
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2012)
P. Kry and J. Lee (Editors)

Precomputed Motion Maps for Unstructured Motion Capture

Mentar Mahmudi and Marcelo Kallmann

University of California, Merced

Abstract

We present in this paper a solution for extracting high-quality motions from unstructured motion capture databases
at interactive rates. The proposed solution is based on automatically-built motion graphs, and offers two key
contributions. First, we show how precomputed expansion trees (or motion maps) coupled with new heuristics
and backtracking techniques are able to significantly improve the time taken to search for motions satisfying user
constraints. Second, we show that when feature-based transitions are employed for constructing the underlying
motion graph, the connectivity of motion maps is greatly increased, allowing the overall method to perform search
and synthesis at interactive frame rates. We demonstrate the effectiveness of our approach with the problem of
extracting path-following motions around obstacles from a motion graph structure at interactive performances.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

High quality motion search and synthesis from unstructured
motion capture examples among obstacles has proven to be
a challenging problem. Successful methods are often based
on motion graph structures [KGP02,AF02,LCR∗02], which
represent a popular approach for the purpose of character an-
imation. Motion graphs have several good properties: they
can be built automatically, they can be built to represent any
kind of motion, and most importantly, they are able to pro-
duce realistic high fidelity results.

However, one of the main drawbacks of motion graphs is
that they can easily become too large, preventing search al-
gorithms from quickly finding motions that satisfy user con-
straints. Not only is the size of the graph a limiting factor, but
also its connectivity since graphs with many transitions will
have a higher branching factor eventually slowing down the
underlying search algorithms. As such, motion graphs are
mostly unable to support search and synthesis at interactive
rates. For applications where interactivity is essential, the
practical alternative often involves relying on a small hand-
crafted set of motions with guaranteed transitions between
themselves.

We present a solution for allowing motions to be ex-
tracted from a motion graph structure at interactive rates.
We achieve this with the use of precomputed motion maps

(see Figure 1) coupled with new heuristic and backtrack-
ing techniques that significantly improve motion search per-
formance. To eliminate the need of manually-crafted mo-
tion representations with full connectivity, we also show
that a feature-based segmentation of the motion capture
database [MK11] is able to produce motion maps with
enough density and connectivity for the overall method to
successfully search and synthesize motions at interactive
frame rates.

In this paper we focus on applying motion maps for solv-
ing the problem of navigation around obstacles. The ob-
tained motions are realistic and are computed at interactive
rates. Furthermore, due to the employed precomputed mo-
tion maps, motion search is often reduced to processing only
the next best motion map, allowing search and synthesis to
be performed in parallel.

Our overall method is divided in three main phases: mo-
tion map precomputation, path finding and path following.
The precomputation phase is an off-line phase where the
motion capture database is transformed into a feature-based
motion graph (FMG) according to a locomotion feature seg-
mentation [MK11], and motion maps are then computed for
each node of the FMG. Given a query in run-time, the path
finding phase will employ an efficient triangulation-based
path planning method [Kal10] able to quickly return paths

c© The Eurographics Association 2012.



M. Mahmudi & M. Mahmudi / Precomputed Motion Maps for Unstructured Motion Capture

Figure 1: The image shows four motion maps used in a path
following query. Motion maps are search tree expansions ef-
ficiently precomputed and stored, and then employed in run-
time queries.

with guaranteed clearance from any given set of polygonal
obstacles. The returned paths, therefore, provide channels
with enough clearance for the character to move; minimizing
collision checking queries after this point. In the path fol-
lowing phase, an optimized motion search algorithm is em-
ployed taking into account the precomputed motion maps,
which are transformed and superimposed on the path during
the search process. See Figure 1 for an example.

As a result, precomputed motion maps can be applied to
efficiently solve path following queries from unstructured
motion databases. Path following is one basic behavior im-
portant to several animation areas such as in simulation of
populated environments and computer games. Our proposed
solutions are automatic and applicable to generic locomotion
data, and can therefore impact several of these applications.

2. Related Work

Motion graphs are built by connecting frames of high sim-
ilarity in a database of motion capture examples [KGP02,
AF02, LCR∗02, PB02, LWS02]. Once the motion graph is
available, a graph search is performed in order to extract mo-
tions with desired properties.

Many methods based on motion graphs have then been
proposed. Kovar et al. [KGP02] used branch and bound to
find motions that follow a user specified path by considering
the motion synthesis problem as an optimization problem.
Arikan and Forsyth [AF02] used a randomized method to
extract motions from a hierarchy of motion graphs. Lee et
al. [LCR∗02] constructed a cluster forest of similar frames
in order to improve the motion search efficiency. Dynamic
programming was used by Arikan et al. [AFO03] to search
for motions satisfying user annotations (such as first run and
then jump).

The approach of Safonova and Hodgins [SH07] and Zhao
and Safonova [ZS08] is based on an interpolated motion
graph with anytime A* used to search for solutions. The re-
sulting motion is an interpolation of two time-scaled paths
through the motion graph. Although it represents an im-
provement in respect to satisfying constraints, this approach
requires additional search time for finding solutions. The dif-
ficulty to run at interactive frame rates is a common limita-
tion of motion graph approaches.

