and observer, interact with the object (e.g. point to it and deliver informa-
tion), and also maintain visual engagement with the observer. This work addresses such
harmonious multi-level orchestration of actions and behaviors (see Figure 1).

Fig. 1. Our PLACE planner synthesizes whole-body demonstrations for arbitrary targets, ob-
servers, obstacles, and visual occluders.

The proposed model was built from experiments with human subjects where par-
ticipants were asked to freely approach target objects at different positions and to de-
liver object information to observers at various locations. These experiments provided
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ground truth data for defining a coordination model that is able to orchestrate the in-
volved pieces of a demonstration task. The result is a whole-body motion planning
framework, called PLACE, that addresses the five main pieces of the problem in an
unified way:
• Placement: optimal character placement is essential for addressing target and observer
visibility, locomotion accessibility, and action execution constraints;
• Locomotion: locomotion synthesis among obstacles and towards precise placements
allows the character to position itself in order to perform a demonstration;
• Action: realistic action execution needs to address arbitrary object locations and to
avoid nearby obstacles when needed;
• Coordination: coordination is important for well transitioning from locomotion to the
upper-body demonstrative action; and
• Engagement: observer engagement is obtained with a gaze behavior that interleaves
attention to the observer and the target in order to achieve effective demonstrations.

The realism of the solutions is addressed at two levels. At the behavioral level,
placement, coordination and engagement are solved following models extracted from
experiments with human subjects. At the motion synthesis level, locomotion and ac-
tions are synthesized from collections of motion capture clips organized for efficient
synthesis and coordination. The techniques were developed such that solutions can be
computed at interactive rates in realistic environments. See Figure 2 for examples.

Contributions: The main contribution of this work is the overall definition, model-
ing and effective solution of whole-body demonstrative tasks. The proposed techniques
are the first to address the overall problem in an integrated fashion.

Fig. 2. From left to right: in the first two scenarios the computed demonstrations reasonably face
the observer, while in the last two cases a visual occluder (the house plant) leads to solutions
with non-trivial placements. The orange and blue lines respectively represent the head and the
eye gaze orientations, at the demonstration action stroke point. The resulting gaze always reaches
eye contact with the observer.

2 Related Work

Many works have focused on upper-body gesture and action modeling, including stroke-
based blending [25], action synthesis with varied spatial constraints [17, 24], motion
style control [6, 19], and search in interpolated motion graphs [20]. Our approach for
action synthesis relies on available motion interpolation techniques [9,19] but providing
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a new collision avoidance mechanism in blending space in order to successfully address
realistic scenarios with obstacles.

With respect to data-based locomotion methods, several techniques have been pro-
posed for achieving realistic and controllable locomotion synthesis [7,14–16,26]. While
several of these methods can probably be extended to address departures and arrivals
with position and orientation constraints, such an extension is not trivial. Our solution
is based on a specific organization of locomotion clips that allows for fast locomotion
synthesis ensuring such constraints. The locomotion planning problem becomes even
more challenging when it has to be coordinated with an upper-body action. Previous
work [5, 22] has addressed the combination of arm planning (reaching or grasping) on
top of locomotion, however without a coordination model.

When it comes to whole-body motion synthesis that involves the scheduling and
synchronization of upper- and lower-body, methods have been developed for splicing
upper-body actions from one motion to another [2, 8], and more recently object manip-
ulations have been coordinated with locomotion [1]. However these methods have not
addressed a coordination model for transitioning from locomotion into a demonstration
action, a specific situation that involves different types of constraints.

The fact that demonstrations have to be performed with respect to an observer also
distinguishes our overall motion synthesis problem from previous work. Addressing
an observer is important for achieving realistic solutions and as well effective inter-
actions with virtual humans. For instance, it has been shown that visual engagement
improves the amount of information memorized by an audience observing robotic sto-
rytellers [18] and narrative virtual agents [3]. Although previous work has focused on
modeling gaze behavior in great detail [4, 27], little attention has been given to inte-
gration with full-body motion synthesis. In computer animation simple solutions have
been employed [25,28] based on pre-defined points of interest, however not associating
with a complete set of events observed from human subjects during action execution
and locomotion. With respect to modeling placement for action execution, Scheflen
and Ashcraft [21] present a pioneering work introducing the concept of territoriality in
human-human interactions, but unfortunately without computational models.

