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Abstract— This paper addresses the problem of group path
planning while maintaining group coherence and persistence.
Group coherence ensures that a group minimizes both longitu-
dinal and lateral dispersion, and is achieved with the introduc-
tion of a deformation penalty to the cost formulation. When
the deformation penalty is significantly high, a group may split
and later merge. Group persistence is modeled by introducing
split and merge actions in the action space, and adding a split
penalty to the cost measure. We formulate the problem domain
(state, action space, and cost formulation), present our path
planning approach for coherent and persistent groups, and
provide empirical results demonstrating the capabilities of our
method on a variety of challenging scenarios.

I. INTRODUCTION

Global navigation for autonomous agents in complex
environments is well studied, with many proposed solutions.
However, path planning for groups is still an active research
with many open problems that are yet to be addressed.
Agents within a group share a common target and must
try to stay together by satisfying constraints on lateral and
longitudinal dispersion, thus maintaining group coherence.
Additionally, a group must remain persistent unless the
environment demands group splitting and reformation. These
dispersion constraints and the ability to split and reform need
to be modeled at the global planning level, producing an
optimal navigation strategy that minimizes distance traveled,
group deformation, and split penalty.

This paper presents a path planning approach for coherent
and persistent groups in arbitrarily complex environments.
The navigable regions in the environment are represented
using a triangulated navigation mesh [1] with precomputed
local clearance information. A group is represented as a
shape constrained area, which incurs a deformation penalty
when it deviates from its rest shape, and can split (and
reform) in necessary situations. The group action space is
extended to include split and merge actions, and a defor-
mation cost and a split penalty are introduced into the cost
formulation of the search. The cost due to deformation is
modeled as the lateral and longitudinal dispersion of the
group from its rest shape, while split penalty is computed
using the current split status of the group (number of splits
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and distance between subgroups). As a result, the proposed
method plans paths for coherent and persistent groups by
optimizing a three-tuple cost vector (distance, deformation,
and split cost).

II. RELATED WORK

Traditional reactive approaches to simulate group flocking
behavior [2], [3] produce natural results in open areas,
but are limited to locally optimal decisions in cluttered
environments. Probabilistic roadmaps (PRMs) [4], [5] are
widely used in robotics, with extensions developed for
multiple entities [6]. Potential field based methods [7] and
continuum approaches [8] produce local collision avoidance
behavior in large crowds, but have not addressed enforcement
of group constraints. The work in [9] uses social poten-
tial fields for group formation in robots, with additional
work [10] focusing on predefined group forms. Discrete
search methods [11] can produce optimal paths for an
underlying environment representation and can incorporate
additional problem-specific constraints. However, centralized
approaches don’t scale well as the number of agents in-
creases, while decentralized techniques [12], [13] have not
addressed coherent and persistent groups.

Crowd density information [14] helps characters avoid
congested routes that could lead to traffic jams. A deformable
mesh [15] has also been used to split and merge a crowd at
cross points. Our work does not rely on density and instead
introduces the concept of controlling groups according to
coherence and persistence constraints. The work in [16],
[17] presents an approach for group motion planning using
the concept of a backbone path with clearance constraints,
while group coherence is enforced using local planning.
The work in [18] extends RVO to maintain team coherence
while guaranteeing collision-free motions and the work in
[19] uses a multi-level graph that allows group members to
switch formations and reach their goals. Neither of the two
approaches focuses on group merging or splitting. The work
in [20] manages group motion in dynamic environment using
a centralized approach for group coherence and formation,
but is computationally infeasible for a large number of
groups. The explicit corridor map (ECM) [14], [21], [22]
produces shortest paths in the medial axis of an environment,
ensuring clearance constraints, and can account for crowd
density by periodically replanning to avoid congestion.
Comparison to prior work. While some of these works
have proposed heuristic strategies for group coherence, our
work enforces the shape of the group at the global planning
layer and is the first to introduce a persistence constraint
that causes groups to split and merge based on the extent
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Fig. 1. Illustration of traversal τabc. If constrained edge o is the closest
constraint crossing traversal sector, cl(a, b, c) = dist(b, o) = dist(b, b′).

of shape deformation imposed by the environment. Further-
more, contrary to prior work on group path planning, we
achieve control over group shapes by treating groups as
deformable shapes instead of fixed-size disks or collections
of individuals.