Many other planning methods have been proposed for
synthesizing full-body motions among obstacles [EAPL06,
PZLM10,KL00]. In particular, Choi et al. [CLS02] combine
motion capture data with probabilistic roadmaps [KSLO96]
to generate motions for a given start and goal positions.
Although such methods improve the planning capabilities
for addressing constraints, the quality of the results are not
improved in respect to motion graph approaches. Sung et
al. [SKG05] make use of probabilistic roadmaps to guide a
bidirectional search, achieving realistic results but relying on
unrolling a manually-crafted motion graph structure.

Structures based on motion graphs still carry the benefit of
minimally deforming the original database of collected mo-
tions, therefore achieving high quality results. In general, the
main drawback of motion graphs is that a prohibitively large
structure would be needed in order to produce motions sat-
isfying many constraints, such as around obstacles and ad-
dressing precise goal locations. The problem of increasing
the motion database is that, as the size of the graph grows,
the underlying search methods will require additional com-
putation time for finding solutions.

This inherent difficulty of motion graph structures is well-
known and methods based on simplifying the database have
also been proposed. In particular, Gleicher et al. [GSKJ03]
note that one main difficulty of motion graphs is its un-
structured nature, and they propose a method to simplify the
graph to a small structured graph suitable to interactive con-
trol. In the same direction, fat graphs [SO06] and parametric
graphs [HG07] have been proposed as attempts to improve
the structure of the motion capture data so that interactive
controllers can be devised.

The approach taken in this paper seeks to fully handle
the entire given motion capture database, and to use pre-
computed search trees in order to achieve interactive per-
formances. Precomputation of search expansions has been
already employed for the problem of motion synthesis us-
ing motion capture data. For instance, the work of Lau
and Kuffner [LK06,LK10] efficiently employs precomputed
search trees for synthesizing goal-driven interactive motions.
However, in order to achieve efficiency, their approach is de-
signed around a manually-built finite state machine of mo-
tions [LK05] that is fully connected. In contrast, the specific
techniques we propose enable precomputation to be applied
to unstructured motion graphs.

Srinivasan et al. [SMM05] apply precomputed trees for

c© The Eurographics Association 2012.



M. Mahmudi & M. Mahmudi / Precomputed Motion Maps for Unstructured Motion Capture

all nodes of a motion graph, and report difficulties handling
tight spaces around obstacles due the standard search expan-
sion technique employed. The related approach of precom-
puted avatar behavior policies has also been proposed by Lee
at al. [LL04].

Our approach is most similar to these works, however, we
focus on handling unstructured motions around obstacles at
interactive rates. Our method introduces several benefits: 1)
it works with generic automatically built Feature-based Mo-
tion Graphs (FMGs) [MK11] and hence does not require
manually-built finite state machines of motions; 2) it pre-
computes expansion trees for all nodes in the FMG and does
not require full connectivity, i.e. it does not require all leaves
of a precomputed search tree to link to the root of the tree for
seamless transitions; 3) it employs a fast triangulation-based
path computation [Kal10] that computes paths within a col-
lision free corridor with given clearance, allowing the search
to be pruned to the corridor and minimizing collision detec-
tion queries during the search; and 4) it employs a search
strategy that considers backtracking for well handling diffi-
cult situations involving tight spaces, turns and precise ar-
rivals; achieving excellent overall performance due the im-
proved search and the well-formed FMGs.

The proposed method, therefore, well handles unstruc-
tured motions around obstacles and is able to produce long
paths efficiently even in complicated environments with
many obstacles. The method is suitable to interactive appli-
cations and the results are always of high quality.

3. Finding Paths with Clearance

Given an initial point pinit , a goal point pgoal , and a clear-
ance distance r, the collision-free path P(pinit , pgoal ,r) =
(p0, p1, . . . , pn) is described as a polygonal line with vertices
pi, i ∈ {1, . . . ,n} describing the solution path. As the path
turns around obstacles with distance r from the obstacles,
every corner of the path is a circle arc which is approximated
by points, making sure that the polygonal approximation re-
mains of r clearance from the obstacles.

Any path planning method with clearance can poten-
tially be used to compute P(pinit , pgoal ,r). Due its effi-
ciency, we employ the Local Clearance Triangulation (LCT)
method [Kal10], which leverages 2D meshing algorithms for
maintaining a suitable triangulation of the free space for path
planning with clearance. We are using an extended version
of the method that includes dynamic obstacle updates only
requiring local updates each time an obstacle changes posi-
tion (details will be available soon [Kal12]). We can, there-
fore, handle dynamic environments very easily, with updates
and path queries in relatively complex environments being
computed in the order of milliseconds. Figure 2 shows ex-
amples of collision-free paths with clearance obtained by the
method.

Given that path determination takes obstacle clearance

into account while solving at the path finding level, we al-
most entirely eliminate the need of using costly collision
checking queries during the FMG search and synthesis.

Figure 2: Different paths obtained to connect the same ini-
tial and goal points, as they adapt to a few changes in the
obstacles. The clearance of the paths is always maintained,
and the LCT representation is updated only with local oper-
ations for each time an obstacle moves.