In conclusion, the proposed PLACE planner addresses the problem of whole-body
demonstration at multiple levels and uniquely integrates behavioral models from human
subjects with realistic data-based motion synthesis.

3 Modeling Demonstrative Tasks

We have modeled the overall problem of synthesizing humanlike demonstrations with
the help of experiments with human subjects. Our setup follows the approach in [10],
but extending it for extracting complete motion models for demonstration tasks. Four
human participants were recruited to perform a variety of pointing tasks with full-body
motion capture. Six small target objects Ti, i ∈ {1, . . . , 6}, were placed on a horizontal
coarse mesh grid and participants were asked to perform demonstration actions towards
each Ti for a human observer Oj standing at five different positions around the targets
(j ∈ {1, . . . , 5}). Each action consisted of pointing and delivering a short information
about an object. Each configuration {Ti, Oj} represented one trial per participant and
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generated one motion. A total of 30 distinct motions were generated per participant,
each motion consisting of a complete pointing action with the associated locomotion
and gaze behavior. The gaze typically moved several times between Ti and Oj . Each
participant started from about 4 feet away from the mesh grid before walking towards
the grid to point and describe Ti (see Figure 3). The sequence of target selection was
random and the targets were of similar size in order to reduce possible side effects
related to their size [23].

Fig. 3. Left: experiment setup. Right: illustration of one reconstructed motion. The observer
location is represented with the green character and the maximum head orientation performed in
the direction of the observer is shown with the orange plane.

The full-body capture data was annotated manually with an annotation tool specif-
ically developed to mark and extract the parameters and timings of all relevant events
in each trial. One of the most important behaviors observed was the chosen positioning
that each participant used to perform the pointing action. The chosen position ensured
that the target and the observer were visible, and that the head rotation needed for eye
contact with the observer was feasible. The position also ensured a successful execu-
tion of the action and with a fluid transition from locomotion. We now derive a generic
placement model based on the observed data.

For each trial in the collected motion data we extracted the corresponding target po-
sition pt, the position of the observer po, and the demonstrator position pd. Position pd

is the position used to perform the demonstration action, and is defined as the position
when the locomotion is detected to completely stop, since there is a period when the
action execution overlaps with the locomotion. Figure 4 plots locomotion trajectories
and their corresponding final demonstration positions. The 5 distinct colors represent
the 5 different observer locations. Each color appears 6 times, one for each target Ti. It
is possible to observe that the demonstration positions do not show an obvious structure
in global coordinates.

A local 2D coordinate system with origin at pt is then used to derive our model.
The coordinate system is illustrated with the XZ frame in Figure 5. The XZ frame can
have arbitrary orientation, however it is more intuitive when the Z axis is orthogonal
to the table border closest to the target. We can now use angles to locally encode all
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Fig. 4. Locomotion trajectories for each participant (left) and their ending positions in a closer
look (right). Motions with the same color are with respect to a same observer.

relevant placement parameters with respect to the target. The used local angles will not
model the proximity of the demonstrator to the target, since this is a parameter that
is action-dependent and we leave it as a free parameter in our model. For example a
pointing motion can be executed with arbitrary distance to the target while this is not
the case in a manipulation task. The angles considered by our model are the following
(see Figure 5): the observer position α with respect to Z, the demonstrator position β
with respect to -Z, the demonstrator’s body orientation θ with respect to Z, and the
maximum head rotation φ (in respect to Z) performed towards the observer.









po X

Z

Z

pt

pd

Fig. 5. Local coordinate system of the place-
ment model. Angle α encodes the observer lo-
cation, β the demonstrator location, θ the body
orientation at action start, and φ encodes the
maximum head rotation towards the observer.