III. ENVIRONMENT REPRESENTATION

We represent navigable regions in the environment using
a triangulation-based navigation mesh [1] with precomputed
local clearance information in edge traversals, which enables
the efficient computation of locally shortest paths with arbi-
trary clearance. We refer the readers to a detailed description
in [1] and present a brief overview here.

Let O = {o1, o2, ..., on} be the set of obstacle segments
of an environment and let T = CDT(O) be its Constrained
Delaunay Triangulation. Let π be a free path in T , and t
be a triangle of the channel of π. τabc is the traversal of
t if a, b, c are the vertices of t and the free path crosses
t by entrance edge ab and exit edge bc. Given a traversal
τabc, its sector clearance cl(a, b, c) is defined as the distance
between the traversal corner b and the closest vertex or
constrained edge intersecting the traversal sector. As shown
in Fig. 1, cl(a, b, c) = dist(b, o) = dist(b, b′), where b′

is the orthogonal projection of b on o and dist denotes
the Euclidean distance, if constrained edge o is the closest
constraint crossing traversal sector τabc. A traversal τabc in T
has local clearance if it does not have disturbances. A Local
Clearance Triangulation LCT(O) is a CDT(O) with all
traversals having local clearance.

Once the LCT of the planar environment is available, a
single graph search can be performed over the adjacency
graph of the triangulation in order to obtain a channel with
enough clearance to connect the start and end points. The
search continuously expands triangle traversals from the
current lowest cost edge until the triangle containing the
end point is found. To guarantee the desired path clearance,
triangle traversals are only accepted if the respective traversal
clearance is greater or equal to the needed clearance.

Our group search approach is developed in a given LCT
graph. A group is informally defined as a set of agents,
satisfying collective spatial and temporal constraints while
trying to achieve a common goal. We model a group as a de-
formable and splittable area preserving shape. The efficiency
of the group search is determined by three factors: path
length, deformation minimization, and spitting minimization.
The two new characteristics of our group path planning
search are therefore to maintain group coherence and per-
sistence. Group coherence is modeled by deformation cost
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Fig. 2. Illustration of (a) traversal, (b) group, (c) group state comprising
multiple subgroups, and (d) search node.

to preserve the group desired shape, while group persistence
is modeled by determining split and merge conditions, and
introducing the ability to plan paths for multiple subgroups
within a single planning instance.

IV. PROPOSED PLANNER

Our group path planning problem is formulated with:∑
= 〈S,A, c(s, s′), h(s)〉, (1)

where S is the state space of a group, A is the set of
possible actions, c(s, s′) is the cost of transitioning from s
to s′, where s, s′ ∈ S, and h(s) is the heuristic estimate of
reaching the goal g.

The space occupied by a group is described by the
collection of triangles containing it. The triangle containing
the front of the group is referred to as the head traversal of the
group, while the rest of the group is represented as a series
of tail triangle traversals, as shown in Fig. 2(b). A group can
additionally split into one or more subgroups, as shown in
Fig. 2(c). A node in the search expansion tree comprises the
state s of the group, and its associated cost. The action space
A = {LEFT,RIGHT,SPLIT,PAUSE, MERGE} describes the
set of possible movement behaviors of each subgroup:

1) LEFT: Group traversal from edge bc to ba (Fig. 3(a)).
2) RIGHT: Group traversal from edge cb to ca (Fig. 3(b)).
3) SPLIT: Group arrives by edge bc, then splits in two

subgroups that exit by edges ba and ca (Fig. 3(c)).
4) PAUSE: A subgroup stays in place in order to merge

with another subgroup or when the cost associated with
the other actions is prohibitive due to deformation or
split penalties.