In our path following application the obtained 2D path
is used for guiding and pruning the FMG search and a fine
polygonal approximation of the curved sections of the path is
not needed. We, therefore, approximate the curved sections
very coarsely with only a few points.

4. Precomputation of Motion Maps

We start by constructing a motion graph similarly to Mah-
mudi et al. [MK11]. Although, standard motion graphs
might very well be used with our path following methods,
our results indicate that FMGs have higher success rates be-
cause they are better at generating denser and more evenly
distributed motion maps (see Figures 3 and 4). As later
shown in Section 5, good density and distribution in mo-
tion maps are important requirements for the path following
procedure to run successfully.

The next step is to precompute motion maps for all the
nodes of the FMG. The rationale behind the precomputa-
tion is to be able to follow the input 2D path by repeatedly
making efficient queries to motion maps for partial solutions
that can follow the path closely. This process is repeated

c© The Eurographics Association 2012.



M. Mahmudi & M. Mahmudi / Precomputed Motion Maps for Unstructured Motion Capture

until the goal is found or all the possible candidates are
exhausted. Unlike previous methods that precompute only
one expansion tree, we precompute motion maps for all the
nodes of the motion graph. The benefit of precomputing all
the nodes is that we do not have to rely on manually crafted
motion graphs with full connectivity but can instead use any
automatically-built motion graph.

Let c represent a node of the FMG, which in our represen-
tation contains one segmented motion clip. A motion map Tc
of a node c represents a tree Tc of motions that can be gener-
ated starting from the node c. The motion maps span a three
dimensional space X defined as:

X = {(x,z,θ) ∈ R×R× (−π,π]} . (1)

The x and z parameters determine the position of the char-
acter on the floor and the θ specifies the orientation about the
Y vertical axis of the root joint of the skeleton; the positive
Y axis points up on the XZ plane. For efficient storage, we
discretize the motion maps into cells of 10 cm by 10 cm for
the x and z parameters and into 12 groups of 30 degrees for
the θ orientation. Furthermore, we represent motion maps
as hashed maps instead of 3D grids. There are two reasons
for this: first, by using hashed maps we avoid setting spa-
tial limits on how far our motion maps can be unrolled; sec-
ond, motion maps populate X sparsely and unevenly and, as
such, a significant number of cells in our discretization re-
main empty. Hash maps will only store occupied cells and,
therefore, no space will be allocated for unoccupied cells.

Algorithm 1 illustrates the overall precomputation pro-
cess. We start by unrolling each node c of the FMG. The
procedure starts by placing the first frame of the node c at
the origin, with the character facing the positive Z axis, and
building a motion map Tc with its root set to the node c (lines
1-3). Then, we run a Dijkstra search starting on the node c
and expand nodes that minimize the arc-distance traveled by
the expanded motions (lines 13-15). At every expansion, the
motion map Tc is augmented with the position (xi,zi) and
orientation θi of the character and the corresponding cell
Tc(xi,zi,θi) is annotated with the path Pi that leads the char-
acter from the initial node c to the current state (xi,zi,θi)
(line 12).

Note that since the same cell might be reached by dif-
ferent paths we store all possible paths at each stage. This
increases the number of available candidates during the path
following search phase. The unrolling stops when the Dijk-
stra search reaches a user-defined depth (line 6). Examples
of typical precomputed motion maps obtained for FMGs are
shown in Figure 3. As comparison, Figure 4 shows the ob-
tained motion maps for a standard motion graph built from
the same motion capture database. It is possible to note that
the well-defined segmentation rule of FMGs lead to much
denser motion maps, an essential property to guarantee that

Algorithm 1 Precompute(c,max_depth)
1: F.init();
2: Q.init(c);
3: T.init(c);
4: while ( Q not empty ) do
5: node← Q.pop();
6: if ( node.depth ≥ max_depth ) then
7: continue;
8: if ( F(node) is not occupied ) then
9: F.occupy(node);

10: else
11: continue;
12: T.insert(node, path(node));
13: node.expand();
14: for all ( child ∈ children(node) ) do
15: Q.push(child, child.length);
16: return T;

solutions are mostly always found. Additional comparisons
are discussed in Section 7.

Each motion map Tc also stores the transformation Φ that
aligns the map to the origin with the positive Z axis direction
and the average length of a motion map, which is defined as:

A(Tc) =
1
n

n

∑
i=1
L(T i

c ), (2)

L(m) =
n−1

∑
i=0
||mi−mi+1||, (3)

where T i
c is the i-th path of Tc and L(P) returns the length

of the 2D path P. The average length of Tc will determine the
sampling frequency of the path P during the path following
phase (Section 5).

Moreover, to speed up the precomputation, we also main-
tain a 4D frontier F = {(x,z,θ,cid) ∈ X×N}, which pre-
vents expanding duplicate branches (lines 8-9). If the same
node cid is about to revisit a cell x∈ X then the we can safely
cull this branch as expanding cid at x would not lead to any
new paths. Once the motion map is built, the frontier F is no
more needed and it is discarded. Another significant speed
up is to cache cells that were already queried. This facili-
tates the search during the path following phase since many
queries are made to cells that were already used in prior
queries.

