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Abstract—We propose feature-based motion graphs for realistic locomotion synthesis among obstacles. Among several advantages,

feature-based motion graphs achieve improved results in search queries, eliminate the need of post-processing for foot skating

removal, and reduce the computational requirements in comparison to traditional motion graphs. Our contributions are threefold. First,

we show that choosing transitions based on relevant features significantly reduces graph construction time and leads to improved

search performances. Second, we employ a fast channel search method that confines the motion graph search to a free channel

with guaranteed clearance among obstacles, achieving faster and improved results that avoid expensive collision checking. Lastly, we

present a motion deformation model based on Inverse Kinematics applied over the transitions of a solution branch. Each transition is

assigned a continuous deformation range that does not exceed the original transition cost threshold specified by the user for the graph

construction. The obtained deformation improves the reachability of the feature-based motion graph and in turn also reduces the time

spent during search. The results obtained by the proposed methods are evaluated and quantified, and they demonstrate significant

improvements in comparison to traditional motion graph techniques.

Index Terms—Computer Animation, Locomotion, Motion Capture, Human-like Motion Planning

✦

1 INTRODUCTION

The realistic animation of virtual characters remains a
challenging problem in computer animation. Success-
ful approaches are mostly data-driven, using motion
capture data, and often involving motion blending and
search. While blending operations over motion segments
adequately grouped are suitable to real-time perfor-
mances, search techniques based on motion graphs pro-
vide minimum distortion of the captured sequences, and
naturally allow the exploration of solutions in complex
environments.
Given the achieved simplicity and quality of produced

motions, motion graphs remain a popular method for
motion synthesis. The fact that motion graph applica-
tions often require the use of search algorithms makes
real-time performance to be difficult to achieve, in partic-
ular when searching for long motions. The focus of this
work is to improve the performance of motion graphs
for synthesis of locomotion among obstacles.
We propose a feature-based approach for constructing

motion graphs. Feature-based motion graphs can be
constructed significantly faster than traditional motion
graphs by avoiding the pairwise comparison between
all frames in the database. Instead, only suitable pairs
of frames are chosen for transition evaluation. The cho-
sen pairs are the output of feature detectors encod-
ing relationships of interest among key joint positions
of the character’s skeleton. Once these suitable frames
are detected, transitions are evaluated with the usual

• The authors are with the School of Engineering of the University of
California, Merced, CA, 95343.
E-mail: {mmahmudi,mkallmann}@ucmerced.edu

threshold-based comparison metric, thus maintaining
the same quality of results when blending the two
motion segments defined by one transition.
Depending on the application, different feature de-

tectors can be employed. A wide range of applicable
feature detectors have been proposed by Müller et al [1].
These feature detectors can be quickly evaluated and
are based on spatial relationships between the joints
of the character at any given frame. We have noticed
that, for the purpose of locomotion synthesis, a very
small set of feature detectors is sufficient to successfully
segment various walking motions. For example, the
forward walk detector checks for a crossing event at the
ankle joints, leading to motion segments with one foot
always planted on the floor. This is a desirable property
as it eliminates the need for post-processing due foot
skating artifacts. Similar strategies were demonstrated
by previous authors [2], but employing manually crafted
clips.
We also present a search pruning technique based

on planar channels with guaranteed clearance from
obstacles. This is achieved by projecting all obstacles
on the floor plane and maintaining a local clearance
triangulation of the environment [3]. For any given start
and goal positions, the triangulation returns a collision-
free channel that is used to prune the branches that lie
outside the channel during the unrolling of a motion
graph search. This results in improved search times,
especially in environments with many obstacles.
One inherent problem of discrete search methods is

the difficulty of reaching precise targets. In order to
address this problem we introduce a simple and efficient
Inverse Kinematics (IK) deformation technique. Each
branch of the search is treated as a kinematic chain
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Fig. 1. Feature segmentation robustly segments walking motions into walk cycles. The images here show the correct

segmentation obtained for a normal walking motion, sad walking motion and happy walking motion. Alternating colors

indicate segmentation points.

of motion segments with joint limits representing the
allowed rotational deformation at transitions. This tech-
nique produces motions precisely reaching given targets,
and at the same time leads to an earlier successful
search termination in several cases. These benefits do
not sacrifice the quality of the motions as the quality
of the deformed transitions will not exceed the same
predefined threshold error used to construct the graph.
Lastly, we present extensive experiments with our

methods solving locomotion synthesis among obstacles,
and our results demonstrate significant improvements
in time of computation, in finding solutions, and in the
quality of the results.
This paper is an extended version of our previous

work on the same topic [4]. This extended version
describes the proposed methods in greater detail and
includes several new experiments demonstrating and
quantifying the advantages of the proposed techniques.
For instance, we include a revised presentation of the In-
verse Branch Kinematics method with a precise descrip-
tion of the transformations needed to model motion tran-
sitions as joints in our Inverse Kinematics solver. Most
importantly, extensive new experiments are reported
for evaluate the advantages of the proposed feature-
based motion graphs in comparison to standard motion
graphs: in respect to the total number of nodes (Figure 5),
in respect to the branching factor (Figure 6), in respect to
the length of paths (Figure 13), and in respect to the im-
provements obtained with channel pruning (Figure 14).
Experiments quantifying the combined improvements
using both channel pruning and IK deformation are also
reported (Table 4), and an extended discussion of the
overall method is included in Section 8.