5) MERGE: Two subgroups entering from two distinct
edges merge as one group that exits through the 3rd
edge (Fig. 3(d)).
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Fig. 3. Group actions. (a) LEFT, (b) RIGHT, (c) SPLIT, (d) MERGE. The
blue arrow is the arrival direction of a group, and the orange arrow is the
exit direction of group.

A. Action Evaluation Function

The cost function c(s, s′) is the cost of performing an
action which transitions the group from s to s′, and governs
action selection. Our cost function is formulated as a three-
tuple vector:

c(s, s′) = 〈cdis(s, s′), cdef (s, s′), csplit(s, s′)〉, (2)

where cdis(s, s
′) is the distance cost from state s to s′,

cdef (s, s
′) is the deformation cost from state s to s′, and

csplit(s, s
′) is the split penalty from state s to s′. The

heuristic function h(s) is an admissible estimate of the cost
from the current state s to the goal state g, accounting for
potential deformation:

h(s) = 〈hdis(s), hdef (s), 0〉, (3)

where hdis(s) computes the straight line distance to the goal
and hdef (s) estimates the deformation cost from the current
state of the group to the goal state g and is computed as
cdef (s, g).

Let f(s) be the cost estimate from the start state to the
goal state, constrained to go through s. f(s) = g(s) +
h(s), where g(s) is the accumulated cost of all traversed
states from the start state to s, represented as a three-tuple
〈gdis, gdef , gsplit〉. Each component of g(s) is defined as:

gdis(s
′) = gdis(s) + cdis(s, s

′), (4)

gdef (s
′) = gdef (s) + cdef (s, s

′), (5)

gsplit(s
′) = gsplit(s) + csplit(s, s

′). (6)

The planner will generate a sequence of states, from the
initial to the goal state, while optimizing the evaluation
function:

f = w1 · fdis + w2 · fdef + w3 · fsplit, (7)

where fdis, fdef , fsplit accumulate their respective costs
from the initial to the goal state. The weights {wi|1 ≤ i ≤
3}, are normalized and can be varied for achieving different
behaviors. f represents the summation of distance costs,
deformation costs and split penalties. There is a split penalty
only when new splits happen. Group splits are introduced
to reduce the deformation cost in subsequent states at the
expense of incurring a split penalty.

B. Cost Computation

Distance cost. Let dist (gri,gr
′

i) denote the Euclidean dis-
tance between the traversal exit edges of the heads of the
subgroup states gri and gr

′

i. The distance between two
traversal edges can be computed based on the center of the
respective triangles, the center of the edges etc. We use
the edge centers and incorporate a visibility criterion [1]
to compute the distance because it guarantees that straight
line solutions are not missed. The distance cost cdis(s, s′) of
transitioning between group states s and s′ is then computed
as the average distance between the subgroups at each state.
For n subgroups in the current state s:

cdis(s, s
′) =

∑i≤n
i=1 dist(gri, gr

′

i)

n
. (8)

The cost computation above has to handle special situa-
tions in the case of merges and splits. In case of a merge,
the subgroups that merge will both be corresponded with the
merged subgroup. In the case of a subgroup splitting, the two
new subgroups are corresponded with the original one. This
ensures consistent cost average values.
Deformation cost. Deformation cost measures group dis-
persion while passing through the environment corridors,
leveraging the precomputed clearance values in the LCT
triangulation. The deformation cost between two states is
computed as:

cdef (s, s
′) =

i≤n∑
i=1

deform(gri, gr
′

i), (9)

where deform measures the deformation of each subgroup.
Let n,m be the number of traversals in gr and gr′ respec-
tively. Let {clj |1 ≤ j ≤ n}, {clk|0 ≤ k < m,m − 1 ≤
n} be the sequence of traversal clearances of gr and gr′

respectively, as illustrated in Fig. 4. These clearance values
approximately capture the width of the corridor areas where
the group is passing and are used to compute the deformation
between the two subgroup states as follows:

deform(gr, gr′) = m

√√√√ m∏
k=0

ρk · dist(gr, gr′), (10)

where

ρk =

{
clk/clk+1 , if clk < clk+1, k < n
1 , otherwise. (11)