The computational complexity of the precomputation pro-
cedure is O(nbd), where n is the number of nodes, b is the
average branching factor of the motion graph and d is the
chosen horizon depth of the motion map. Depth d is a signif-
icant factor influencing the precomputation time, however,

c© The Eurographics Association 2012.



M. Mahmudi & M. Mahmudi / Precomputed Motion Maps for Unstructured Motion Capture

Figure 3: Four typical motion maps precomputed for a Feature-Based Motion Graph (FMG). The used expansion depth is 12.
Note the high density achieved in the regions covered by the motion maps.

Figure 4: The four equivalent motion maps to the ones shown in Figure 3, when precomputed for a standard Motion Graph
(SMG). These maps were precomputed with depth 22 in order to achieve a size (number of nodes) equivalent to the FMG motion
maps.

we have noticed that after a certain depth is reached, increas-
ing the horizon depth does not translate into further improve-
ments to our path following procedure.

5. Path Following

As described in Section 3, the input path P is a collision-free
path with clearance r, with starting point p0 and goal point
pgoal = pn. The start and goal orientations are also defined
by the input path. The start orientation is determined by the
vector p1− p0 and the goal orientation is determined by the
vector pn − pn−1, where pi ∈ P(p0, pn,r) are points from
the polygonal path as returned by the LCT path planner.

The path following procedure assumes that all the nodes
of the FMG are precomputed up to a depth d and all their
paths are stored in their corresponding motion maps. After
the precomputation is finished, the goal of the path following
procedure is to search for a sequence of nodes that generates
a smooth motion closely following the collision-free input
path P(p0, pn,r).

The search procedure is presented in Algorithm 2, and all
line references that follow are in respect to this algorithm.
The search starts by selecting an initial node i from the FMG
as the starting node of the search, and aligning its precom-
puted motion map Ti with the input path P. The alignment
is determined by the transformation Φi associated with the
motion map Ti and a transformation Ψ j as determined by the
last position and orientation of the partial solution up to the

current point. Initially, Ψ0 is set to the start position and ori-
entation of the path P. Subsequent alignments are performed
in a similar manner by concatenating the accumulated trans-
formation Θ with the product of Φi and Ψ j, as defined by
the partial solution of the j-th iteration of the algorithm:

Θ j = Θ j−1ΦiΨ j. (4)

The next step is to sample path P to obtain query points
q ∈ X which are a subset of the space X (line 3). The query
points are equally spaced between the beginning of the resid-
ual input path up to the point with length along the path equal
to the average length of Ti, as defined in Equation 2. In our
experiments most points were about 10 cm apart, see Fig-
ure 6 for an example. Note that the sampled points are in
world coordinates and before querying the motion maps they
have to be transformed to the motion map’s local frame. This
is done by transforming the query points qi ∈ Q by the Θ

−1
j

transformation.

At every iteration of the path following procedure, we first
query for the goal pn and then all the query points Θ

−1 pi
against Ti to check for possibles partial paths (line 4). If none
of the queried cells in the motion map are occupied, the al-
gorithm backtracks to consider different candidates from its
previous iteration. If during backtracking the root node is
reached and all its alternatives are exhausted then the algo-
rithm stops and reports failure (lines 5-9). When the goal
query is successful then the final partial path is appended to

c© The Eurographics Association 2012.



M. Mahmudi & M. Mahmudi / Precomputed Motion Maps for Unstructured Motion Capture

Figure 5: Motion maps and their corresponding generated motions for a happy walking motion (top) and ballet motion (bottom).

Figure 6: Sample points from the input path used during the
path following search.

the solution and success is reported (lines 19-20), otherwise,
all the queried candidate paths are retrieved and sorted for
their suitability (line 11).

The sorting function that picks the best partial path among
the available candidates could be tuned to suit a particular
application. Since our goal is to follow the path as closely
as possible, we have defined our sorting function to compute
the area formed between the candidate partial path m and
the input path P. However, since longer paths will lead to a
larger area, we divide the cost by the square of the length of
the candidate path to avoid favoring shorter paths.

The sorting function f (m,M,P), is shown in Equation 5.
It takes three parameters: a candidate path m, the current par-
tial solution M and the input path P. TheL(m) function com-
putes the length of a path m (if an index of a frame is indi-
cated then it computes the length up to that frame). Function
P(P, l) returns a point p ∈ P at distance l along the input
path P. These functions read as follows:

f (m,M,P) = ∑
n
i=0 ||mi, P(P, L(M)+L(mi)))||

L(m)2 , (5)

P(P, l) =
{
(x,z) ∈ R2 | 0≤ l ≤ L(P)

}
. (6)

Once all the candidate paths are sorted, we iterate through
the sorted candidate paths and pick the best path mbest (line
12). Once the best candidate path mbest is chosen, we run
collision checking on mbest to determine if it is collision-
free; otherwise, we consider the next best candidate. Once
such candidate path is found, it gets appended to the current
partial solution M (line 16) and the last node of the best path
mbest determines which motion map gets used in the next
iteration of the path following procedure (line 18). At this
stage, the partial solution path M is a motion that follows the
input path P up to the point pbest , with an orientation facing
the residual input path P. In case all the sorted candidates
are unsuitable, the procedure backtracks and resumes con-
sidering other alternatives from the previous iteration (lines
13-14). The path following search iterates through this pro-
cedure until either the goal is reached (lines 19-20) or the
lengths of the partial solutions M exceed the length of the in-
put path P. Figure 7 overviews the main stages of the overall
algorithm and Figure 5 depicts two such examples.