2 RELATED WORK

A large body of work has been devoted to animating
characters using human motion capture data [5], [6], [7],
[8], [9], [10], [11], [12], [13]. Motion graphs [5], [6], [8],
[14] represent a popular approach that is based on the
simple idea of connecting similar frames in a database
of motion capture examples. Once a motion graph is
available, graph search is performed in order to extract
motions with desired properties.
Kovar et al. [5] cast the search as an optimization

problem and use a branch and bound algorithm to

find motions that follow a user specified path. Arikan
and Forsyth [6] build a hierarchy of graphs and use a
randomized search to satisfy user constraints. Arikan et
al. [7] use dynamic programming to search for motions
satisfying user annotations. Lee et al. [8] construct a
cluster forest of similar frames in order to improve
the motion search efficiency. All these methods require
quadratic construction time for comparing the similarity
between all pairs of frames in the database. Our method
improves on this operation by considering connections
only between selected pairs of frames.

Many improvements to motion graphs have already
been proposed. Ikemoto et al [15] use multi-way blends
to create quick and enhanced transitions. Ren et al [16]
combine motion graphs with constrained optimization.
Shin and Oh [17] combine groups of parametrized edges
into a fat edge for interactive control. Wang and Boden-
heimer [18] evaluate cost functions for selecting transi-
tions. Beaudoin et al [19] use a string-based model to
organize large quantities of motion capture data in a
compact manner. Our contributions focus on optimiz-
ing the motion graph construction, representation, and
search, and can be used to improve any previous method
relying on a motion graph structure.

Motion capture data has also been extensively used
for locomotion planning among obstacles [20], [21], [22],
[23], [24], [25], [26]. In particular, Lau and Kuffner [27]
manually build a behaviour-based finite state machine
of motions, which in later work is precomputed [23]
to speed up the search for solutions. Choi et al [28]
combine motion segments with probabilistic roadmaps.
These methods however require the user to manually
organize motion examples in suitable ways.

The approach of interpolated motion graphs [29], [30],
[31] is based on an interpolation of two time-scaled
paths through the motion graph. Although the method
increases the solution space, this comes with the expense
of increasing the time spent to build and search the
graph structure.

In respect to our proposed IK motion deformation
technique, a related approach has been explored before
by Kanoun et al. [32] for the problem of footstep plan-
ning for humanoid robots. The work describes an IK
formulation that deforms a kinematic chain connecting
footstep locations under specific constraints ensuring
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Fig. 2. Feature segmentation is robust for different types of motions. The left image shows the segmentation of a

lateral stepping motion, the center image shows the segmentation of a basketball motion and the right image shows

the segmentation for a ballet motion. For clarity, the character posture is shown only at every second segmentation for

the lateral and basketball motions.

motion generation. Our method, however, is designed to
solve a quite different problem, that of deforming motion
transitions under a global motion transition threshold,
and without generating foot skating artifacts.
In general, the main drawback of traditional motion

graph structures is the prohibitively large amount of data
that may be needed in order to address practical appli-
cations involving obstacles and precise placements [33].
This paper presents new techniques for addressing these
problems and together they significantly improve the
performance of motion synthesis from motion graphs.

3 FEATURE-BASED MOTION GRAPH

As usual, we build our motion capture database by
concatenating multiple motions together. Each motion
M is composed of a sequence of frames. A frame F =
(pr, q0, q1, ..., qk) defines the pose of the character where
pr is the root position and qi the orientation of the i-
th joint. A motion is defined in respect to a skeleton S,
which defines the joint hierarchy and contains the joint
offsets. When a frame Fi of a motion M is applied to its
skeleton S, the global joint positions of the skeleton can
then be calculated.
We start by segmenting the motions into semantically

similar clips using feature detectors. A feature detec-
tor φ(Fi) → {0, 1} is a binary function that evaluates
whether a frame satisfies a feature property as defined
by the feature detector. A motion is segmented at a frame
Fi if φ(Fi) 6= φ(Fi+1).
In this manner, for each motion type of interest, a fea-

ture detector is assigned to it. For example, for forward
walking motions (straight and turning), the segmenta-
tion extracts from the motion capture database relatively
small clips, each containing one walk cycle. Each frame
is tested against a foot crossing binary test which looks
whether the right ankle of the character is behind or
in front of the plane created by the left hip, right hip
and the left ankle joint positions. This rule leads to a
robust segmentation procedure as shown in Figures 1
and 2. Our motion capture database also contains lateral
stepping motions. For these type of motions, we devised
a feature detector that segments the motion when the
velocity of both the left and right ankle joints is close to
zero. See Figure 2 (left) for an example.

The segmented clips start and end with frames that
are very similar to the equivalent ones in the other
segmented motion clips. This segmentation procedure
is, therefore, suitable for a motion graph construction.
Additional feature detectors can be designed in order
to segment motions of different nature. Adding new
feature detectors is straightforward and simple rules
can achieve robust segmentation. For the purpose of
locomotion synthesis, the two described segmentation
criteria suffice to ensure that useful clips are obtained.
These clips are semantically similar in form and length
and could potentially be categorized, parametrized or
dropped if sufficient amount of motion segments have
already been segmented.