The above deformation definition needs to be computed
for the head and tail traversals for each step, which is



Fig. 4. Illustration of clearance sequences of current state of the group gr
and next state of the group gr′.

time consuming. For the sake of computation efficiency, we
consider only the head of each subgroup when computing
the deformation cost. This works well in our experiments
because the tail of a group is guaranteed to go through the
head, thus the aggregate deformation of a group over a se-
quence of traversals can be computed as the net deformation
of its head over the path:

deform(gr, gr′) = max{0, (width− cl0)/width}, (12)

where width is the desired group width. If there is no
splitting, it’s the initial size of the group.Note that the
longitudinal dispersion factor is ignored for the above reason.
We use this cost formulation to compute the deformation
heuristic hdef (s) = cdef (s, g) as the estimated cost of
deforming from s to g. This generates a plan where the
group deforms from its initial rest shape to the desired goal
shape, while minimizing net deformation (i.e., preserving
group coherence).

hdef (s) =

i≤n∑
i=1

deform(gri, g). (13)

Split penalty. The split penalty is the cost for the group
to split, which is taken into account only when a new split
happens. Penalizing splits favors group persistence as far as
possible, where splits are introduced only when the cost due
to deformation is too high. The split penalty is computed as a
function of the number of subgroups and distances between
subgroups. The split cost is based on a hierarchical distance
measure where the distance between two splitting subgroups
is computed as the Euclidean distance from the center of
their heads.

Assume two subgroups gri and grj are generated as a
result of a split, with l − 1 split ancestors where l is the
current splitting level. The ancestor of a split group is the
node before this split. The split penalty is computed as the
aggregate distance between all subgroup pairs generated as
a result of a split, weighted by the split level. δ is a scaling
constant.

csplit(s, s
′) = δ

k≤l∑
k=1

k · dist(gri, grj). (14)

We can limit the maximum number of splits that can be
generated by placing an upper bound on the split level. This
aggregate measure of split penalty accounts for the relative
split depth, and mitigates the need of a costly recursive
computation during the search.

C. State Transition

A node in the search graph represents the state of one
group. At each step, the search generates new nodes,
computed as the successors of the node with lowest cost.
For a group with only one subgroup, this corresponds to
moving to its adjacent triangles. For a group with multiple
subgroups, this refers to each subgroup independently
taking an action which may be a normal traversal, a split,
or a merge. For k subgroups, there are a maximum of 2k

possible traversals which can be generated. Each subgroup
may also choose to PAUSE when it reaches the goal, or
when it chooses to merge with another subgroup.

SPLIT. Let s′ and s′′ be the next states from s with and
without a split respectively. A split node s′ is expanded
as a valid successor if one of the following conditions
is satisfied: (1) The deformation cost without a split is
greater than a threshold: cdef (s, s

′′) > Tsplit. (2) The
next state produced as a result of a split is more likely to
reach the goal: f(s, s′′) > f(s, s′). (3) The deformation
cost without a split is greater than sum of the deformation
cost in the case of a split, and the resulting split penalty:
cdef (s, s

′′) > cdef (s, s
′) + csplit(s, s

′). We evaluate the two
traversal exits of the head triangle to see if both exits are
too narrow to determine the need for a split. In a channel,
if the deformation cost value is too high, the channel entry
triangle may be a valid split candidate. A look-ahead method
may be used to better evaluate the potential benefits of a split.

