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Abstract. We propose in this paper new techniques for correction and
parameterization of motion capture sequences containing upper-body ex-
ercises for physical therapy. By relying on motion capture sequences we
allow therapists to easily record new patient-customized exercises intu-
itively by direct demonstration. The proposed correction and parameter-
ization techniques allow the modification of recorded sequences in order
to 1) correct and modify properties such as alignments and constraints,
2) customize prescribed exercises by modifying parameterized properties
such as speed, wait times and exercise amplitudes, and 3) to achieve
real-time adaptation by monitoring user performances and updating the
parameters of each exercise for improving the therapy delivery. The pro-
posed techniques allow autonomous virtual therapists to improve the
whole therapy process, from exercise definition to delivery.
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1 Introduction

The motivation of this work is to improve the usability of virtual humans serving
as virtual therapists autonomously delivering physical therapy exercises to pa-
tients. We focus on the problem of automatic correction and parameterization of
motion capture sequences defining upper-body exercises. Customized exercises
per patient can be intuitively recorded from therapists by direct demonstration
using the Kinect sensor or any other suitable motion capture device. Given a
captured exercise, we propose correction and parameterization techniques that
allow 1) fine-tuning of key characteristics of the exercise such as alignments and
constraints, 2) customization of the exercises by modifying parameterized prop-
erties such as speed, wait times and amplitudes, and 3) real-time adaptation
by monitoring user performances and updating exercise parameters in order to
improve therapy delivery.

The presented techniques greatly facilitate the process of defining exercises
by demonstration, allowing the customization of exercises to specific patients.
We focus on providing parameterization while at the same time reproducing, to
the desired degree, any small imperfections that are captured in the motion in
order to maintain the humanlike behavior of the virtual therapist during therapy
delivery. As a result the proposed methods produce realistic continuous motions
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Fig. 1. Illustration of the system being used in practice.

that can adapt to user responses in order to improve the overall experience of
performing the exercises.

2 Related Work

The use of new technologies to overcome the limitations of standard approaches
to physiotherapy is becoming increasingly popular. A typical approach in some
applications is to track user movements while a virtual character displays the
exercises to be executed. The representations of the user and virtual trainer are
usually displayed side by side or superimposed to display motion differences,
improving the learning process and the understanding of the movements [5, 16].

Automated systems often allow parameterization capabilities. For instance,
Lange et al. [7] describe core elements that a VR-based intervention should
address, indicating that clinicians and therapists have critical roles to play and
VR systems are tools that must reflect their decisions in terms of a person’s
ability to interact with a system, types of tasks, rates of progression, etc [8, 4].

The key benefit of adopting a programming by demonstration approach is to
allow the intuitive definition of new exercises as needed. The overall approach has
been adopted in many areas [2, 14, 10], and it involves the need to automatically
process captured motions according to the goals of the system.

Velloso et al. [15] propose a system that extracts a movement model from a
demonstrated motion to then provide high-level feedback during delivery, how-
ever without motion adaptation to the user performances. The YouMove sys-
tem [1] trains the user through a series of stages while providing guidance, how-
ever also not incorporating motion adaptation to the user performances.

We propose new motion processing approaches to achieve adaptive motions
that are both controllable and realistic. While motion blending techniques with
motion capture data [12, 6, 11, 2] provide powerful interpolation-based approaches
for parameterizing motions, they require the definition of several motion exam-
ples in order to achieve parameterization. In contrast our proposed techniques
are simple and are designed to provide parameterization of a given single exercise
motion. We rely both on structural knowledge of exercises and on generic con-
straint detection techniques, such as detection of fixed points [9, 13] and motion
processing with Principal Component Analysis (PCA) [3].
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3 Detection of Constraints and Parameterizations

Given a new exercise motion demonstrated to the system, the system will analyze
the motion and detect the parameterizations that can be employed. An input
motion is represented as a collection of frames Mi, i ∈ {1, . . . , n}, where each
frame Mi is a vector containing the position and the joint angles that define one
posture of the character in time.

3.1 Detection of Geometrical Constraints

Our constraint detection mechanism is designed for three specific purposes: to
inform motion parameterization, to help correcting artifacts and noise in the
motions, and to provide metrics for quantifying motion compliance. The metrics
are used to provide visual feedback to the user, to inform the correctness of per-
formed motions, to make decisions during the real-time adaptation mechanism,
and to achieve an overall user performance score for each session.

Appropriate constraints are not constraints which are to be absolutely fol-
lowed. Recorded motions may have unintended movements and imperfections
introduced by the capture system. Constraints must be detected despite these
fluctuations, and should be softly enforced so the motion can be made to look
correct and also natural.