Another advantage of feature-based segmentation is
the automatic avoidance of foot-skating artifacts. Since
blending operations are performed only at the extremi-
ties of each segmented clip, where there are only frames
with one foot in contact with the floor, the skeleton
can be re-parented at the contact foot before the tran-
sition blending operations, ensuring that the contact
foot is not altered from its original position. This is
done during transition generation avoiding any IK-based
post-processing step for foot-skating correction. Motions
extracted from a feature-based motion graph contain no
foot skating.

Our motion graph is then formed by performing a
pairwise test between the initial and final frames of each
pair of segmented clips. A transition is created whenever
the frame comparison metric returns a value under the
transition threshold pre-specified by the user. We use the
same distance metric and alignment transformation as in
the original motion graph work [5].

We also compute during construction time the allowed
rotational range at each transition, as required by our IK-
based deformation method (described in Section 7). We
start with the initial transformation as returned by the
metric and change the rotational component about the
vertical axis in incremental steps, in both clockwise and
counterclockwise directions, until before the transitional
cost exceeds the pre-defined threshold. The achieved
range is stored at each transition and defines the allowed
rotational range during IK motion deformation.

As a final step, the largest strongly connected sub-
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graph of the graph is selected. The obtained subgraph
represents the final feature-based motion graph.
It is important to observe the significance of devising

good feature detectors capable of picking appropriate
transition points for the types of motions to be used in
the motion graph. If the presented feature detectors are
not adequate for a given type of motion, the resulting
graph may have poor connectivity and achieve poor
performances in search queries. The presented methods
were devised to work well with locomotion sequences
and an extensive analysis of the obtained results are
presented in the next sections.

4 ANALYZING FEATURE-BASED GRAPHS

Figure 3 compares the transition locations selected with
the standard motion graph procedure against the pro-
posed feature segmentation. These transitions are super-
imposed on the 2D error image of the entire motion
database. The same frame comparison threshold is used
for both methods. Note that the computation of the 2D
error image is required by the standard motion graph but
not by the feature-based motion graph. The transitions
in the standard motion graph are selected by detecting
local minima in the 2D error image; whereas for feature-
based graphs, candidate transitions are determined by
the feature segmentation directly and are independent
of the 2D error image.
Figure 3 shows that the feature-based transitions often

occur in similar locations as the local minima ones.
Since the possible transition frames are segmented by the
same feature detectors, they satisfy the same geometrical
constraints and thus have high chances of forming tran-
sitions. The motion capture database is also segmented
at less points; moreover, our experiments show that the
feature segmentation criterion will result on transition
points that have higher connectivity with other transition
points.
In order to evaluate our approach, we have computed

both a standard motion graph (SMG) and a feature-
based motion graph (FMG) from 6 different motion
capture databases containing an increasing number of
frames. Table 1 shows numerical comparisons between
the structures, using the same transition threshold. It
is possible to notice that FMGs have less nodes and
more edges in most of the cases. The “BF” column in
the table shows the average branching factor obtained
in each case. This column clearly indicates that FMGs
exhibit higher connectivity compared to SMGs in all
cases. This property makes FMGs particularly suitable
for our IK deformation method since more connections
(and at suitable frames in the walk cycle) are considered
for deformation.
FMGs are also computed much faster. The time spent

for constructing a feature-based motion graph is often
improved from several minutes to just a few seconds.
Figure 4 depicts this comparison in logarithmic scale
(with a base of 10) and shows that FMGs can be con-
structed 2 to 3 orders of magnitude faster than SMGs.

Fig. 3. 2D error image between the frames of 3 walking

motion cycles containing 693 frames sampled at 60 Hz.

The red regions represent highest error and the blue

regions represent lowest error. The red points marked

are the local minima and the black crosses are transitions

detected by the feature segmentation. There are 57 black

transitions and 42 red transitions. The bars at the top and

left of the image indicate the frames that were selected

during the feature segmentation phase. Black transitions

are always located at intersections of segmented frames.

Fig. 4. Construction time spent for SMG (top/red line)

and FMG (blue/bottom line) as a function of the number of

frames. The vertical axis represent time on a logarithmic

scale (base 10). See also Table 1.

For instance, it took 27s to create a feature-based graph
from 6887 motion frames while the standard motion-
graph took about 6h.

We have also analyzed the obtained size and con-
nectivity in respect to the selected transition thresh-
old. Figure 5 shows the number of nodes and average
branching factor as a function of the transition threshold.
The average branching factor is computed as the average
number of edges per node. It can be observed that FMGs
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TABLE 1

Numerical comparison between standard motion graphs (SMG) and feature-based motion graphs (FMG). Column

“BF” illustrates the connectivity of each graph with its average branching factor, which is computed as the number of

edges divided by the number of nodes.