MERGE. For each subgroup gri, we compute the distance
between its head and the heads of the other subgroups. If the
minimum distance to another subgroup is less than Tmerge,
or if the two subgroup heads are in adjacent triangles, a
valid merge action is identified. We currently assume that
only two subgroups can merge at a time. A merge between
three subgroups would thus require 2 merge actions. MERGE
is considered for the following cases: (1) The exits of two
subgroup traversals belong to the same triangle, causing them
to merge. (2) The exits of two subgroup traversals lie in adja-
cent triangles, with four possible cases (Fig. 5). In this case,
one subgroup can pause to wait for the other subgroup, then
merge. (3) The distance between two subgroups is within
the threshold and in this case one subgroup can also wait for
the other. This condition may produce a false positive when
there is a thin obstacle separating two subgroups, in which
case performing a wait will result in the distance exceeding
the threshold, thus invalidating the merge.

Once two subgroups are chosen to merge, the one with
smaller hdis value will receive the PAUSE action and the
other subgroup will move LEFT or RIGHT towards the
paused subgroup. The wait-to-merge strategy mitigates
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Fig. 5. Illustration of MERGE when two subgroups are in neighbor triangles.
There are four different cases (a-d).

synchronization problems between the merging groups.
Using this procedure, there is only one valid action
combination for the two merging subgroups gri and grj .
For example, suppose that gri stops to wait for grj , and
grj moves LEFT, then the only valid action combination is
A(gri) = PAUSE, A(grj) = LEFT, invalidating other action
combinations: { A(gri) = PAUSE, A(grj) = RIGHT }, and
{ A(gri) = PAUSE and A(grj) = SPLIT }.

ActionMask and Mutex. We introduce ActionMask and Mu-
tex to efficiently compute possible transitions at each state.
ActionMask is used to compute all action combinations, and
illegal action combinations are excluded using Mutex.

ActionMask =

{
1, If the action is valid
0, If the action is invalid. (15)

Note that PAUSE and MERGE are mutually exclusive
actions, and are defined as one element. ActionMask is
a quadruple: e.g., ActionMask = {1, 1, 1, 0} means that
the possible actions are: LEFT, RIGHT, SPLIT while
PAUSE/MERGE is invalid. To compute ActionMask, we do
the four following checks when expanding a given state: (1)
if it has reached the goal, (2) if any of the traversals are
possible (3) if it satisfies splitting conditions, and (4) if it
satisfies merging conditions. Mutex is used to omit invalid
action combinations of possible actions with MERGE. We
compute the next possible action combinations for multiple
subgroups by permutations and combinations, then delete
invalid ones based on Mutex Criteria. This will be computed
while judging if there is any merging.

Consider the following example of a state with 5 sub-
groups with the following action possibilities: (1) All sub-
groups can go either left or right. (2) Two possible merges:
gr0 PAUSE to wait gr1 moving RIGHT, and gr2 MERGE
with gr3 by moving LEFT. (3) gr4 is a valid split candidate.
The action mask each sub group is defined as follows: A(gr0

)={L, R, P}, A(gr1)={L, R}, A(gr2)={L, R}, A(gr3)={L,
R, M}, A(gr4)={L, R, S}. There are 75 possible action
combinations, e.g. LLLLL, but the mutex efficiently prunes
unnecessary actions to dramatically reduce the number of
feasible actions to be considered by the planner. Action
combinations, PL*** and **RM*, are invalid according to
the Mutex Criteria. Here each * can be replaced by any
possible action.

D. Search Procedure

Our path planning method for agent groups is based on
the A* algorithm using the problem domain described above.
Lowest cost nodes from the OPEN list are successively
expanded until the goal state is reached. In our case, each
group state can occupy multiple triangles in the environment
which poses the challenge of marking nodes that have been
previously visited. Triangles representing free space in the
environment are marked as one of the following: (1) not
visited: no generated state visited this triangle, (2) edge
visited: a node in OPEN list visited this triangle, and (3)
visited: a node in CLOSED list visited this triangle. A triangle
would be accessible, if it was not previously visited, or if it
was accessed from a different edge than its current visited
edge. Else, it is inaccessible. The planner searches for a
sequence of group states from the start to the goal, where a
group may split into multiple subgroups, each subgroup may
choose a separate path before merging to reach the target in
a coherent and persistent fashion.

