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Abstract

We propose a new method based on the use of fractional differentiation for improv-
ing the efficiency and realism of simulations based on Smoothed Particle Hydrodynam-
ics (SPH). SPH represents a popular particle-based approach for fluid simulation and a
high number of particles is typically needed for achieving high quality results. How-
ever, as the number of simulated particles increases, the speed of computation degrades
accordingly. The proposed method employs fractional differentiation to improve the re-
sults obtained with SPH in a given resolution. The approach is based on the observation
that effects requiring a high number of particles are most often produced from collid-
ing flows, and therefore when the modeling of this behavior is improved higher-quality
results can be achieved without changing the number of particles being simulated. Our
method can be employed to reduce the resolution without significant loss of quality, or
to improve the quality of the simulation in the current chosen resolution. The advan-
tages of our method are demonstrated with several quantitative evaluations.
Keywords: fluid simulation, physically-based simulation, fractional derivatives.

1 Introduction

The method of Smoothed Particle Hydrodynamics (SPH) has become a popular particle-
based approach for fluid simulation because results incorporating complex interactions (e.g.,
splashes, coupling, etc.) can be obtained with relatively modest computational complexity
[10, 27, 29, 4, 38]. Key to the quality of the results is the determination of an appropri-
ate number of particles achieving sufficient volumetric density. While better results are, in
principle, obtained with high concentrations of particles, the computational penalty is sig-
nificant. Even if specific data structures are used to improve the computation performance,
it is always a main concern in practical applications to reduce the computational time while



still obtaining high quality simulation results. This topic is central to the effective imple-
mentation of SPH applications, due its suitability to high frame rate interactive applications
such as for interactive virtual worlds.

This paper presents a novel approach to address this problem with the introduction of frac-
tional derivatives [30] [33] to the SPH equations. The proposed method is able to achieve
high quality simulation results with a relatively lower number of particles, achieving results
similar to the ones obtained with the higher resolution simulation (see Figure 1).

Figure 1: Example of a typical SPH simulation scenario. As demonstrated in several eval-
uations, our Fractional SPH model will improve the realism of the simulation in a chosen
resolution. The colors represent velocity magnitudes in a scale ranging from red (high), to
green (medium), and to blue (low).

Our work is based on the observation that in regions of the fluid where the flows do not
collide, a lower resolution representation can still correctly represent the fluid because the
flows evolve steadily in those regions. However, in regions where the flows collide, the
responses to be simulated are higher in number and complexity and a low number of parti-
cles will not adequately capture all the occurring phenomena. In these situations, we show
that the introduction of a history-laden viscous effect based on fractional forces will restore
some of the lost behavior and improve the collision representation, leading to a lower con-
centration model that yields realistic behavior comparable to the ones obtained with higher
concentrations of particles.

It is reasonable to expect that fractional terms can compensate for the loss of information in
a particle-based flow and restore the expected behavior of the small volume of water repre-
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sented by each particle. Fractional derivatives have been demonstrated to efficiently model
memory-laden effects that are observed in immersed particles [9]. The force contributions
acting on an oscillating particle immersed in a Newtonian fluid are proportional to: 1) the
acceleration of the displaced fluid (the virtual mass force), 2) the velocity of the particle
(the Stokes drag), and 3) the so-called history (or Basset) force, which accounts for history
effects of the moving flow around the particle. In the limit of infinitesimal particle Reynolds
numbers, the formulation including steady Stokes drag, virtual mass and the Basset frac-
tional term is exact. These contributions can be derived directly from the Navier-Stokes
equations for the limit of vanishingly small convective effects. Coimbra and Rangel [9]
have shown that the Basset force is mathematically equivalent to the half-derivative of the
differential velocity between the particle and the far-stream flow. These results indicate that
the behavior of immersed particles can be well represented with models based on fractional
derivatives. The concept has been well demonstrated by Ozgen et al. [31] on the problem of
simulating cloth deformations with underwater behavior.

Our model compensates the loss of information in a lower resolution simulation by adding
a half-derivative viscosity in the regions of the flow detected to have significant variations
in velocity, a situation that happens in colliding flows. When the simulation is implemented
with low concentration of particles, local particle-particle interactions are not enough to cor-
rectly depict the flow interactions and memory-laden half-derivatives are used to compensate
for the resolution decrease.