SMG FMG

Frames Construction time (s) Nodes Edges BF Construction time (s) Nodes Edges BF

693 208.1 42 16 1.27 1.5 51 80 1.61

1009 467.2 69 28 1.28 5.9 22 11 1.33

1539 1107.4 137 67 1.32 7.0 33 137 1.81

1660 1297.7 135 59 1.30 6.3 35 125 1.78

2329 2577.5 188 81 1.30 6.5 22 46 1.68

3347 4853.5 310 211 1.40 6.6 19 47 1.71

6887 22272.5 1245 933 1.42 27.0 100 403 1.80

are more compact and better connected than SMGs.
The higher branching factor for the FMGs is a direct
consequence of checking transitions at selected suitable
frames, allowing more than one transition to occur in
a same lowest error connected component of the error
image.
It is useful to observe why FMGs are more compact

than SMGs with an example. In SMGs transitions can
happen at any point p = (i, j), where i and j are
frame numbers. In FMGs transitions are only allowed at
points generated by the feature segmentation. Suppose
a motion M with 20 frames (enumerated from 0 to
19) is given as input and the transitions from the local
minima segmentation are: Tm = {(5, 7), (8, 14), (15, 10)}.
In this case M will be segmented in clips Cm =
{0 − 5, 5 − 7, 7 − 8, 8 − 10, 10 − 14, 14 − 15, 15 − 19},
resulting in a graph with 7 nodes. FMGs will first
generate a set S of feature-based segmentation points,
for example S = {5, 7, 10, 14}. Then, all transitions
{(5, 5), (5, 7), (5, 10), ..., (14, 10), (14, 14)} will be candi-
dates but only those below the similarity threshold will
be kept. Given that M is the same in both cases, it
is highly probably that the transition set will be Tf =
{(5, 7), (7, 14), (14, 10)}. Note that (8, 14) ∈ Tm is close to
(7, 14) ∈ Tf and (15, 10) ∈ Tm is close to (14, 10) ∈ Tf .
Given transitions Tf , motion M will be segmented in
clips Cf = {0−5, 5−7, 7−10, 10−14, 14−19}; resulting in
a graph of 5 nodes instead of 7. This example illustrates
how the structured segmentation of FMGs often lead to
graphs with fewer nodes, but also well representing the
same motion capture database.

5 LOCOMOTION SYNTHESIS

As showed in Table 1, FMGs contain less nodes and
higher connectivity between nodes. The higher connec-
tivity is key for improving the solutions generated from
search queries. In order to quantify and evaluate the
solution space of the graphs, we now present several
experiments measuring and comparing the quality of
our solutions in different environments with obstacles.
Figure 13 illustrates the solution space of both graphs

using color-coded error comparisons similar to the com-

Fig. 5. Number of nodes in the standard motion graph

(SMG, in red/top) and in feature-based motion graph

(FMG, in blue/bottom) as a function of the transition

threshold.

Fig. 6. Average branching factor in SMG (red/bottom) and

in FMG (blue/top) as a function of the transition threshold.

parison methods by Reitsma et al. [33]. Each error image
spans an environment with dimensions of 10 m by
10 m, and with cells of dimensions of 10 cm by 10
cm. For these comparisons we have not employed the
triangulation-based pruning technique (Section 6) and
the IK-based deformation (Section 7) as we are only
interested in measuring the difference between FMGs
and SMGs without any optimizations.

Table 2 summarizes the obtained statistics from 4
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different environments with increasing number of ob-
stacles. Both SMG and FMG were constructed using the
same transition threshold. SMG had 318 nodes with an
average branching factor of 1.31, whereas FMG had 79
nodes with an average branching factor of 1.59. Three
metrics were used to compare the performance of the
graphs: average optimal solution length, average expan-
sion count and average search time (in seconds) spent
during the graph search. A maximum expansion count
of 100,000 was chosen for all the queries. If the maximum
expansion count was reached and a solution was not
found, a failure was reported. For sake of fairness, we
only compared queries when both SMGs and FMGs were
successful. The comparisons for SMGs and FMGs are
presented in percentages and they range between −100%
and 100%.

For the length comparisons we have defined the length
error as follows: let P be the length of the 2D path
that needs to be followed and let L be the length of
the projection of the root joint trajectory of the solution
motion that follows P . The length error is defined as
E = L/P . Since the same set of trials were used for the
comparison experiments, the value of P is the same, and
therefore we only use L as a metric for comparing the
length quality of the generated trials.

As Table 2 shows, in average, FMGs expand less
nodes, spend less time searching and produce smaller
errors in all of the cases. In average, FMGs show an
improvement between 1-3% in length error and between
40-60% in search time in comparison to SMGs thanks to
the increased solution space achieved with the higher
connectivity. Our results show that choosing transitions
at local minima does not always yield better results.
Instead, transitions at key points detected by the feature
segmentation generate better results and lead to faster
searches.

6 IMPROVING SEARCH AMONG OBSTACLES

WITH CHANNELS

The search procedure used in the previous section rep-
resents the standard search solution for extracting lo-
comotion sequences from a given motion graph. We
now describe our improved search for faster motion
extraction, which is based on constraining the search to
pre-computed channels. While the idea of pruning the
search has been explored before [29], [34], our approach
employs a new technique based on fast geometrically-
computed channels.

We first compute a free 2D path on the floor plane
between the current position of the character and the
target position using an available triangulation-based
path planning technique [3]. The computed paths are
obtained well under a millisecond in the presented envi-
ronments. The path is computed with guaranteed clear-
ance, therefore guaranteeing that sufficient clearance for
the character to reach the goal is available (see Figure 7).