E. Complexity Analysis

Space complexity. There are four possible actions for each
subgroup. Suppose there is at most k subgroups in a group
state and the search depth is d, then the upper bound of the
size of OPEN is 4kd. If there is no limit for k, then k may
increase as the depth d increases. For practical purposes,
the effective branching factor of the search is much lower
due to the efficient pruning of unnecessary actions using
Mutex, and we limit the value of k to a reasonable value
(see results below).

Time complexity. Suppose the search space size is N , and
the size of the open list is O(N), then the time complexity
is O(NlogN). If N=4kd, the time complexity becomes
O(dk4kd), where d is the depth of the search. In practice,
we have observed an average effective branching factor of
1.32 from experiments run on three different maps with a
maximum depth of 100. These experiments are described in
Section V.

V. EXPERIMENTS

We have implemented our path planning algorithm for
agent groups on top of Tripath Toolkit [23]. We demonstrate
the validity and efficiency of our approach on a variety of
benchmarks, as described below. In the experiments below,
Env1 is the map of Fig. 11, Env2 is the map of Fig. 6, Env3
is the map of Fig. 12, Env4 is the map of Fig. 7, Env5 is a
larger scale of map of the one in Fig. 7.



Fig. 6. Paths obtained with varied cost weights: the blue path has distance
weight w1 =1.0 and deformation weight w2 =0.0, the green path has w1 =
0.4 and w2 = 0.6, and the gray path has w1 = 0.2 and w2 = 0.8.

We use the term group size to measure the initial disper-
sion of a given group. In our experiments, an initial group
dispersion is set as a square with side of group size. We
set 1 group size to be the average width of the passages
in each environment being used. Note that the final shape at
the end of a path will be restricted by the goal area. In the
simulations below, the initial and goal group are visualized
as one point.

A. Deformation and Splitting

Deformation cost. To evaluate the impact of the deformation
cost we run the planner with varied cost weights. As shown
in Fig. 6, the deformation cost models the degree of shape
deformation achieved while moving along the paths. If
the deformation weight w2 is set to 0, the distance cost
dominates resulting in shortest paths returned by A*, shown
as the blue path in Fig. 6. Increasing the deformation cost
weight produces longer paths with less deformation. The
green path in Fig. 6 is computed with the distance weight
w1 = 0.4, the deformation weight w2 = 0.6, and the gray
path in Fig. 6 is computed with the distance weight w1 =
0.2, the deformation weight w2 = 0.8.

Split penalty. The search space grows as the number of
splits increases. Split penalty is used to control the tendency
of a group to split. A split limit is used in order to
control the maximum number of splits allowed. In this
experiment, we applied different split limits in order to test
the size of the search space by adjusting the split penalty.
The benchmark for this test is a 1k-LCT polygonal map,
which is a particularly challenging scenario for splitting, as
shown in Fig. 7. To evaluate the relationship between the
memory requirements of the search and the split limit, we
perform several random searches of varying path lengths with
different split limits, as shown in Fig. 8. A split limit of 4
limits the size of the OPEN list to a maximum of 50, 000
nodes, even for very long paths.

Our algorithm is capable of planning varied routes for sub-
groups based on the specified weights in our cost function.
Different split and merge results can be obtained, as shown in
Fig. 9. Examples (a)-(d) in the figure have the initial group
size of 2.5, and examples (e)-(h) have the initial group
size of 3.Note that although there are only two subgroups

Fig. 7. Group search on 1k-LCT matrix map with split constraint = 2.