The approach of expressing place-
ment locally with respect to the action
target correlates with the axis concept
used for describing interaction connec-
tions [21]. By expressing the collected pa-
rameters with respect to our local coor-
dinate system, the plots of their values
nicely fit into clusters with good struc-
ture. This is shown in Figure 6. Since the
proposed placement model shows good
structure, we then performed non-linear
regressions in order to be able to estimate
β, θ and φ as a function of an arbitrary
input value for α. After smoothing the
raw measurements with a least-squares
Savitzky-Golay filter, quadratic and cubic
polynomial functions were fitted for β, θ
and φ (see Appendix for details).

The overall demonstration problem is
then modeled as follows: given an upper-
body demonstrative action A to be performed, the corresponding target object position
pt, and the position of the observer po, the goal of the PLACE planner is to synthe-
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Fig. 6. Parameters of the placement model fitted with non-linear regression on filtered data points.
The horizontal axis is the α value and the vertical axis, from top to bottom, represents β, θ, and
φ respectively. Values are in degrees.

size a full-body motion for approaching the target and performing A with respect to
pt and for the observer located at po. The planner solves the problem with the fol-
lowing steps. First, a suitable demonstration position pd and body orientation qd are
determined by using the placement model and taking into account visual occluders, ac-
tion feasibility and locomotion accessibility. Then, a locomotion sequence L(pd,qd)
is synthesized for the character to walk from its current position to the demonstration
placement (pd,qd). Action A(pt) is then synthesized and coordinated with the loco-
motion L. Finally, the head and eyes are animated to replicate the same gaze behavior
patterns observed in the collected motions. These steps represent the five main compo-
nents of PLACE and they are explained in the following sections.

4 Placement

Given the demonstrative action A, the target object position pt, and the observer posi-
tion po, the placement module will determine the optimal body position and orientation
(pd,qd) for performingA. First, the action synthesis module (described in Section 6) is
queried for its preferred distance dpref to executeA(pt). This distance denotes the pre-
ferred Euclidean distance between pt and pd so that the character will be more likely to
succeed in performing the action. The computation of dpref is action-dependent, it may
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be automatically selected according to reachability constraints if the demonstration has
to achieve object contact, or in other cases (like in pointing), it can be a user-specified
parameter fixed or dependent on features of the environment (like the size of the target).

The local reference frame of our placement model is then placed with origin at pt

and with the Z axis set to be orthogonal to the closest edge of the supporting table. At
this point our local placement model can be applied in order to estimate a first candidate
placement (p0

d,q
0
d), where p0

d is obtained by combining the estimated angle β with the
preferred distance dpref , and q0

d represents the orientation estimated by θ in global
coordinates. If pt lies between po and p0

d, the Z axis of the local placement coordinate
frame is re-oriented towards po and the initial placement (p0

d,q
0
d) is re-computed.

This will make the initial placement to directly face the observer, a desired property in
a placement.

Given a candidate placement, the placement is considered valid if: it does not lead
to collisions with the environment, if A(po) can be successfully executed from it, and
if there is a collision-free path with enough clearance for the character to reach it. If
a candidate placement is not valid due a collision, it is tested again a few times with
slightly perturbed values and dpref distances, thus increasing the chances of finding
valid placements by local adjustment of the generated positions. Several placements
may be valid and therefore we will search for the optimal one with respect to visibility,
head rotation comfort, and distance to the target.

Fig. 7. Valid placements around the target are
identified and ranked for selection.