Fig. 7. Example of paths with clearance. The sequence

of images illustrate that the floor triangulation can be

updated very efficiently if obstacles move (under a mil-

lisecond in an average computer when up to about 100

vertices are involved). Therefore, channel pruning does

not impose any requirements on the environment to be

static and no other computation prior to a search query is

needed.

Once a 2D path is available, we perform a graph search
by unrolling the motion graph in the environment and
expanding only the nodes that remain close enough to
the path. Since the path is guaranteed to be free of
obstacles within its channel (i.e. within a distance r to
the path), only nodes generating motion clips completely
inside the free channel are expanded, and collision tests
with the environment are not needed. As a result, faster
searches are achieved by avoiding expensive collision
checks, which represent a major computational bottle-
neck when employed.
We test if a motion clip remains inside the free channel

by projecting the position of key extreme joints of the
character (like the hand and feet joints) to the floor, and
measuring if their distances to the path are smaller than
r. The projected positions are taken from the final frame
and few intermediate frames of each motion clip. Colli-
sion tests are, therefore, reduced to point-path distance
computations.
The overall search procedure starts from the node

in the motion graph containing the initial character
pose. This node is expanded, and every valid expansion
remaining inside the free channel is inserted in a priority
queue Q storing the expansion front of the search. The
priority queue is sorted according to an A* heuristic
function f(node) = g(node) + h(node), where g(node) is
the cost-to-come value and h(node) is the distance to the
goal. The search stops when a node is within a distance
d to the goal or when the expansion count exceeds a
certain limit, in which case failure is reported. In our
experiments d is set to 10cm and the expansion count
limit is set to 1 million. The expansion count limit is
necessary because otherwise the unrolling process could
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TABLE 2

Statistics when searching for locomotion sequences in different environments. The same transition threshold was

used in both graphs. “Total” is the total number of attempted queries. “Mutual” is the number of mutually successful

queries. “Perc” is the percentage ratio between “Mutual” and “Total”. “‘Time” is the average time spent searching for

each solution in seconds, “Length” is the average arc-length of the solution motions measured along the character’s

root trajectory projected on the floor, and “Exp” is the average number of node expansions during each search. The

last six columns show the mean and standard deviation of improvements (in percentage ratios) of FMGs over SMGs.

Searches SMG FMG Mean (%) Std. Dev. (%)

Env. Total Mutual Perc. Time Length Exp. Time Length Exp. Time Length Exp. Time Length Exp.

1 7920 7386 93.26 0.41 602.51 3623 0.32 582.88 1805 45.43 3.13 66.99 40.08 6.69 35.32

2 6435 5930 92.15 2.18 777.84 17463 1.85 752.11 9498 39.48 3.85 59.76 39.72 5.41 36.45

3 5092 4423 86.86 2.81 890.79 22259 0.94 879.28 4429 60.84 1.31 76.07 16.65 2.13 13.48

4 4286 3451 80.52 2.91 862.18 23128 0.96 850.87 4565 59.31 1.33 75.20 18.70 2.40 15.12

continue indefinitely.
Another advantage of finding a path in the environ-

ment before starting the unrolling process is to avoid lo-
cal minima. In general, the A* search will expand nodes
blindly towards the goal without any consideration on
the placement of the obstacles in the environment. As
such, the search spends a lot of time expanding nodes
towards one local minimum which might not be a part
of the final solution. Such cases occur, for example,
when the goal is right behind an obstacle. With channel
pruning, a collision free path is already known in the
triangulated free space of the environment. Therefore,
the path returned by the triangulation serves as a guide
to the A* search by confining the search within the free
channel.
Figure 8 clearly depicts the advantage of confining

the search within the computed channel. For the four
environments showed in Figure 14, the improvements
in search times were up to 40%. For a more complicated
environment, such as the bottom example in Figure 8, the
pruning technique was able to find a solution 10 times
faster.
Failure in the described search procedure can happen

if the motion graph does not have suitable connectivity.
In other words, failure will occur if the search frontier
runs out of leaves due to the obstacles or channel prun-
ing. Feature-based motion graphs present themselves as
a better choice for preventing the search to stop before
reaching the goal location of the path. For example, Fig-
ure 9 illustrates a typical situation where FMGs are able
to produce a locomotion sequence successfully following
the entire path, while the SMG structure makes the
search to run out of connections before reaching the goal.
Figure 14 shows several comparison results obtained
with the channel-based search procedure. It is possible to
notice that, due the higher connectivity obtained, FMGs
practically always produce better results.

7 IK-BASED MOTION DEFORMATION

Combined with our FMG and triangulation based prun-
ing technique, a new Inverse Branch Kinematics (IBK) pro-
cedure is proposed for improving the obtained solutions.

Fig. 8. Unrolled branches in two different environments

by a motion graph search with channel pruning disabled

(left column) and enabled (right column).