As the path following advances towards the goal, a stack
of sorted candidates are stored at different stages. When
backtracking needs to occur, the failed stage is popped from
the stack and the next best candidates left from the previous
stages are reconsidered without having to re-query the mo-
tion maps associated with the previous stage. Storing par-
tial paths in stages offers a significant speed up and allows
for efficient reuse of prior partial path. In this manner, as a
whole, our motion search algorithm can be seen as an effi-
cient cached A* search with very effective pruning by the
2D channel computed from the triangulation planner.

c© The Eurographics Association 2012.



M. Mahmudi & M. Mahmudi / Precomputed Motion Maps for Unstructured Motion Capture

Depth 12 13 14 15 16 17 18 19 20 21 22

Time 5.72s 8.14s 11.58s 16.36s 22.93s 31.92s 44.23s 1m 0s 1m 23s 1m 55s 2m 38s

Cells 9600 12141 15361 19351 24367 30521 38391 48193 60356 75506 93992

Size 29MB 42MB 59MB 83MB 116MB 162M 225M 311MB 428MB 588MB 805MB

Table 1: Motion maps with various depths in a SMG: preprocessing time, average number of occupied cells, and average size.

Depth 2 3 4 5 6 7 8 9 10 11 12

Time 0.03s 0.09s 0.19s 0.57s 1.21s 3.26s 6.76s 17.39s 35.38s 1m 28s 3m 4s

Cells 161 360 667 1396 2458 4956 8312 16173 25552 47413 70117

Size 0.1MB 0.39MB 0.9MB 3MB 7MB 17M 35MB 88M 179M 444MB 889MB

Table 2: Motion maps with various depths in a FMG: preprocessing time, average number of occupied cells, and average size.

Figure 7: Main stages of the path following search proce-
dure.

6. Concurrent Motion Synthesis

Since the time spent on searching is significantly lower than
the duration of the synthesized motions, we can search and
play motions concurrently. When a query is made to the path
following procedure, the first node to be used is either spec-
ified by the user or automatically chosen by the procedure.
Since this first node is known in advance, and is not subject
to change for a particular query, our method can immediately
start the path following search procedure while the first node
is being played. When the first node has finished playing, the
path following is already way ahead of the nodes that need
to be played next. Usually the entire path following search
concludes before the first few nodes are played.

In order to achieve concurrent playing and search we have
two separate threads: the search thread and the rendering
thread. The search thread is assigned the task of carrying
the path following search procedure and the rendering thread
renders the obtained partial solutions. The rendering thread
initially awaits a signal from the search thread notifying the
completion of the first partial path. This is usually done
almost instantaneously. Then, after finishing rendering the
first partial path, the rendering thread continuously polls the
search thread for new partial paths until the goal is reached.
The rendering threads tries to achieve a fixed frame rate of

Algorithm 2 FollowPath(T,P, i)
1: ilast ←∅
2: while L(M)≤ L(P) do
3: Q← sample_path(P);
4: C← query_map(Ti, Q);
5: if C is empty then
6: if ilast == ∅ then
7: return FAIL;
8: else
9: i← ilast ;

10: else
11: S← sort_paths(C);
12: m← best_path(S);
13: if m == NONE then
14: i← ilast ;
15: else
16: M.append(m);
17: ilast ← i;
18: i← m.last();
19: if M.goal_reached() then
20: return M;
21: end while

30 frames per second. After the visualization buffer is up-
dated the rendering thread is blocked and the path following
searched is resumed until the next rendering cycle. The par-
allelization has shown to scale well and we have successfully
run about 10 characters searching and playing motions at 30
frames per second in a quad-core CPU.

Due to the backtracking possibility of our path following
search procedure, the rendering thread might start rendering
a partial path that has been backtracked in the search thread.
In that event, the rendering thread stops playing the motion
and reports a failure. This does not happen very often as the
path following search is very efficient, however, it may hap-
pen if the motion database lacks motions suitable for navi-
gating in all areas of the environment. The user might always

c© The Eurographics Association 2012.



M. Mahmudi & M. Mahmudi / Precomputed Motion Maps for Unstructured Motion Capture

decide to improve the database, or to disable simultaneous
search and animation in order to maximize the use of the
backtracking mechanism.