2 Background and Related Work

Fluid dynamics governed by Navier-Stokes Equations has been extensively studied in pre-
vious years, and several methods have been proposed to numerically solve these equations.
In the sections below we first discuss related work in fluid simulation and then provide a
background on the related uses of fractional calculus.

2.1 Fluid Simulation

Smoothed Particle Hydrodynamics (SPH) has a long history in physics, developed in 1977
by Gingold and Monaghan [13] to model astrophysical phenomena, and extended to solve
many problems in continuum mechanics. There are many uses of particle systems in Com-
puter Graphics, however discrete formulation of continuous fields by particles was first in-
troduced by Desburn et al. [10] for simulating highly deformable bodies. Muller et al. [27]
reached very promising results in particle-based fluid simulation for interactive applications
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using the SPH method. A very detailed study of SPH since its first emergence is presented
by Monaghan [26].

In recent years, new variations to the standard SPH models have also emerged. Solenthaler
[38] proposed the PCISPH method for reducing the computation time of standard SPH and
increasing the incompressibility of the fluid by employing a prediction-correction scheme
based on particle pressures. Raveendran [37] introduced a hybrid approach that uses a Pois-
son solver along with a local density correction step to increase the stability of SPH method
in higher time steps. Solenthaler [2] proposed a two-scale simulation by merging the results
from low and high resolution simulations running simultaneously. Adaptive time steps are
employed by Ihmsen and Adams [21, 1] in SPH methods to increase the stability of the sim-
ulations. SPH applications based on parallel computing are also proposed by various groups
[21, 20, 15].

Several researchers have addressed the behavior of fluid flows in Computer Graphics. Elcott
et al.[11] modeled the fluid flows by satisfying the conservation of circulation along arbitrary
loops. The nature of flows flowing through porous materials is described by Lenaerts et
al.[23] with the combination of SPH and the Law of Darcy. The behavior of turbulent fluids
is defined using a large-scale numerical solver and physical energy models in Narain[28].
Pfaff et al.[32] handles turbulence around objects immersed in flows by modeling turbulence
formation with averaged flow fields. Another interesting work is the study of viscoelastic
incompressible fluids in which additional elastic terms are integrated in the Navier-Stokes
equations [14]. In Treuille [39], a real-time method for acquiring detailed flows with a
small number of basis functions is presented. Our present work contributes to the field by
introducing fractional derivatives as a new tool for improving fluid simulations.

2.2 Fractional Calculus and Particle Motion

The subject of Fractional Calculus [30], or the mathematical analysis of differentiation and
integration to an arbitrary non-integer order, has recently attracted much interest especially
in solid mechanics, rheology, electromagnetism, electrochemistry, and biology.

Fractional Calculus models, aside from their capability of modeling memory-intense and
delay systems, have been associated with the exact description of unsteady viscous and vis-
coelastic phenomena. Coimbra and L’Esperance [8, 24] presented definitive experimental
evidence of fractional history effects in the unsteady viscous motion of small particles in
suspension. This formulation is exact at low particle Reynolds numbers, but can be ex-
tended to include convective effects as illustrated by Pedro et al. [18]. Furthermore, a rich
literature is available on the ability of non-integer derivatives to capture non-local behavior
and to interpolate between different dynamic regimes [30, 25, 34, 19, 17, 22], including the
fundamental modeling of viscoelastic behavior [35] and the unsteady drag for individual
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particles moving through a viscous fluid [36].

Stokes was the first to determine the operator ΛS that relates the force F acting on a particle
to the background flow field U , such that an expression of the form F = ΛS(U) is deter-
mined. The importance of this discovery was that it allowed for the calculation of the forces
acting on the particle by considering only the undisturbed flow conditions as opposed to
relating the force to the spatially dependent, non-uniform flow in the vicinity of the particle.
Therefore, under special circumstances, it is possible to accurately predict the rate of sed-
imentation of small particles without ever calculating the flow generated by the motion of
the particles [36]. The resulting Stokes drag formula relates the force exerted on the sphere
to the constant free-stream velocityU , the dynamical viscosity of the fluid µ, and the radius
a of the sphere in a linear way, given that the particle Reynolds number is maintained much
smaller than unity.