1	
   2	
   3	
   4	
   5	
   6	
  

O
pe

n	
  
Li
st
	
  S
iz
e 

Split	
  Limit 

path=50	
  
path=40	
  
path=30	
  

Fig. 8. Relation between memory requirements (size of OPEN) and the
maximum number of splits. We generated paths to random goals and picked
the first paths that were obtained with approximate length of 30, 40 and 50.

generated for a split due to the triangulation mesh, an
arbitrary number of subgroups can be achieved by multiple
splits. A case of multiple splits is shown in example (d).
Fig. 10 illustrates, in left-right, top-down order the dynamic
group state sequences of the example in Fig. 9(b). The blue
channels represent the individual states of the solution group
path, which includes one split and one merge.

B. Effective Branching Factor and Search Horizon

To compute the effective branching factor for our problem
domain, we perform searches on three different environment
scales and compute the size of the open list for different
search depths. The results are given in Table I. The main
values in the table are the effective branching factors, the
values in parenthesis are the corresponding open list sizes.
The split constraint is 4, and the average effective branching
factor is 1.32.

TABLE I
OBSERVED EFFECTIVE BRANCHING FACTORS.

Depth Env1 Env2 Env3 Env4
6 1.62 (18) 1.59 (16) 1.63 (18) 1.49 (11)
12 1.53 (165) 1.43 (72) 1.44 (81) 1.35 (36)
24 1.40 (3026) 1.36 (1526) 1.39 (2761) 1.22 (109)
36 1.28 (6538) 1.26 (3876) 1.28 (7621) 1.20 (700)
60 1.18 (20371) 1.18 (16721) 1.17 (18421) 1.19 (27881)

100 1.13 (190246) 1.12 (21641) 1.12 (98314) 1.12 (64977)
avg 1.36 1.32 1.34 1.26

Fig. 11 visualizes all the triangles that were visited during
an example search by highlighting them in blue. When



Fig. 9. Example of split and merge cases including multiple splits and
merges, using different weights in our cost function. The cost weights
(w1,w2,w3) used in each example were a:(0.8,0.1,0.1), b:(0.5,0.4,0.1),
c:(0.4,0.5,0.1), d:(0.2,0.8,0), e:(0.4,0.4,0.2), f:(0.5,0.4,0.1), g:(0.4,0.5,0.1),
h:(0.3,0.7,0).

Fig. 10. States of the solution path obtained for the example in Fig. 9(b).

the deformation cost plays a greater role in the evaluation
function, the number of visited triangles increases as well as
the sizes of the OPEN and CLOSED lists. A balance between
different cost weights should be considered for practical
applications. When w2 =0 and w3 =0, the search degenerates
into A*, as shown in Fig. 11(a). Comparing Fig. 11(a) and
Fig. 11(b), the number of visited triangles in (a) is less
than (b). The path in (a) is shorter but requires more shape
deformation. Conversely, the path in (b) is longer but requires
less deformation with the use of splits. Additionally, as the
initial size of the group increases, the open list size and
the number of expanded channels also increases due to the
increased possibility of splitting.

The number of visited triangles and the size of the open
list depend on the initial group size and the search depth.
Using the Fig. 12 map containing 650 LCT triangles, we
perform tests with start and end points giving shortest path
lengths (number of traversals in the path) of 15, 20, 25, 30,
35, and 40 with A*, and with the group search algorithm
running initial group size of 1.0, 2.0, 3.0, and 4.0. The
number of visited triangles relative to the group size is
shown in Fig. 13. The associated results of open list size
are given in Table II. Larger groups require more node
expansions during the search to produce paths that satisfy
deformation constraints, and may require additional splits in
narrow passages, where smaller groups may be able to pass

(a) Parameters: w1 =1.0, w2 =0, w3 =0. Search: depth=23, ex-
panded triangles=50, open list size=84, closed list size=63.