We analyze the position in space of a specific joint with respect to a frame of
reference F which can be placed at any ancestor joint in the skeleton structure.
The detection framework can accommodate any desired type of constraint but
in this paper we focus on two types of constraints: Point and Planar.

Fig. 2. Point Constraint. The yellow sphere repre-
sents the detection of a point constraint at the elbow
joint. From left to right: the wrist motion trajectory
(depicted in green) is corrected to the mean point
with 0%, 50%, and 100% correction.

• A Point Constraint
(Figure 2) describes a child
joint that is static relative
to its parent. Let’s Pi, i ∈
{l, . . . , k} be the cloud of
points formed by a joint tra-
jectory with respect to a lo-
cal frame F generated by re-
sampling linearly the motion
frames with constant frame
rate. The standard deviation
of the cloud of points σ is
calculated and subsequently
checked against a specific
threshold α. When the condi-
tion is met the current joint
is marked as a point constraint and it is represented by the specific point located
at the mean µ. When a point constraint is detected the ancestor(s) can be then
adjusted to enforce the constraint.
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Fig. 3. Plane Constraint. The blue axis is the normal
direction of the detected plane constraint affecting the
shoulder joint. From left to right: correction level (from
0% to 100%) where the elbow trajectory (green trajecto-
ries) is gradually collapsed into a plane.

• A Plane Constraint
(Figure 3) detects if a
joint moves approximately
within a plane. Similarly
to the point constraint
detection a point cloud
is first generated. Then,
PCA is applied to the
set of points to determine
a proper orthogonal de-
composition considering
the resulting Eigenspace
from the covariance. A
planar surface is then re-
trieved considering the two Eigenvectors with higher Eigenvalue λ (the magni-
tude of λ is used to validate the plane). The average distance of the points from
this plane is then checked against a threshold β to determine if a plane constraint
is appropriate for the given joint.

3.2 Geometrical Constraint Alignment

Let i be the index of the frame currently evaluated. Let pi be the position in
space of the current joint and qi be a quaternion representing the current local
orientation. A point constraint is defined considering the orientation qm in the
local orientation frame that represents the vector defined by the local point
constraint. A point constraint is enforced through spherical linear interpolation
between qi and qm. Figure 2 shows the trajectories generated by the wrist joint
collapsing into a point constraint.

To apply the plane constraint, we identify the orientation defined by the pro-
jection of each point pi to the plane discovered during the detection phase. The
plane constraint is then enforced, similarly to the point constraint, by interpo-
lating the equivalent orientations. Figure 3 shows the trajectories generated by
the elbow joint aligning into a plane constraint.

3.3 Detection of Exercise Parameterization

Consider a typical shoulder flexion exercise where the arm is raised until it
reaches the vertical position or more (initial phase); subsequently the arm is
hold for a few seconds (hold phase) and then it relaxes back to a rest position
(return phase). This is the type of exercise that we seek to parameterize.

The analysis procedure makes the following assumptions: a) each motion M
represents one cycle of a cyclic arm exercise; b) the first frame of a motion
contains a posture representing the starting point of the exercise; c) the exercise
will have distinct phases: the initial phase (Minit) is when the arm moves from
the initial posture towards a posture of maximum exercise amplitude, then the
exercise may or not have a hold phase (Mhold) but at some point the exercise
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must enter the return phase (Mend), where the exercise returns to a posture
similar to the starting posture. In addition, if the motion contains a hold phase at
the point of maximum amplitude, it will mean that an approximately static pose
of some duration (the hold phase duration) exists at the maximum amplitude
point. We also consider an optional 4th phase that can be added to any exercise,
the wait phase (Mwait), which is an optional period of time where the character
just waits in its rest pose before performing a new repetition of the exercise.
Figure 4 illustrates a typical exercise that fits our assumptions.

Fig. 4. Example of a typical exercise captured from a therapist in one of our tests
with the system. The shown trajectory is the trajectory of the right wrist joint along
the entire motion. The initial phase happens between t=0s and t=3s. Then, between
t=3s and t=4.85s there is a hold phase at maximum amplitude where the therapist is
static (but small posture variations are always noticeable). Then, between t=4.85s and
t=7.55s we can observe the return phase.

The analysis if the exercise can be parameterized has two main steps: first
the arm to be parameterized is detected; and then the two motion apices are
detected. The apices, or the points of maximum amplitude, are the intersection
points between the initial and return phases with the hold phase (frames t = 3s
and t = 4.85 in Figure 4). These points will be a single apex point if the motion
has no hold phase in it. If the phases above are executed successfully the input
motion is segmented in initial, return and an optional hold phase, and the motion
can be parameterized.