Boussinesq [5] and Basset [3] independently extended Stokes’ derivation to a case where the
particle accelerates through the fluid due to a constant gravitational force but still neglecting
the convective terms in the Navier-Stokes equation. The particle equation of motion with a
constant forcing (the gravity term) is called the BBO equation.

The BBO equation is an integro-differential equation that has a removable singularity in the
integrand of the history term. Coimbra and L’Esperance [8, 24] showed that the history or
fractional term can be derived directly from the Stokes operator ΛS using Duhamel’s Su-
perposition Theorem. The history term is found to be simply aΛSν

−1/2D1/2V , where ν is
the kinematic viscosity of the fluid and D1/2V represents the half-derivative of the parti-
cle velocity [9], which can be computed with the following Riemann-Liouville differential
operator:

D1/2V =
1

Γ(1/2)

∫ t

−∞
(t− σ)−1/2

dV (σ)

d t
dσ, (1)

where Γ is the generalized factorial function and Γ(1/2) =
√
π.

Motivated by these fundamental results on the motion of the particles in unsteady viscous
fluids, we aim to increase the physical accuracy of simulating flow collisions in low reso-
lution simulations by utilizing a fractional derivative model. We thus propose a new SPH
model with half-derivative viscosity terms to compensate the loss of information in low
resolution simulations.

Our proposed model uses history-laden viscous terms that are made proportional to the half-
derivative of the relative particle displacements in order to better capture the macroscopic
behavior of colliding flows. At first, applying the half-derivative of the differential velocity
seems the natural approach to macroscopically account for small volumes of water around
the particles in a low resolution SPH simulation, however, the small volumes of water being
considered behave differently than a non-fluid particle immersed in the fluid, and the history
effects are better described as a viscoelastic effect that can be approximated by a term on the
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half-derivative of the displacement [7]. This is akin to describing the macroscopic behavior
of a suspension in terms of the behavior of an ensemble of particles. We therefore consider
the history effects of interest by applying the half-derivative operator to the relative particle
displacements (instead of applying to the relative velocity). The achieved model is able
to simulate the different inertial responses among the particles in an efficient way, while
capturing the intermediate mechanical behavior between pure elasticity and pure viscosity.

The proposed model is presented in the next section. We then present two experiments
that validate the proposed approach by showing that our model generates realistic results
in a well-understood fluid simulation scenario and in comparison with an accurate Navier-
Stokes solver (Section 4). The following section (Section 5) presents several evaluation
results quantifying the improvements obtained in comparison with the standard SPH model.
The final sections discuss the results obtained and then conclude the paper.

3 Model

In this section we describe our proposed Fractional SPH model.

3.1 Standard SPH

The Smoothed Particle Hydrodynamics (SPH) model we employ is based on the scheme
presented by Muller [27]. SPH is a Lagrangian model where the fluid is represented by a set
of particles that carry field attributes. An arbitrary attribute on a given particle’s position is
computed via smoothing kernels that only consider nearby particles within the core radius
h. The smoothing of attributes is modeled with:

AS(r) =
∑
j

mj
Aj

ρj
W (r− rj, h), (2)

where mj is the mass, rj is the position and ρj is the density of a particle j within the core
radius h of the smoothing kernel W (r − rj, h). Aj is the field attribute quantity at rj .

At each timestep of the simulation, the density values of individual particles are evaluated
first:

ρi =
∑
j

mjW (|ri − rj|,h), (3)
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then, the pressure is computed by the ideal gas state equation

p = k(ρ− ρ0), (4)

where k is a gas constant and ρ0 is the rest density. Once the density and the pressure fields
are computed, the pressure and viscosity forces acting on particle pairs are computed in a
symmetric manner as proposed by Muller [27]:

fpressurei = −
∑
j

mj
pi + pj

2ρj
∇W (ri − rj, h), (5)

fviscosityi = µ
∑
j

mj
ẋj − ẋi

ρj
∇2W (ri − rj, h), (6)

where ∇W (ri − rj, h) is the gradient, ∇2W (ri − rj, h) is the Laplacian of the kernel, µ is
the viscosity constant, and finally ẋi = vi and ẋj = vj are the velocity vectors of particles
i and j respectively.