As previously mentioned in Section 3, we compute
a lower and upper limit for the rotational component
of each created transition during the graph construction
step. A transition Tr(i, j) is generated between the ith
and jth frame of the motion capture database by using a
transformation Tm that minimizes the distance between
the interpolated motions as defined by the employed
frame similarity metric. The limits are computed by
measuring the error associated to rotational increments.
For each new angle increment, the new transformation
is calculated in the following manner:
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Fig. 9. Top image: the channel search procedure on

a feature-based graph successfully computed a motion

following the entire path. Bottom image: the same search

failed in the standard motion graph. The same motion

capture database and transition threshold were used in

both cases.

Fig. 10. Computing rotational joint limits for the IBK

search procedure. The blue segment represents a tran-

sition from ith to the jth frame of the motion capture

database.

T (θ) = P−1

i Rθ Pi Tm, (1)

where Tm is the transformation as returned by the
original metric introduced by Kovar et al [5], Rθ is the
rotational transformation of angle θ about the Y axis
and Pi is the global position of the root joint of the
ith frame of the motion database (see Figure 10). This
procedure is repeated for both the upper and lower
rotational limits while the transition cost does not exceed
the global transition error threshold.
Later, for each motion search query, the search pro-

cedure is performed as previously described, stopping
when a branch becomes close enough to the target in
respect to a user-specified distance do. Then, the IBK
solver is employed to iteratively optimize the solution
towards the exact target location, up to a given toler-
ance di. Therefore, when h(node) < do and g(node) >

dist(start, goal), di < do, the IBK procedure is invoked.
In other words, when the distance between the node

being expanded and the goal is under do and the length
of the current path is longer than the Euclidean distance
between the start and goal positions (meaning that there
is room for a branch deformation), the search is then
paused and the branch is deformed as a 2D kinematic
chain with joint limits taken from the transition limits
stored in the transitions. See Figure 11 for an example. In
our experiments, we have set di to have the same value
as parameter d used in Section 6 (10cm), and we have
set do to 50cm. Parameters d and di are kept the same in
order to achieve meaningful results in our performance
evaluations.
We have determined the values of d, di and do em-

pirically after experimenting with the method in a few
motion queries. These values have worked well in all our
examples and we have not observed the need to modify
them according to each query. One important factor that
influences the choice for these values is the average
length of the motions being computed. If improvements
are needed, one possible extension is to fine-tune the pre-
defined value of do as a function of the length of each
obtained branch. In this way it is possible to have longer
deformable branches being able to reach larger areas.
Depending on the nature of the transitions, the chain

might have different joint limits. In Figure 11, the tran-
sition between the third and fourth node of the branch
is not flexible; thus, this joint of the chain remains fixed.
Also, the lower and upper joint limits do not have to be
symmetric. For example, the second link has only room
to move in respect to the upper limit. Once a candidate
solution chain with its joints limits is obtained, the IBK
solver can then evaluate rotational values at the joints in
order to reach the target with the end-node of the search
path.
Several experiments were performed and our solver

achieved best results with a Cyclic Coordinate Descent
(CCD) solver [35]. We have in particular experimented
with a Jacobian-based pseudo-inverse solver, however,
in our highly constrained 2D kinematic chains, the much
simpler CCD solver was faster.
Each CCD iteration increments rotations at each joint,

starting from the base joint towards the end-effector
joint. At each joint two vectors vend and vgoal are calcu-
lated. Vector vend is from the current joint to the end-
effector and vgoal is the vector from the current joint
to the goal. These two vectors are shown in Figure 11
for the fifth link of the chain. The angle between the
two vectors is incremented to the current joint and the
result clipped against the joint limits. The last step of the
CCD iteration consists of calculating the improvement
from the previous iteration, which is given by how much
closer the end-effector is to the target.
The CCD iterations stop when no improvements are

detected after a number of iterations. At this point, if the
distance between the end-effector and the goal is less
then di then the solution with its new rotation values
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Fig. 11. A graph branch represented as a kinematic

chain. Motion transitions are represented as rotational

joints and the red segments represent the joint limits

which are identical to the corresponding rotation limits

stored in the transitions.

Fig. 12. The top image shows a typical problematic

motion graph solution where an overly long motion is

returned as solution to a given target. The bottom im-

age shows the correct solution obtained by coupling the

search with the IBK solver, which is able to deform nearby

motions to the exact target without degrading the quality

of the solution.

is evaluated for collisions. If no collisions occur, success
is reported otherwise the optimization search continues
until another candidate branch is obtained. Figure 12
illustrates that in several cases the IK deformation is
able to achieve a solution that otherwise the alternative
solution without deformation would not be acceptable.

Table 3 shows the effect of employing the IBK solver
for SMGs and FMGs with both the channel pruning
enabled and disabled. As it can be seen from the table,
IBK improves the generated solutions and reduces the
search time in all the cases. The average improvement
in the length of the motions when channel pruning is
enabled is about 17% and 5% when pruning is disabled.
The improvement on average on the search time is
31% when channel pruning is enabled and 21% when
channel search is disabled. The reduced search time is a
direct consequence of being able to terminate the search
process early. This is possible because branches that are
close to the goal can be deformed to meet the goal

precisely.
The IBK optimization does not impose noticeable per-

formance degradation since only a few iterations are
performed in each search query and iterations only
require extremely simple 2D operations.
The IBK deformation procedure not only improves

search time and convergence to the goal point, but it is
also formulated in a way to not introduce any undesir-
able artifacts such as foot skating. IK rotations are only
allowed at transition points, which are always blended
with the re-parenting strategy to the support foot in
order to not generate foot skating. As a result, although
IBK may introduce additional rotations to transitions, the
resulting motion will automatically remain without foot
skating artifacts.