Starting from (p0
d,q

0
d) we determine

several valid placements (pk
d,q

k
d) by ad-

justing the Z axis of the local model to
new orientations around pt, for example
by rotation increments of five degrees in
both directions (see Figure 7). For each
new orientation, the respective estimated
placement is computed and tested for va-
lidity (adjusted if needed) and stored if
valid. The search for valid placements
may be set to be exhaustive with respect
to the used rotation increment or to stop
after a certain number of valid samples is
found. The result of this phase is a set of
K valid placements (pk

d,q
k
d), k ∈ {1, . . . ,K}. We then sort the placements in this set

with respect to the following ranking cost function fc:

fc = evis ∗ wv + eneck ∗ wn + eaction ∗ wa,

where evis is a measure of how occluded the observer is from the placement, eneck is
the amount of neck rotation required for reaching eye contact with the observer, eaction
is the absolute difference between dpref and the actual distance from pk

d to pt, and the
scalar weights are constants used to adjust the relative contributions of each term.

The weights are adjusted such that the contribution of evis is significant, since un-
comfortable (but feasible) placements are preferable to placements with bad visibility.
The house plant in the scenarios of Figure 2 is an example of an object modeled with
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partial occlusion set to evis = 50%. Candidate placements with zero visibility are dis-
carded, as shown in Figure 7. The result is a sorted list of valid placements that can be
used for executing A. The placement with minimum fc is selected as the target demon-
stration location (pd,qd) to be used. Since this placement has been already checked
for validity, it can be safely passed to the motion synthesis modules described in the
next sections. In case simplified validity tests are employed, the motion synthesis may
happen to not be successful at some later stage, in which case the next placement in the
list can be used as the next alternative.

5 Locomotion Synthesis

The locomotion synthesis module has to be able to address three main requirements:
• to be able to quickly check for locomotion accessibility to candidate placements when
queried by the body placement module (Section 4), in order to allow for quick rejection
of placements that offer no accessibility;
• to be able to synthesize motions that can navigate through narrow passages and with
precise departure and arrival positions and orientations; and
• to produce purposeful motions resembling the ones observed in our experiments with
human subjects, which consistently had sharp turnings (with small turning radius) at
the departure and arrival locomotion phases.

With respect to the first requirement, accessibility queries are computed with an effi-
cient algorithm for computing paths [12,13], which is used to determine path feasibility
with clearance under a few milliseconds of computation in our scenarios. With respect
to the second and third requirements, we adopt a path following approach in order to be
able to safely navigate through narrow passages of the environment.

In order to address precise departure and arrival placements, and to achieve the
observed behavior of sharp turns during path following, we propose an optimized lo-
comotion synthesis method based on a specific organization of locomotion clips from
motion capture. Three specific types of locomotion sequences were collected with a
full-body motion capture system: departure motions, arrival motions, and walk cycles.
Each motion is then parameterized to cover a small area around its original trajectory,
and to depart or arrive with a parameterized orientation at the first or final frame. As
a result we obtain parameterized motions that cover all possible required initial and fi-
nal orientations, and that concatenate into walk cycles during the path following phase.
Additional details on the locomotion module are omitted due lack of space, but will be
made available from the website of the authors. Figure 8 illustrates one example.

6 Action Synthesis

The synthesis of the demonstrative action is performed with blending operations in a
cluster of example motions. Given the target position pt to be addressed by the end-
effector at the stroke point of the action, blending weights are determined by inverse
blending optimization [9] in order to address the target precisely. See Figure 9.

Collision avoidance has shown to be important. It not only increases the ability to
find solutions in cluttered environments but it also improves the number of successful
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Fig. 8. Illustration of one particular locomotion sequence planned. From left to right: the depar-
ture and arrival clips nearby the path to be followed, skeleton trails illustrating the whole motion
obtained, and two snapshots of the final result.

placements to be considered for action execution. We have developed a collision avoid-
ance method that operates on the blending space of the example motions defining an
action. Blending space operations have been employed before in motion planning [11],
but here we develop a faster collision avoidance procedure that does not require expen-
sive planning around the obstacles. We create repulsive force fields in 3D and compute
a scalar potential of collision Pc that encodes the potential of collision between the
agent’s end-effector E and the obstacles. Instead of computing the force field in dis-
cretized 2D cells [29], we approximate the bounding volume of the nearby obstacles
with small spheres Si (see Figure 9-center), so that Pc = exp(−

∑
distance(E,Si)).