3.2 Fractional SPH

As discussed in Section 2.2, in order to represent the memory-laden characteristics of the
fluid body, we introduce the fractional viscosity term of order 1/2 to the motion of the
particles. We achieve this by replacing the first time derivatives of the positions by the
half-derivatives of the positions. As a result, the history-based viscosity is defined as:

fviscosityi = µ
∑
j

mj
D1/2xj −D1/2xi

ρj
∇2W (ri − rj, h) (7)

where D1/2xi and D1/2xj are the half-derivatives of the positions of particles i and j re-
spectively. Note that the viscosity force is now proportional to the difference of the half-
derivatives, achieving the memory-laden viscosity needed to define the motion resulting
from flow collisions.

The memory-laden viscosity is especially well suited for fluid phenomena occurring in in-
tense flow collision regions. It is important to observe that in most situations a fluid simu-
lation scenario will contain both regions with flow collisions and regions without any colli-
sions. Our model will improve the quality of the simulation in the regions with flow colli-
sions, which are often the regions producing the most interesting behaviors. Our model will
not affect the results obtained in regions with steady flows.
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3.3 Computing the Half Derivative Terms

In Coimbra [7], a first-order accurate numerical solution to the history integral of Equation 1
is suggested. Following this solution, the 1/2 order derivative of x can be expressed as:

D1/2xn =
h

6
√
π

n− 1∑
i=1

[
ẋi−1

(nh− (i− 1)h)1/2

+
2 (ẋi−1 + ẋi)

(nh− (i− 1/2)h)1/2
+

ẋi

(nh− ih)1/2

]
+

0.15h√
π

[
ẋn−1

h1/2
+

2 (ẋn−1 + ẋn)

(0.55h)1/2
+

ẋn

(0.1h)1/2

]
+

0.05h√
π

[
8
√

2

3

ẋn

(0.05h)1/2
− 4

3

ẋn

(0.1h)1/2

]
, (8)

where h is the timestep, i is the timestep index, and n is the index of the most recent com-
puted timestep. This formulation is also used in Ozgen [31].

In Coimbra [6], a more general and second-order accurate quadrature formula derived using
the product trapezoidal method is suggested for derivative orders q in the 0 < q < 1 range.
This fractional-order differential operator reads:

Dqxn =
h1−q

Γ(3− q)

n∑
i=0

ai,nD
1xi, (9)

ai,n =


(n− 1)2−q − n1−q(n+ q − 2) if i = 0,

(n− i− 1)2−q − 2(n− i)2−q + (n− i+ 1)2−q if 0 < i < n,

1 if i = n,

where q is the derivative order (0 < q < 1), n is the index of the most recently computed
timestep, ai,n is the weight of timestep index i at timestep n, and D1xi = vi is the velocity
of a particle at timestep i. In comparison to the method employed by Ozgen et al. [31], this
formulation is relatively simpler and more accurate. In the presented simulations we have
used this latter formulation with q = 0.5 to acquire the half derivatives.

The fact that computing the half derivative of the position of a particle makes use of all the
past velocities of that particle seems to be a computational barrier at first. However, as stated
in Ozgen [31], an analysis on the evolution of the weights used for the fractional derivative
computation shows that the most recent states have much more influence on the final result
of the equation. The plot in Figure 2 shows the evolution of the weights as a function of the
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Figure 2: The plot shows how weights rapidly decay as we move away from the most recent
timestep.

timestep index i for three different timestep values h. Thus, we only consider the last ten
timesteps when computing the half-derivative terms.

4 Validation Experiments

In order to validate the approach taken by our model, we have performed two experiments
designed to verify if the results produced by our simulations are in accordance with expected
known results. The first experiment simulates a solid sphere in a viscous fluid, and the
second experiment simulates the Shear Driven Cavity Test [12].
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4.1 Solid Sphere in a Viscous Fluid

L’Esperance et al. [24] describe the experiment where a single small rigid sphere is placed
inside a container full of fluid, and the container is then continuously shook by a sinusoidal
force. The reason for shaking the container is to create a medium rich in oscillatory flows.
The authors state that under certain conditions of particle size, fluid viscosity and oscillation
frequency, the Basset history term in the equation of the particle motion becomes dominant.
Because the Basset history term can be written in terms of the half-derivative of the particle’s
velocity [9], the authors show that the recorded path of the sphere in the experiment perfectly
matches the solution to the sphere’s equation including history effects through the use of
fractional derivatives. In the described experiment the trajectory of the sphere will closely
match a perfect sinusoidal curve. This provides a ground truth target to achieve with SPH
simulations of the experiment, and provides us with an experiment to validate the results
produced by our Fractional SPH model.