8 DISCUSSION

We now present several evaluations demonstrating the
advantages of the proposed feature segmentation, chan-
nel pruning and IBK deformation. A video illustrating
the presented results is available from the website of the
authors 1.
The first obvious advantage of the proposed FMG is

that the construction time is dramatically improved in
comparison to the standard motion graph procedure as
our method does not need to compute a full 2D error
image of the motion capture database (see Table 1).
The fact that we do not search for transitions in the
quadratic space of possibilities does not impose any
drawbacks. On the contrary, we have shown that feature-
based graphs have more connectivity and most often
lead to improved results when applying search meth-
ods for locomotion synthesis around obstacles, which
is always a challenging problem for discrete search
structures to address. For instance, Table 2 shows up to
60% improvement on the time spent searching in all four
environments.
In addition to the significant improvement in construc-

tion time, feature-based segmentation also introduces
semantics. For example, when specific feature detectors
for forward and lateral steps are employed, each created
motion segment in the graph can carry the label of
its generating detector. This ability allows the user, for
instance, to control the number of motion segments
per feature type and to achieve compact graphs from
large motion capture databases, or to specify search
queries with only given types of motion segments in
the solution. The employed feature detectors have also
shown to robustly segment walking motions in several
different styles.
Feature-based segmentation can furthermore help the

user in determining the frame similarity threshold. For
example, in the forward walk segmentation, all motion
clips start and end with only one foot planted on the
floor, with alternated support foot at the start and end
frames. Naturally, there should not be a transition from

1. http://graphics.ucmerced.edu/publications.html
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TABLE 3

Improvements gained when deploying IBK during search. Comparisons for both SMGs and FMGs with and without

channel pruning for four different environments are shown. All values are represented as percentages. Each value is

calculated as follows: if v is the value measured without deploying IBK and vibk is the value with IBK deployed then

the reported percentage p is calculated a p = −(vibk − v)/v.

SMG FMG

Channel Pruning Without Channel Channel Pruning Without Channel

Env. Length Exp. Time Length Exp. Time Length Exp. Time Length Exp. Time

1 17.9 73.3 36.8 1.5 55.0 29.2 18.0 80.0 57.2 5.0 49.1 30.8

2 17.6 67.4 29.9 2.5 53.3 21.8 16.6 75.6 43.9 4.5 49.3 13.5

3 17.6 62.7 23.4 5.6 58.1 23.9 13.7 67.1 19.9 4.2 56.5 19.0

4 17.6 67.3 29.9 5.6 48.1 15.1 12.9 55.2 6.2 4.4 47.4 14.6

TABLE 4

Improvements gained against SMGs for four different environments as the proposed techniques are deployed. All

values are represented as percentages as explained in Table 3.

None Small Medium Large

Technique Length Exp. Time Length Exp. Time Length Exp. Time Length Exp. Time

FMG 8.7 60.1 31.0 10.3 61.9 33.4 13.4 60.8 27.2 14.7 68.5 42.9

FMG + Channel 12.9 79.0 49.2 13.8 78.8 37.1 15.1 74.3 15.3 16.7 78.2 27.1

FMG + Channel + IBK 10.4 91.8 67.3 11.2 87.0 42.6 11.4 14.2 19.9 14.6 85.3 34.7

the end to the beginning of a same motion clip, i.e. a
reflexive transition. Lowering the threshold until there
are no reflexive transitions in the graph is a good way
to determine an initial suitable transition threshold. The
segmentation also naturally prevents foot sliding effects
during transition blending because all transition points
are suitable for re-parenting the skeleton to the support
foot.

We have also showed comparisons demonstrating the
several improvements obtained by the channel pruning
and the IK-based deformation technique (see Table 3). In
all scenarios, these methods were able to improve both
the quality of the synthesized solutions and the time
taken during the search process. The channel pruning
technique was able to significantly speed up the search
without affecting the optimality of the solutions. The
procedure eliminates the need for collision checking and
guides the A* search by confining the search to the
collision-free channel and, thus, avoiding getting stuck
in local minima.

Figure 8 and Figure 14 show that FMGs present them-
selves as a better option for motion synthesis in compari-
son to SMGs since they are less likely to run out of leaves
and terminate the search prematurely. This is due to the
fact that FMGs create suitable transitions. While SMGs
minimize the transition cost, FMGs consider transitions
from pair of frames detected by meaningful feature
detectors (without exceeding the same error threshold as
used in SMGs). Selecting transitions in this manner also
enables the A* search to further benefit from channel
pruning.