In order to detect which arm to parameterize we extract the global positions
of the left and right wrists along their trajectories. Let Li and Ri respectively
denote these positions. Since our focus is on arm exercises the wrist represents
an obvious distal joint of the arm kinematic chain to use in our parameteri-
zation analysis algorithm. For each wrist trajectory L and R we compute the
3D bounding box of the 3D trajectory. The bounding box dimension is used to
determine which arm is moving and if the motion can be parameterized. As a
result of this process, the analysis will return one of the following four options: a)
the motion cannot be parameterized; b) the motion will be parameterized by the
left/right arm; or d) the motion will be parameterized by both arms (targeting
symmetrical exercises).
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4 Exercise Parameterization

If the motion can be parameterized and its type is determined, we then search
the motion for the points of maximum amplitude. To detect one apex point we
search for a frame that indicates a sharp turn in trajectory. Since the motion
may or not contain a hold phase, we perform the search in two steps: a forward
search starting from M1, and a backward search starting from Mn.

Let i be the index of the current frame being evaluated (Mi). Let T represent
the trajectory of the left or right wrist joint, that is, Ti will be Ri or Li (the
trajectory is first smoothed through moving mean to reduce sensor noise). In
order to determine if Mi represents an apex point we perform the following
steps. We discard the initial points until the distance between two consecutive
points becomes greater than a specific threshold dt (a threshold of 5cm worked
well in practice). We first compute the incoming and outgoing direction vectors
with respect to Ti, respectively: a = Ti − Ti−1, and b = Ti+1 − Ti. If a or b
is a null vector, that means we are in a stationary pose and we therefore skip
frame Mi and no apex is detected at position i. Otherwise, the angle α between
vectors a and b is computed and used to determine if there is a sharp change in
direction at position i. If α is greater than a threshold angle, frame i is considered
a probable apex point, otherwise we skip and proceed with the search. We are
using a threshold of 75 degrees and this value has worked well in all our examples
with clear detections achieved. To mark an apex to be definitive we consider the
distance between the following k frames to be less than dt.

The test described above is first employed for finding the first apex point by
searching forward all frames (starting from the first frame). The first apex found
is called Apex 1 and its frame index is denoted as a1. If no apex is found the
motion cannot be parameterized. If Apex 1 is successfully found, then the search
is employed backwards starting from the last frame, however not allowing passing
beyond Apex 1. The second apex found is called Apex 2 (a2). Note that Apex 2
may be the same as Apex 1, in which case no holding phase is present in the input
motion. After the described analysis, the main three portions of the motion have
been detected: a) the initial phase is defined by frames {1, 2, . . . , a1} (motion
segment Minit); b) the hold phase is defined by frames {a1, a1 + 1, . . . , a2},
if a2 > a1, and nonexistent otherwise; and c) the return phase is defined by
frames {a2, a2 + 1, . . . , n} (motion segment Mret). Once an input motion M is
successfully segmented, it can then be parameterized.

Amplitude and Hold Phase Parameterization We parameterize ampli-
tude in terms of a percentage of the wrist trajectory: 100% means that the full
amplitude observed in the input motion M is to be preserved, if 80% is given
then the produced parameterized motion should go into hold or return phase
when 80% of the original amplitude is reached, and so on. Let h be the time
duration in seconds of the desired hold duration. When the target amplitude
is reached, the posture at the target amplitude is maintained for the given du-
ration h of the desired hold phase. When the hold phase ends, the posture is
blended into the return motion Mret at the current amplitude point towards
the final frame of Mret. See Figure 5. The described operations are enough to
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Fig. 5. The red trajectory shows the initial phase Minit. The blue trajectory shows
the return phase Mret. The input motion is the same as Figure 4. (a) The full (100%)
amplitude of the input motion is shown by the trajectories. Two black crosses at the
end of the trajectories (in almost identical positions) mark the positions of Apex 1
and Apex 2. (b) The two black crosses now mark the maximum amplitude points in
the initial and return trajectories at 75% amplitude. (c,d) In this frontal view it is
possible to notice that the postures at 75% amplitude in the initial and return phases
are different. The hold phase will start by holding the posture shown in (c), and when
the hold phase is over, we blend into the return motion at the posture shown in (d) in
order to produce a smooth transition into the return phase. (e,f) Lateral view.

achieve a continuous parameterized motion, however two undesired effects may
happen: a noticeable abrupt stop of Minit or an unnatural start of Mret, because
the parameterization may suddenly blend motions to transition at points with
some significant velocity. To correct this we re-time the segments so that motion
phases always exhibit ease-in or ease-out profiles.