We have implemented an experimental simulation version of the scenario explained in
L’Esperance et al. [24]. We have prepared a 3D fluid simulation of 12K particles, with
the fluid located inside a closed rectangular container, and with a solid sphere immersed in
the center of the container. The density of the solid sphere was set to be slightly greater than
the density of the fluid by increasing the particle’s mass by 50% and keeping the particle’s
volume the same. In the original experiment, the tracked particle was tethered by very thin
copper wires to counteract the weight and buoyancy. We achieved the same effect by adjust-
ing the gravity force so that the particle neither sank nor floated. We applied a sinusoidal
shaking force to the fluid container, and the fluid was simulated with both standard SPH and
our Fractional SPH.

We conducted three different experiments. In the first experiment, we simulated the water
flow with the standard SPH model. In the second experiment, we simulated the water with
40% less particles but using our Fractional SPH with history forces included through frac-
tional derivatives. In the last experiment, we simulated the water with the standard SPH
in the same resolution of 40% less particles than the high resolution model. The recorded
paths of the solid spheres in the three experiments are shown in Figure 3. It can be clearly
seen that the inclusion of the history forces improved the results of the low resolution SPH
by making the path of the solid sphere closer to the path of the solid sphere in the high reso-
lution SPH. In addition, it can be observed that both the low resolution Fractional SPH and
the high resolution SPH generated trajectories that are closer to a perfect sinusoidal curve.

We also obtain an indication that SPH simulations can reproduce fluid behaviors as they
occur in real life and that by increasing its resolution we can improve the obtained results.
This can be noticed by observing that the high resolution SPH experiment produces a curve
(blue curve) that looks closer in shape to a well-defined sinusoidal shape than the low res-
olution SPH experiment (red curve). Therefore, it is reasonable to evaluate our proposed
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Figure 3: The figure shows the path followed by the solid sphere located in a fluid container
subjected to a continuous sinusoidal shaking force. The blue, red and green curves show
the path of the sphere in a fluid simulated with high resolution standard SPH, low resolution
standard SPH and low resolution Fractional SPH, respectively.

method by applying it at a given resolution and then comparing the results obtained against
a higher resolution standard SPH simulation. We will adopt this comparison strategy in
the evaluation experiments of Section 5. These preliminary experiments also indicate that
the addition of fractional terms is beneficial and that higher resolutions in SPH will lead to
improved behaviors. These results provide reasonable validation of our proposed approach.

4.2 Shear Driven Cavity Test

Our second validation experiment employed a standard test known as the Shear Driven
Cavity Test (or Lid Driven Cavity Test) in Fluid Dynamics [12]. In this test, flow is generated
by moving the top wall of a square box full of fluid while the other three walls are stationary.
The top wall of the box moves in the horizontal direction with a constant speed, and the flow
reaches a steady state after running the simulation for a while.
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We implemented this test with our standard and Fractional SPH implementations, with var-
ious number of particles and Reynolds number values. All tests demonstrated that our
Fractional SPH model produced results closely matching the results computed by a high-
precision fluid solver. We compared our results against the results generated by Open-
FOAM, a grid-based solver widely employed by the CFD community [16]. One example
of the obtained results are demonstrated in Figure 4. As it can be seen in the figure, stan-
dard SPH and Fractional SPH simulations with 40K particles follow the grid-based solution
tightly, showing that the viscosity behavior of both fluids are valid and that the use of frac-
tional derivatives in the viscosity formulation does not introduce any additional viscosity to
the standard formulation. These results were computed with the simulations on the steady
state phase. These results are important to demonstrate that the Fractional SPH model also
performs well in steady flow cases. Our model will thus not degrade the results obtained in
regions without colliding flows.

5 Evaluation Experiments

In order to quantify the improvements obtained with our Fractional SPH model we have
designed a simulation scenario based on a rectangular grid that is rich in flow collisions.
We placed several force sources that continuously run and create flows moving towards op-
posite directions and colliding at several regions. Several evaluations were then performed
by comparing low-resolution Fractional and standard SPH simulations against the corre-
sponding higher resolution standard SPH simulation. As validated in the previous section,
we consider the high-resolution standard SPH simulation to be the reference simulation for
our comparisons. The low-resolution simulation that generated less error against the high-
resolution simulation was considered to be physically more accurate. In these experiments
we used explicit Euler numerical integration.