7. Results and Discussion

For our experimental setup we have built three FMGs from
different types of motions: regular walking database, happy
walking database and one ballet motion database. Each of
these motion capture databases contained 1 straight, 1 left
sharp turning, 1 left gentle turning, 1 right sharp turning and
1 right gentle turning motion. Our method showed to work
well with this relatively small number of turn variations. Ad-
ditional variations would improve the already high success
rate of the algorithm, and the only drawback would be addi-
tional storage space for the precomputed motion maps. The
motions were sampled at 60Hz using 18 Vicon cameras in an
environment of 5.5 m by 4 m. The total number of frames in
the motion capture databases ranged from 1079 to 3181, cor-
responding to 20-60s of motions. The motions were captured
and processed into the FMGs without any manual editing in-
volved. All the measurements took place on a 2.7 GHz Intel
i7 computer with 4GB of memory.

We built the FMGs as described in [MK11], and for com-
parison we also built a standard Motion Graph (SMG) as de-
scribed in [KGP02]. For achieving adequate comparisons
we have used the same error threshold for deciding tran-
sitions in both graphs. In our trials, for the regular walk-
ing database, we have set the maximum error threshold to
6 cm, obtaining a FMG with 72 nodes and average branch-
ing factor of 1.56, and a SMG with 277 nodes and an aver-
age branching factor of 1.30. Similar graphs were obtained
for the happy walking and ballet motions.

We then precomputed motion maps for all the nodes of
both FMG and SMG, and at various depths. As mentioned
earlier, motion maps were discretized into cells of 10 cm by
10 cm for the (x,z) positional parameters and into 12 cells
of 30 degrees for the orientation parameter. Table 1 (SMG)
and Table 2 (FMG) show the time taken to generate all the
motion maps. Also reported is the total number of occupied
cells and the combined size of all the motion maps.

As it can be seen from the Tables 1 and 2, SMGs re-
quire higher depths, in comparison to FMGs, to occupy mo-
tion maps with the same amount of entries. The reason for
this is the fact that the average length of a node in SMG is
shorter than the average length of a node in FMG. In Fig-
ures 3 and 4 we show motion maps precomputed from a
FMG (of depth 12) and from a SMG (of depth 22) and no-
tice that FMGs are significantly better at evenly spanning
the covered space of X and thus they present themselves as a
better choice for the path following algorithm. They offer a
wider range of different candidate motions and ensure global
connectivity (and concatenation success) during the path fol-
lowing search. This FMG property is essential for successful
execution of the path following method.

size depth success t (ms) len (m) inp (m)
33 8 63% 412.6 10.15 10.12
86 9 71% 356.7 10.96 10.94

174 10 87% 188.7 12.13 12.10
433 11 90% 148.3 12.75 12.66
867 12 93% 145.8 12.36 12.27

Table 3: The effect of the size (in MB) of motion maps on the
success rate and performance of the path following search
for FMGs. The right-most four columns show the success
rate of the search, the average time taken to search for the
solutions, the average length of the solutions, and the aver-
age length of the input paths.

We also measured the importance of the motion map
depth and size in respect to the effectiveness of the path fol-
lowing method by running 1000 trials on the environment
shown on Figure 8. Each trial consisted of: randomly selec-
tion of start and goal locations on the environment, query to
the LCT planner for a path P with clearance of 50 cm, and
full execution of the path following in respect to the input
path P. The same trials were conducted for both the FMG
and SMG, and the results are shown in Tables 3 and 4.

Table 3 reports the results for FMG. We can notice that the
size of motion maps initially had a strong influence on the
success rate and search time of the path following method,
however, once a certain horizon was reached larger motions
maps did not improve the path following method as effec-
tively. We also notice that the lengths of the solution motions
returned by the path following method were very close to the
length of the input path, showing that our method is capable
of generating solutions that are very close to optimal solu-
tions. This is as expected since we sample the input path and
only admit candidates that follow the path closely.

The same trials for SMG are shown on Table 4. Here,
however, we see that SMG did not scale as well as FMGs.
For maps of relatively same sizes, SMGs failed to achieve
acceptable success rates and ran slower than FMGs. As
noted earlier, the main drawback of SMGs were that they
failed to provide a variety of candidates for the path follow-
ing method to consider and thus failed to find solutions fol-
lowing the input that.

We then compared our path following method against two
different search methods: A* search and A* search with
channel pruning (A*-Ch) as described in [MK11]. The A*
search represents a popular technique to generate optimal so-
lutions when unrolling the graphs. A*-Ch runs the A* search
only inside a channel around the input path by pruning all
branches that go outside the path channel. It represents a
simple way to improve the A* search, however loosing opti-
mality. A comparison of the methods illustrating their speed
of computation is shown on Figure 8: the A* search took
186s, A*-Ch took 9.4s and the search with motion maps took

c© The Eurographics Association 2012.