The IK-based procedure represents a novel, simple,
and effective way to optimize motions composed of con-

catenations of motion capture segments. If more defor-
mation capability is needed, the IK deformation can be
extended to consider every frame of a motion as a joint
and to also include translational deformations. However,
feet slide cleaning operations would be required after
deformation in order to maintain the original quality of
the motions. By only considering rotational deformation
at transitions, a simple, clean and reasonably effective
deformation method is achieved.
Overall, the presented evaluations demonstrate that

our methods significantly improve the usability of mo-
tion graphs. The simplicity and motion quality obtained
by motion graphs are excellent and difficult to sur-
pass with other methods. Motion graphs do not require
manual preparation of motions and can be built auto-
matically from a single parameter defining the allowed
error in transitions. Motion deformation is only needed
to form transitions (with blending), and thus the over-
all distortion is minimum. This is also the case when
using the proposed IK-based deformation since it was
designed to always respect the overall allowed error
threshold.

Limitations and Avenues for Future Work

The main drawback of the proposed method is that
relying on feature segmentation requires good feature
detectors. If a feature detector is not adequate for a given
set of motions, sufficient transitions may not be found.
For example, the described walking feature detector will
probably not be applicable to cartwheel motions, and if
applied, it will probably lead to a motion graph with
poor connectivity and, thus, not able to efficiently syn-
thesize new motions. However, it is our experience that
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effective feature detectors can be developed with little
effort, by determining where the most logical transition
point should be. For instance, we have also used the pre-
sented walking feature detector to successfully segment
different styles of walking and even ballet motions (see
Figures 1 and 2).
An extensive collection of relevant feature detectors

has been developed for the problem of motion compari-
son and retrieval [1], and they could be well applicable to
segment a variety of motions. We have not analyzed how
additional feature detectors would impact the construc-
tion of a motion graph from generic motions. However,
it is also possible to devise a hybrid approach where
the presented robust locomotion features are responsible
for segmenting locomotion clips, and the standard local
minima metric is used to find generic segmentation
points in areas not covered by the feature segmentation.
The investigation of such a hybrid strategy is, however,
left as future work.
Another point to observe is that FMGs lead to less

nodes in the motion graph and this could lead to an
increased response time for interactive character control,
since less transition points are available for switching to
a new motion when required. We have taken this pos-
sible implication into consideration when choosing our
locomotion features. For motions involving locomotion,
the character will most often face a choice only when one
foot is planted on the floor, therefore, the feature segmen-
tation should not affect interactivity. Similar observations
were made by previous methods using manually crafted
motion clips [2].
More generally, FMGs are more compact because tran-

sitions are packed into “hub frames” that avoid over
segmentation of nodes at many locations. The real aspect
influencing interactivity would be the distance (in time)
between nodes and not the number of nodes. Having
poor interactivity performance would also imply poor
search performance since less transition nodes would be
available for finding solutions. FMGs have lower num-
ber of nodes but higher branching factors, the involved
trade-offs were thoroughly examined in this paper and
the results demonstrate only benefits. This indicates that
our method, at least for locomotion, should not loose
interactivity.
In terms of performance, the computation time taken

during search can still be significantly improved, possi-
bly getting close to real-time performances, with the pre-
computation of limited-horizon search trees, a method
that has been already explored for manually-built move
graphs [23]. We suspect that the more structured seg-
mentation of FMGs will be well suited for achieving
pre-computed trees that can connect to each other even
when built from an unstructured database. We intend to
investigate this topic as future work.

9 CONCLUSION

We have presented new segmentation, search and de-
formation techniques for improving motion graphs. Our

techniques significantly reduce the time spent for con-
structing the graph and at the same time lead to better
solutions from search queries.
We have demonstrated these benefits with several

experiments in environments with obstacles, using both
standard search procedures and the proposed channel
pruning and IK-based motion deformation techniques.
The proposed methods have showed to produce signif-
icantly improved results in all cases.
The major result demonstrated in this paper is that

choosing transitions at local minima will not lead to
optimal reachability or optimal search performance in
the resulting graph. Instead, well-designed feature de-
tectors will lead to improved motion graphs in several
aspects, in particular with superior performances in
search queries.
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Fig. 13. Color-coded error comparisons when searching for locomotion sequences. The first column shows the used

environments. The second and third columns show the errors obtained with the SMG and FMG respectively. The error

e = l/p is the ratio between the length l of the obtained motion from each method and the length p of the Euclidean

shortest path on the floor plane (including a path clearance). A blue color means a solution length very similar to the

shortest path, a red color means maximum error, which here is set to 2 times the length (2p) of the shortest path. The

character starts by facing the up direction and needs to first rotate down in order to reach the lower targets, which

explains the large red areas in the images. The right-most column shows the error ratio E = esmg/efmg between both

methods. A cell with black color means either an obstacle or that SMG is better, i.e. E < 1. For 1 < E < 2, when

FMG is better, the color scale is used ranging from blue, meaning slightly better, to red, meaning 2 times better. It is

possible to notice that the errors obtained with the FMG are almost always lower.
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Fig. 14. Color-coded error comparisons when searching for locomotion sequences with the precomputed channel

pruning enabled. The color coding for the comparisons here is the same as in Figure 13, with the exception that in the

right-most column a cell is set to red (maximum error) when FMG successfully finds a solution but SMG fails. Another

difference in respect to Figure 13 is that, instead of always starting oriented upwards, here the character’s starting

orientation is set to face the channel prior to the search, what makes the character to always start with a forward

walking motion. The presented comparisons show that FMGs have lower errors and higher success rates than SMGs

in most of the cells.