We discretized a 2D fluid grid by placing 48 equally distributed grid points. Our 2D grid
scenario was borderless and cyclic, meaning that the particles penetrating a particular wall
will come back to the scene from the opposite wall. Keeping all the initial conditions the
same, we conducted three different simulations with this scenario. The first simulation was
a high resolution standard SPH with 1500 particles. This one was considered to be the
reference simulation. The second simulation was a low resolution standard SPH with 1250
particles and the third simulation was a low resolution Fractional SPH with 1250 particles.
As expected, our Fractional SPH model has showed to generate much less error rates than
standard SPH at the regions with intense flow collisions. We measured the average velocity
vectors of 48 different circular regions centered at the grid points. The average velocity of a
circular region for a given timestep is calculated by averaging the angular difference of the
velocities of all particles within that region at that timestep. The placement of source forces,
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Figure 4: Lid-driven cavity test comparing OpenFOAM’s grid-based Navier-Stokes solution
(black curve), standard SPH (blue curve) and Fractional SPH (dashed red curve) with 40k
particles. The velocities along the vertical line x = 0.5 passing by the center of the box are
demonstrated at t = 5s when the simulations are in steady state. The horizontal axis in the
graph represents the vertical coordinates along the line x = 0.5. The similarity of the curves
validate the viscosity behavior of the Fractional SPH simulation in a steady flow scenario.

measurement regions, and the shape of the grid is presented in Figure 5.

The angular difference of the average velocity vectors of each region was first computed
for every timestep, then, for all the regions, we took the average of the angular errors by
dividing the error sum to the total number of timesteps. The average error that each region
produces with respect to the high resolution simulation was obtained with:

εj =
n∑

i=1

1

n
arccos

(
vjiSE

· vjiSHR

|vjiSE
||vjiSHR

|

)
, (10)

where εj is the average error generated at region j, i is the timestep index, n is the total
number of timesteps, and vjiSE

and vjiSHR
are the average velocities of region j at timestep

13



i, for the evaluated simulation SE and the high resolution simulation SHR, respectively.

With this scheme, we are able to compare the number of grid regions that performed better
with each SPH formulation. The method that resulted with more successful grid regions is
considered to perform better overall. The next section presents and discusses in detail the
results obtained. Additional results with 3D simulations are also presented.

6 Results and Discussion

We first analyze the results presented in Figure 5. The arrows show the placement and the
direction of force sources and the circles indicate the 48 comparison regions. The color
range is between red and green. The color red shows that standard SPH is producing less
error and the green shows that Fractional SPH is producing less error. The yellow regions are
the ones where both simulations create almost the same error rates. As demonstrated in this
figure, the regions where flows collide tend to be green most of the time. This indicates that
the fluid behavior that emerges from intense flow collisions is better modeled by Fractional
SPH. The yellow regions are where few flow collisions occur and flows mostly tend to
move to a fixed direction. As expected, no significant differences exist between the two
simulations on these regions. The few orange regions where Fractional SPH is performing
slightly worse than the standard SPH are always located near the force sources. These
regions produce slightly worse error rates because they have always relatively less particles
in them, due the fact that the continuous flows are generated from these regions. The lack
of enough particles in these regions leads to a less accurate error measurement.

Figure 6 presents the comparison of angular error rates (in radians) of regional velocities,
generated by both standard SPH and Fractional SPH, at a region rich in flow collisions,
over the course of 500 timesteps. As can be observed, the error rate tends to be small at
the beginning because of the same initial positions of the particles. However, the Fractional
SPH produces less error than standard SPH as the simulation progresses.

Figure 7 shows the same results on a different region of the grid. This region is on the
middle right of the grid and it is poor in flow collisions. As can be seen on the graph, the
difference between the error rates generated between standard and Fractional SPH tend to
decrease on this kind of regions. This result is expected in the sense that the difference of
velocities of two particles moving towards the same direction with similar speed causes the
viscosity to vanish.