(b) Parameters: w1 =0.5, w2 =0.5, w3 =0. Search: depth=30,
expanded triangles=91, open list size=427, closed list size=336.

Fig. 11. Illustration of the visited triangles during our group search method.

Fig. 12. Environment used for extracting the number of visited triangles
shown in Fig. 13 and the open list size shown in Table II.

through.

TABLE II
SIZE OF THE OPEN LIST DURING SEARCH.

path length
15 20 25 30 35 40

A* 66 97 107 173 289 493
group size=1.0 93 154 249 413 851 1248
group size=2.0 492 687 1571 1630 1680 2992
group size=3.0 872 1322 2896 4142 4823 12431
group size=4.0 821 2783 2843 5080 9053 20972

C. Computational Efficiency

Table III illustrates the efficiency of our group search
method. For five environments, different split constraints are
applied on different path lengths. The average path length
and running time over 30 trials of random initial and goal
locations are given in the table. For each trial, we present
the numbers obtained with 0, 1 and 2 splits. The length of a
split path is computed by taking its longest branch. Once the
group is allowed to split and merge, the split groups may find
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Fig. 13. Number of traversed triangles (vertical axis) versus the group
size used during the search (horizontal axis).

a shorter path to reach the target, thus resulting in a shorter
average path length.

TABLE III
COMPUTATION TIMES IN DIFFERENT ENVIRONMENTS WITH DIFFERENT

SPLIT CONSTRAINTS

0 split 1 splits 2 splits
env size len t(ms) len t(ms) len t(ms)

Env1 248 20.6 0.23 22.8 0.27 25.7 0.44
Env2 304 31.4 0.24 31.8 0.31 34.2 0.63
Env3 650 44.1 0.26 42.6 0.38 45.6 0.97
Env4 1244 50.8 0.27 52.8 0.46 56.2 1.53
Env5 6514 102.7 1.40 104.8 28.60 107.6 315.29

VI. CONCLUSIONS

This paper presents a path planning approach for coherent
and persistent groups in arbitrarily complex environments.
Our work introduces a planning methodology that allows
groups of agents to deform as much as needed and at the
same time achieve splitting and merging behaviors in a
controlled way. Paths to given goals are computed while
optimizing a three-tuple cost vector of distance, deformation,
and split costs. The cost vector encodes the desired planning
strategy and can produce paths with different characteristics
with respect to group coherence and persistence behaviors.
Such capabilities have not been demonstrated before.

Limitations. Although paths can be computed efficiently
in reasonably complex environments, the introduced
possibility of splitting groups can considerably increase
the cardinality of the search space. A reasonable tradeoff
is to balance the influence of the deformation cost and
to impose constraints on the number of possible splits in
order to meet performance constraints. While our present
work only addresses the group path planning problem, our
framework is designed to be easily integrated with local
collision-avoidance techniques [24] in order to simulate
autonomous agents exhibiting goal-directed navigation while
being subject to group constraints. In a split, the agents in
a group choose their moving directions (LEFT or RIGHT)

according to the branch capacities, which are validated by
the clearances stored in LCT mesh. The integration of path
following behaviors while avoiding collisions and satisfying
group coherence and persistence constraints is left as future
work.
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ACM Trans. Graphics, 25:1160–1168, 2006.

[9] Tucker Balch and Maria Hybinette. Social potentials for scalable
multi-robot formations. In IEEE ICRA, pages 73–80, 2000.

[10] Tsai-Yen Li and Hsu-Chi Chou. Motion planning for a crowd of
robots. In IEEE ICRA, pages 4215–4221, 2003.

[11] Peter Hart, Nils Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. Systems
Science and Cybernetics, pages 100–107, 1968.

[12] Latombe Jean-Claude. Robot Motion Planning. Kluwer Academic
Publishers, Norwell, MA, 1991.

[13] Stephane Leroy, Jean-Paul Laumond, and Thierry Siméon. Multiple
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