Behavior During Hold and Wait Phases In order to improve the realism,
we add a small oscillatory spine movement mimicking a breathing motion, which
is applied to spine joints during the hold and wait phases. One particular problem
that is addressed here is to produce an oscillatory motion that ends with no
contribution to the original pose at the end of the oscillation period. This is
needed so that, after the oscillation period, the motion can naturally continue
towards its next phase and without additional blending operations. We thus have
to produce oscillations of controlled amplitude and period. This is accomplished
with the following function: f(t) = d sin(tπ/d), if d < 1, and sin(tπ/(d/floor(d)))
otherwise; where d > 0 is the duration of the oscillation period, which in our
case will be the duration of the hold or wait periods.

At the beginning of a hold or wait phase we save the joint angles of the
spine in a vector s, and then apply to the spine joints the values of s + cf(t),
where t ∈ [0, d], and c is an amplitude constant. We obtained good behavior with
c = 0.007, and only operating on one degree of freedom of two spine joints: one
near the root of the character hierarchy, and one about the center of the torso.
The used degree of freedom is the one that produces rotations on the sagittal
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plane of the character. The achieved breathing behavior can be observed in the
video accompanying this paper.

Overall Parameterization The described procedures allow us to parame-
terize an input motion M with respect to up to four parameters: amplitude a
(in percentage), hold time h (in seconds), wait time w (in seconds), and speed
s (as a multiplier to the original time parameterization). Given a set of param-
eters (a, h, w, s), the input motion can be prepared for parameterization very
efficiently and then, during execution of the parameterized motion, only trivial
blending operations are performed in real-time.

5 Real-Time Adaptation

When the adaptation mechanism is enabled the system collects information from
the patient’s performance in real-time and adapts the current exercise in its next
repetition. In addition, visual feedback is also provided: arrows showing direction
of correction for improving motion compliance, constraint violation feedback and
also an overall performance score with explanatory text (see Figure 6).

Fig. 6. The red character displays the user’s motion and the blue one the target exer-
cise. Left: no violated constraints. Center: user is reminded to correct the elbow. Right:
arrows show direction of correction to improve compliance.

Four types of adaptation mechanisms are provided:
• Amplitude Adaptation The range can vary from 75% to 100% of the

target amplitude. The system tracks the distance between the patient’s active
end-effector and the apex at the target amplitude position. If the minimum
distance is larger than the amplitude compliance parameter specified by the
therapist, the next exercise execution will have the target amplitude lowered
to become within the compliance range. If in a subsequent repetition the user
reaches the current (reduced) target amplitude, then the next target amplitude
will be increased towards the original target amplitude.
• Hold Time The hold phase adaptation is designed to adapt the time at

hold stance to improve resistance, usually in a posture that becomes difficult to
maintain over time. The maximum distance between the target hold point and
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the performed end-effector position is computed. If above a threshold, the patient
is having difficulty in maintaining the posture and the next exercise repetition
will have a shorter hold phase duration. If in a subsequent repetition the patient
is able to well maintain the hold posture, then the hold duration is gradually
increased back to its previous value.
• Speed Execution During patient monitoring, the active position of the

patient’s end-effector is tracked and its distance to the demonstrated exercise
end-effector is computed for every frame. If the average distance computed across
the entire exercise is above a given trajecory compliance threshold (see Figure 7),
the next exercise execution speed is decreased. If in a subsequent repetition the
difference is under the threshold the speed will be gradually adjusted back.
• Wait-Time Between Exercises The initial wait time specified by the

therapist is decreased or increased in order to allow the patient to have an appro-
priate time to rest between exercises. A performance metric based on averaging
the trajectory compliance and the hold phase completion metrics is used to de-
termine how well the patient is being able to follow an exercise. If the user is well
performing the exercises a shorter wait time is selected, otherwise a longer wait
time is preferred. In this way wait times are related to the experienced difficulty
in each exercise, and they adapt to specific individuals and progress rates.

Fig. 7. From left to right: high, medium and low trajectory compliance.

6 Results and Conclusions

The described algorithms have been tested for constraint detection and motion
parameterization with a variety of arm exercises and different users. The ob-
tained results were always as expected, within reasonable compliance with the
defined exercise structure. All presented methods are very efficient for real-time
computation. While this paper focuses on motion processing techniques, the de-
scribed adaptation strategies have been specified from many discussions with
therapists according to their needs while experimenting with our prototype sys-
tem. Many variations and adjustments are possible, a final version will only be
determined after the system and its several features are evaluated in practice.
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A supplemental video is available to demonstrate the obtained results. In sum-
mary, we present contributions on new motion processing approaches for single
motion parameterization, and as well on novel strategies for motion adaptation
to users during real-time exercise delivery.
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