Aside from comparing the direction of regional velocities, we also compared the evolution
of velocity magnitudes on each region over the course of 500 timesteps. As it was the case
for velocity directions, velocity magnitudes tend to be more similar to the high resolution
simulation in Fractional SPH than standard SPH. Figure 8 shows the velocity magnitudes of
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a region rich in flow collisions, which is placed in the middle of the grid, for 3 simulations.
The blue line is the high resolution reference simulation, the red line is the standard SPH
and the green line is the Fractional SPH. As can be observed, Fractional SPH is better
approximating the high resolution simulation. Figure 9 shows that the difference between
the effects of standard and Fractional SPH is minimized on regions poor in flow collisions.

We have also experimented with 3D SPH simulations following the same flow scenario
but with the border of the fluid grid acting like walls. We used 12K particles for the high
resolution reference simulation. We increased the gap between high and low resolution
fluids by only using 3K particles for low resolution simulations. The same comparison
scheme is employed to compare the simulations and calculate the error rates. The time of
evaluation was extended to 1000 timesteps in order to have a wider comparison window.

Figure 10 and Figure 11 show the error produced by regional velocity directions and mag-
nitudes, respectively. The comparisons were conducted at a region rich in flow collisions,
over the course of 1000 timesteps. As can be observed in the figures, our method produces
less error than the standard SPH in 90% of the timesteps.

In terms of performance, our method runs real-time for simulations with up to 5k particles
and runs with 4 FPS for simulations with 20k particles on AMD Athlon II X4 3.2 GHz com-
puter. The use of half derivatives in the SPH implementation does not affect the complexity
or the running time of the algorithm. In Equation 9, the weights are always calculated based
on the terms q and n − i. The value of q must always be equal to 0.5 to acquire the half
derivatives. Given that we only use the ten most recent terms of the history terms, n − i
terms always stay the same for all the ten weights, except for the first ten timesteps. Be-
cause Equation 9 makes use of the past particle velocities, we require some extra memory
space to store the previous velocities. Therefore, the weights can be precomputed and used
in combination with pre-recorded velocities.

Fractional SPH also proved itself useful by allowing larger timesteps in the integration.
It was observed that our Fractional SPH simulations were more stable than standard SPH
when using large timesteps especially for viscous fluids. In Figure 12, standard SPH and
Fractional SPH simulations are compared for different sizes of timesteps. Fractional SPH al-
lowed 2 times larger timesteps, while standard SPH becomes unstable after a small increase.
We also noticed that our method performed better in the early stages of the Shear Driven
Cavity test, when the flows were not stabilized yet. This was observed in the 3D version of
Shear Driven Cavity test and some results are presented in Figure 13. Additional examples
demonstrating 3D simulations with our Fractional model are presented in Figure 14.

In summary, we demonstrate that Fractional SPH always produces better results than the
standard SPH in regions where flow collisions are detected. Both in 2D and 3D simulations,
our Fractional SPH model produced less error on 73% of our grid regions, in comparison
with the standard SPH. Note that this percentage depends directly on the density of colliding
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flows on the scene. A scenario with more colliding flows will definitely increase the suc-
cess rate of Fractional SPH. The videos accompanying this submission provide additional
examples and results.

7 Conclusions

We have introduced a new methodology for fluid simulation based on the use of Fractional
Calculus with Smoothed Particle Hydrodynamics. We have demonstrated in several ex-
periments that our method can better simulate observed fluid behavior emerging from flow
collisions. The fact that the memory-laden viscosity terms modeled by fractional deriva-
tives are able to increase the accuracy of low resolution SPH simulations is promising as a
technique to improve the quality and computational efficiency of SPH.
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[11] Elcott, S., Tong, Y., Kanso, E., Schröder, P., Desbrun, M.: Stable, circulation-
preserving, simplicial fluids. ACM Trans. Graph. 26(1), 4 (2007)

[12] G. R. Liu, M.B.L.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method.
World Scientific Publishing Company (2003)

[13] Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics - theory and appli-
cation to non-spherical stars. Royal Astronomical Society 181, 375–389 (1977)

[14] Goktekin, T.G., Bargteil, A.W., O’Brien, J.F.: A method for animating viscoelastic
fluids. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pp. 463–468. ACM, New
York, NY, USA (2004)

[15] Harada, T., Koshizuka, S., Kawaguchi, Y.: Smoothed particle hydrody-
namics on gpus. Structure pp. 1–8 (2007). URL http://individuals.iii.u-
tokyo.ac.jp/ yoichiro/report/report-pdf/harada/international/2007cgi.pdf