Let pt be the target object to be addressed by action A. First, blending weights wt

that generate action A(pt) are computed by inverse blending. The produced motion
can be re-written as a sequence of frames Fi(wi), i ∈ {1, . . . , n}, and initialized with
wi = wt, ∀i ∈ {1, . . . , n}. Next, we make a single pass from F1 to Fn and adjust
intermediate frames Fj at a given discretization resolution. The resolution is relative
to the distance covered by the end-effector. Given a frame Fj(wj) being visited, if its
corresponding posture collides or is detected to be too close to an object, wj is adjusted
by inverse blending in order to minimize Pc at Fj , essentially shifting Fj away from the
obstacles. Collisions are checked intermittently at mesh level and the process moves on
to Fj+1 when Fj becomes collision-free. Each time a frame is adjusted, the weights of
the nearby frames (according to a smoothness window) are updated so that the overall
sequence of weights is smooth, producing a new final motion A(pt) that smoothly
avoids the nearby obstacles.

The method typically solves action synthesis under 300 milliseconds, with most
computation time spent on mesh collision checking. The approach is able to control
how much deformation is allowed, thus controlling the balance between action motion
quality, action adaptation to obstacles, and body placement search time.

7 Locomotion-Action Coordination

The locomotion transition into the action requires special attention in order to generate
realistic results. We start by using a transition window of 0.58 seconds that is the av-
erage window observed from our studies with human subjects. The window tells how
early, before finishing the locomotion, the action should start to be executed. The ac-
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Fig. 9. Left: trajectories of one pointing database with 10 blended motions for one solution
marked in red. Center: spheres are used to approximate the nearby objects and to compute Pc.
Right: If intermediate frames collide their blending weights are adjusted to remove the collision.

tion will start gradually taking control over the upper-body and will achieve full control
when the locomotion stops. An important coordination problem that we address here is
to ensure that the resulting arm swing pattern during the transition remains realistic.

Let Send
l be the arm swing at the end of the locomotion sequence, and Sa be the

arm swing direction of the action. In our examples the right arm is used by the ac-
tion but the presented analysis can be equally employed to both arms. Two main cases
may happen: 1) the arm swings can be codirectional, in which case a natural transition
is automatically achieved, or 2) the arm swings can be contradirectional, what would
cause a sudden change in the arm swing direction during the transition window. Sudden
changes in the arm swing were never observed in our experiments with human subjects,
who were very good at achieving coherent final steps with clear final arm swings. We
therefore fix contradirectional cases in two possible ways. If the final locomotion swing
Send
l slightly overlaps into the action arm swing Sa, it is then shortened to match Sa

and without having it to return to its target rest position. This is accomplished by re-
peating the final frames of Send

l , skipping the same amount of initial frames of Sa, then
smoothly blending into the latter. If however the final locomotion swing shows a sig-
nificant overlap, Send

l is then dropped and the previous swing cycle Sprev
l is extended

to override Send
l , before blending into Sa. We examine the swing velocities generated

from both and the one showing better consistency is applied. Figure 10 illustrates the
process.

Fig. 10. Overlapping transition of the final arm swing of the locomotion Send
l towards the arm

swing direction generated by the action Sa. Codirectional cases can be directly blended (1),
however contradirectional cases (2) have to be adjusted either by shortening the final locomotion
swing (3) or by overriding it with the previous swing (4).
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Fig. 11. Synchronization between gaze and motion events.

The final step of PLACE includes a gaze model that follows the observed behav-
ior in our experiments with human subjects. We observed that each demonstration trial
consisted of a series of largely consistent gaze and gaze-related events where partici-
pants first gazed at the floor during the locomotion, and then gazed at the target and
the observer during the upper-body action. Our gaze model generates gaze events that
follow these observed patterns. We use a temporal delay ∆t between the action stroke
point and the start of the object gaze event that is correlated with the agent’s head ro-
tation angle φ. When the observer is not in the center of the agent’s field of view, the
gaze towards the observer starts before the action reaches the stroke point, resulting in a
negative ∆t. The gaze behavior also incorporates gaze durations that decline over time
across repeated demonstrations, an observed behavior in our experiments with human
subjects. Figure 11 illustrates the main events of the gaze model.