M. Mahmudi & M. Mahmudi / Precomputed Motion Maps for Unstructured Motion Capture

Figure 8: Comparison of three search techniques. The left-most image shows the used environment and its blue path is the input
path as returned by the LCT planner. The subsequent images depict the search tree expansion of A*, A*-Ch and our proposed
method based on motion maps. The blue path in these last three images is the projection of the returned motion solutions. The
A* search solution took 186s to be computed, the A*-Ch solution took 9.4s, and the search with motion maps took 0.760s.

size depth success t (ms) len (m) inp (m)
28 12 17% 175.6 6.39 6.19
81 15 32% 120.0 8.24 8.03

158 17 45% 335.6 7.82 7.66
417 20 55% 352.1 9.40 9.10
767 22 70% 556.9 10.13 9.86

Table 4: The effect of the size (in MB) of motion maps on the
success rate and performance of the path following search
for SMGs. The columns are the same as in Table 3.

only 760ms. In this example our method gave an improve-
ment of 245 and 12.3 folds respectively.

We have also performed numerical comparisons between
the three search methods, with 1000 random trials on the
environment shown in Figure 8. We used motion maps of
depth 11 for the FMG and of depth 20 for the SMG. We
have only compared trials where all the three methods were
able to successfully return a solution. The results are shown
in Tables 5 and 6.

Table 5 shows the results for the FMG. The average length
of the input path was 14.34m. As it can be seen from the
table, motion maps were significantly faster than the other
methods, and the length of the solutions were also very close
to the original path length. Motion maps did show a reduced
success rate of 93%. However, this rate is still excellent for a
method based on precomputed search trees, and it is higher
than reported results in previous related works. Furthermore,
this rate can be improved to 100% by making sure that the
motions in the database include all needed variations for
a given environment. For instance in our paths around ob-
stacles, more motions of different turning angles would be
needed.

Table 6 shows the results obtained from running the same
experiments with a SMG. The average length of the input
paths was 12.87m. We notice that, although motion maps are
always faster than the other methods, when SMGs are used,
the success rate is decreased to 58%. FMGs are essential
for motion maps to be effective, however, it is important to

method success t (ms) len (m) speed up
A* 100% 23527.8 13.95 157.6x

A*-Ch 98% 1742.1 13.95 11.7x
M. Maps 93% 149.3 14.51 1.0x

Table 5: Search performance comparisons for A*, A*-Ch
and motion maps in 1000 random trials using FMG. The
columns show the overall success rate, the average compu-
tation time taken, the average length of the obtained solu-
tions, and the relative speed improvement obtained with mo-
tion maps.

method success t (ms) len (m) speed up
A* 100% 44184.0 12.48 50.6x

A*-Ch 96% 3192.4 12.58 3.6x
M. Maps 58% 872.4 13.30 1.0x

Table 6: Search performance comparisons as described in
Table 5, but here based on SMG.

note that using SMGs with more elaborate precomputation
techniques, such as the method by Lau et al. [LK10], could
make SMGs more suitable for our path following method.
However, we have not run any experiments to verify this.

The presented experiments clearly demonstrate the per-
formance of the precomputed motion maps. The success rate
of the overall method is highly related to the motion capture
database used to build the underlying FMG. In our presented
examples no special care was taken when selecting motion
clips for building the used FMGs, and still the success rate
achieved was of 93%. The presented experiments can also
serve as a way to evaluate the suitability of the motion cap-
ture database, and additional methods can also be employed
for measuring coverage [RP07].

Another important observation is that the granularity of
the precomputed motion maps does not influence how well
precomputed maps can store the motions. The reason for this
is that we do not disregard paths that might lead to a cell that
has been already occupied, and thus we never fail to capture
all the available paths from the root of a precomputed mo-

c© The Eurographics Association 2012.



M. Mahmudi & M. Mahmudi / Precomputed Motion Maps for Unstructured Motion Capture

tion map. Changing the resolution of the motion map might
redistribute the paths into neighbouring cells or pack neigh-
bouring cells into a larger cell but the number of entries in
the motion map will not be altered.

However, the granularity of the motion maps does have a
slight influence on the odds of finding a candidate path while
sampling the motion map. If the resolution is very coarse,
the sampling should be adjusted accordingly so that neigh-
bouring cells are not queried, otherwise overly long motions
might be considered. On the other hand, if the resolution of
the motion maps is overly fine then a finer sampling should
be employed in order to void missing possible candidates.
Across all our experiments we kept the resolution of the pre-
computed motion maps constant and equal to the resolution
of the sampling routine. One limitation of our method is that
the storage space may become high for large databases.

8. Conclusion

We have presented new preprocessing and search techniques
enabling unstructured motion graph structures to be effi-
ciently employed for locomotion synthesis around obstacles
in complicated environments. Several experiments were pre-
sented demonstrating the benefits of the proposed methods.
The results are always of highly quality and are computed at
interactive rates.

Acknowledgments This work was partially supported by
NSF Award IIS-0915665.