[16] Henry Weller, C.G.: Openfoam (2010)

[17] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, River
Edge, NJ (2000)

[18] H.T.C. Pedro M.H. Kobayashi, J.P., Coimbra, C.: Variable order modeling of diffusive-
convective effects on the oscillatory flow past a sphere. Journal of Vibration and Con-
trol 14, 1569–1672 (2008)

[19] Hu, Y.: Integral transformations and anticipative calculus for fractional brownian mo-
tions. In: Memoirs of the American Mathematical Society (2005)

[20] Ihmsen, M., Akinci, N., Becker, M., Teschner, M.: A parallel sph implementation on
multi-core cpus. Computer Graphics Forum 0(0), 1–12 (2011)

17



[21] Ihmsen, M., Akinci, N., Gissler, M., Teschner, M.: Boundary handling and adaptive
time-stepping for pcisph. In: VRIPHYS, pp. 79–88 (2010)

[22] Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differ-
ential Equations. Amsterdam, The Netherlands (2006)
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Figure 5: Simulation scheme (top image) and its corresponding fluid simulation scenario
(bottom image). The simulation scheme shows both the flow generation configuration and
the results of our experiments. The arrows show the force sources creating the flows. The
circles show the regions where we computed the average velocity directions in order to
quantitatively compare the simulations. The colors are in the red-green range and represent
the difference of angular velocity error rates produced by the low resolution standard SPH
and low resolution Fractional SPH when compared against the higher resolution standard
SPH. Our Fractional SPH method performs better than the standard SPH in the green re-
gions, the difference is similar in yellow regions, and our method performs slightly worse
in the orange regions.
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Figure 6: The plot shows the error rates in velocity directions of the region marked with the
red disc, over 500 timesteps of simulation. The red and green lines represent the simulations
of low resolution standard SPH and low resolution Fractional SPH compared against higher
resolution standard SPH. The region marked with the red disc is rich in flow collisions.
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Figure 7: The plot shows the error rates in velocity directions of the region marked with the
red disc, over a simulation of 500 timesteps, for 2D simulations. The red and green lines
represent the simulations of low resolution standard SPH and low resolution Fractional SPH
compared against higher resolution standard SPH, respectively. Here the region marked
with red disc is poor in flow collisions.
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Figure 8: The plot shows the velocity magnitudes of the region marked with the red disc,
over a simulation of 500 timesteps, for 2D simulations. The blue, red and green lines rep-
resent the simulations of high resolution standard SPH, low resolution standard SPH and
low resolution Fractional SPH, respectively. The region marked with red disc is rich in flow
collisions.

23



Figure 9: The plot shows the velocity magnitudes of the region marked with the red disc,
over a simulation of 500 timesteps, for 2D simulations. The blue, red and green lines repre-
sent the simulations of high resolution standard SPH, low resolution standard SPH and low
resolution Fractional SPH, respectively. The region marked with red disc is poor in flow
collisions.
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Figure 10: The plot shows the error rates in velocity directions of the region marked with
the red disc, over a simulation of 1000 timesteps, in 3D simulations. The red and green lines
represent the simulations of low resolution standard SPH and low resolution Fractional SPH
compared against higher resolution standard SPH, respectively. The region marked with the
red disc is rich in flow collisions.
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Figure 11: The plot shows the velocity magnitudes of the region marked with the red disc,
over a simulation of 1000 timesteps, in 3D simulations. The red and green lines represent
the simulations of low resolution standard SPH and low resolution Fractional SPH compared
against higher resolution standard SPH, respectively. The region marked with red disc is rich
in flow collisions.

Figure 12: Lid-driven cavity test for comparing the stability of standard SPH and Fractional
SPH simulations.
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Figure 13: Average velocities and velocity directions obtained in the Shear Driven Cavity
Test with different SPH simulations: 21K standard SPH (left), 6K Fractional SPH (center)
and 6K standard SPH (right). Colors red, green and blue represent high, medium and low
velocities respectively. The color distribution and regional velocity directions obtained with
the Fractional SPH simulation are very similar to the ones in the high resolution reference
simulation. This was not the case for the standard SPH in the same low resolution.

27



Figure 14: Dam break test using Fractional SPH, which shows the viscosity behavior of
fluids with various Reynolds numbers.
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