9 Results and Discussion

Results are presented in Figures 1, 2, 12, 13 and 14. Additional results are presented
in the accompanying video to this paper, which is available at http://graphics.
ucmerced.edu. The planner is capable of synthesizing entire sequences in a range
from 100 to 400 milliseconds, depending on the complexity of the environment and the
collision avoidance settings.

Our results demonstrate that body placements are always well chosen and lead to
positions clearly well addressing all involved constraints. The coordination of the swing
arm trajectories has also shown to always produce good results. In terms of limitations,
our planner leaves out facial expressions and other behaviors that are specific to the
context of the scenario being simulated. Our model was also only designed to han-
dle demonstrations for a single observer, although we believe that multiple observers
can be easily incorporated if behavioral data exploring relevant possible configura-
tions is obtained. The collected motion capture actions used in our blending procedures
are available from the following project website: http://graphics.ucmerced.
edu/software/invbld/.

http://graphics.ucmerced.edu
http://graphics.ucmerced.edu
http://graphics.ucmerced.edu/software/invbld/
http://graphics.ucmerced.edu/software/invbld/
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Fig. 12. Example of a solution produced by PLACE. The top-left image shows the planning
scenario and the solution placement for execution of the demonstration. The following sequence
of snapshots shows the arrival locomotion seamlessly transitioning into the demonstration action
pointing at the fax machine with coordinated gaze towards the observer.

Fig. 13. Short-range solution suitable for pointing and describing the blue bottle.

10 Conclusion

We have introduced a new behavioral and motor planning model for solving demon-
strative tasks. Our proposed PLACE planner uniquely explores body placement trade-
offs involving visibility constraints, action feasibility, and locomotion accessibility. The
proposed techniques can be computed at interactive rates and are suitable to several ap-
plications relying on interactive virtual humans as virtual trainers.

Acknowledgments This work was partially supported by NSF Award IIS-0915665.

Appendix

Polynomial (cubic and quadratic) functions were chosen over other types of fitting
functions such as Gaussian and Fourier for better extrapolations when α > 150 and



Planning Motions for Virtual Demonstrators 13

Fig. 14. Action synthesis corrected by force fields in blending space. The left three images show
an action that originally produced collisions with obstacles; and the following three images show
a collision avoidance solution (along the blue trajectory) for removing the collisions. Without the
collision avoidance the action would not be feasible and a new placement would be necessary.

α < -150. Details are given below.

• β = f(α) = p1α
3 + p2α

2 + p3α+ p4 • θ = f(α) = p1α
2 + p2α+ p3

Coefficients (with 95% confidence bounds): Coefficients (with 95% confidence bounds):
p1 = 2.392E−6(−6.74E−6, 1.152E−5), p1 = 0.0006228(0.000262, 0.0009837),
p2 = 0.0003056(−0.0004444, 0.001056), p2 = 0.3267(0.2991, 0.3542),
p3 = 0.1145(−0.04067, 0.2697), p3 = 11.29(6.564, 16.02).
p4 = −6.062(−15.42, 3.294). Goodness of fit: SSE = 1441, R2 = 0.9635.
Goodness of fit: SSE = 5386, R2 = 0.6156, AdjustedR2 = 0.9608, RMSE = 7.304.
AdjustedR2 = 0.5713, RMSE = 14.39.
• φ = f(α) = p1α

2 + p2α+ p3
Coefficients (with 95% confidence bounds):
p1 = 0.0006673(0.0001145, 0.00122),
p2 = 0.6736(0.6315, 0.7158),
p3 = 2.073(−5.167, 9.312).
Goodness of fit: SSE : 3381, R2 : 0.9785,
AdjustedR2 : 0.9769, RMSE : 11.19.
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