References

[AF02] ARIKAN O., FORSYTH D. A.: Synthesizing constrained
motions from examples. Proceedings of SIGGRAPH 21, 3
(2002), 483–490. 1, 2

[AFO03] ARIKAN O., FORSYTH D. A., O’BRIEN J. F.: Motion
synthesis from annotations. Proceedings of SIGGRAPH 22, 3
(2003), 402–408. 2

[CLS02] CHOI M. G., LEE J., SHIN S. Y.: Planning biped lo-
comotion using motion capture data and probabilistic roadmaps.
Proceedings of SIGGRAPH 22, 2 (2002), 182–203. 2

[EAPL06] ESTEVES C., ARECHAVALETA G., PETTRÉ J., LAU-
MOND J.-P.: Animation planning for virtual characters coopera-
tion. ACM Transaction on Graphics 25, 2 (2006), 319–339. 2

[GSKJ03] GLEICHER M., SHIN H. J., KOVAR L., JEPSEN A.:
Snap-together motion: assembling run-time animations. In Pro-
ceedings of the symposium on Interactive 3D graphics and
Games (I3D) (NY, USA, 2003), pp. 181–188. 2

[HG07] HECK R., GLEICHER M.: Parametric motion graphs. In
Proc. of the Symposium on Interactive 3D Graphics and Games
(I3D) (New York, NY, USA, 2007), ACM Press, pp. 129–136. 2

[Kal10] KALLMANN M.: Shortest paths with arbitrary clearance
from navigation meshes. In Proc. of the Eurographics / SIG-
GRAPH Symposium on Comp. Animation (SCA) (2010). 1, 3

[Kal12] KALLMANN M.: Path planning with dynamic and ro-
bust local clearance triangulations. Manuscript in preparation.
(2012). 3

[KGP02] KOVAR L., GLEICHER M., PIGHIN F. H.: Motion
graphs. Proc. of SIGGRAPH (2002). 1, 2, 8

[KL00] KUFFNER J. J., LATOMBE J.-C.: Interactive manipula-
tion planning for animated characters. In Proceedings of Pacific
Graphics (Hong Kong, October 2000). poster paper. 2

[KSLO96] KAVRAKI L., SVESTKA P., LATOMBE J.-C., OVER-
MARS M.: Probabilistic roadmaps for fast path planning in
high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation 12 (1996), 566–580. 2

[LCR∗02] LEE J., CHAI J., REITSMA P., HODGINS J. K., POL-
LARD N.: Interactive control of avatars animated with human
motion data. Proceedings of SIGGRAPH 21, 3 (July 2002), 491–
500. 1, 2

[LK05] LAU M., KUFFNER J. J.: Behavior planning for character
animation. In 2005 ACM SIGGRAPH / Eurographics Symposium
on Computer Animation (Aug. 2005), pp. 271–280. 2

[LK06] LAU M., KUFFNER J. J.: Precomputed search trees: plan-
ning for interactive goal-driven animation. In Proceedings of
the ACM SIGGRAPH/Eurographics symposium on Computer an-
imation (SCA) (2006), pp. 299–308. 2

[LK10] LAU M., KUFFNER J.: Scalable precomputed search
trees. In Motion in Games, vol. 6459. Springer Berlin / Heidel-
berg, 2010, pp. 70–81. 2, 9

[LL04] LEE J., LEE K. H.: Precomputing avatar behav-
ior from human motion data. In Proceedings of the ACM
SIGGRAPH/Eurographics symposium on Computer animation
(SCA) (2004), pp. 79–87. 3

[LWS02] LI Y., WANG T.-S., SHUM H.-Y.: Motion texture: a
two-level statistical model for character motion synthesis. Pro-
ceedings of SIGGRAPH 21, 3 (2002), 465–472. 2

[MK11] MAHMUDI M., KALLMANN M.: Feature-based loco-
motion with inverse branch kinematics. In Proc. of the 4th Inter-
national Conf. on Motion In Games (MIG) (2011). 1, 3, 8

[PB02] PULLEN K., BREGLER C.: Motion capture assisted an-
imation: Texturing and synthesis. Proceedings of SIGGRAPH
(2002), 501–508. 2

[PZLM10] PAN J., ZHANG L., LIN M., MANOCHA D.: A hybrid
approach for synthesizing human motion in constrained environ-
ments. In Conference on Computer Animation and Social Agents
(CASA) (2010). 2

[RP07] REITSMA P. S. A., POLLARD N. S.: Evaluating motion
graphs for character animation. ACM Trans. Graph. 26 (October
2007). 9

[SH07] SAFONOVA A., HODGINS J. K.: Construction and opti-
mal search of interpolated motion graphs. ACM Transactions on
Graphics (Proceedings. of SIGGRAPH) 26, 3 (2007). 2

[SKG05] SUNG M., KOVAR L., GLEICHER M.: Fast and accu-
rate goal-directed motion synthesis for crowds. In Proceedings
of the Symposium on Computer Animation (SCA) (jul 2005). 2

[SMM05] SRINIVASAN M., METOYER R. A., MORTENSEN
E. N.: Controllable real-time locomotion using mobility maps.
In Proceedings of Graphics Interface 2005 (2005), pp. 51–59. 2

[SO06] SHIN H. J., OH H. S.: Fat graphs: constructing an inter-
active character with continuous controls. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer ani-
mation (SCA) (2006), pp. 291–298. 2

[ZS08] ZHAO L., SAFONOVA A.: Achieving good connectivity
in motion graphs. In Proc. of the 2008 ACM/Eurographics Symp.
on Computer Animation (SCA) (July 2008), pp. 127–136. 2

c© The Eurographics Association 2012.


