
In Proceedings of the 4th International Conference on Motion In Games, Edinburgh, UK, 2011

Feature-Based Locomotion with Inverse Branch
Kinematics

Mentar Mahmudi and Marcelo Kallmann

University of California, Merced
Merced, CA, 95343, USA

{mmahmudi,mkallmann}@ucmerced.edu

http://graphics.ucmerced.edu

Abstract. We propose a novel Inverse Kinematics based deformation
method that introduces flexibility and parameterization to motion graphs
without degrading the quality of the synthesized motions. Our method
deforms the transitions of a motion graph-like structure by first assigning
to each transition a continuous rotational range that guarantees not to
exceed the predefined global transition cost threshold. The deformation
procedure improves the reachability of motion graphs to precise locations
and consequently reduces the time spent during search. Furthermore, our
method includes a new motion graph construction method based on ge-
ometrical segmentation features, and employs a fast triangulation based
search pruning technique that confines the search to a free channel and
avoids expensive collision checking. The results obtained by the proposed
methods were evaluated and quantified, and they demonstrate significant
improvements in comparison with traditional motion graph approaches.1

Keywords: Character Animation, Locomotion, Motion Capture

1 Introduction

The realistic animation of virtual characters remains a challenging problem in
computer animation. Successful approaches are mostly data-driven, using motion
capture data, and often involving motion blending and search. While blending
operations over motion segments adequately grouped are suitable to real-time
performances, search techniques based on motion graphs provide minimum dis-
tortion of the captured sequences, and naturally allow the exploration of solu-
tions in complex environments. Even if real-time performance is most often lost,
techniques based on motion graphs can still be employed in off-line production
phases for several purposes. For instance, the proposed deformation of locomo-
tion sequences can be used to build blendable clips for real-time steering control.
Little work has been done on developing deformation models that maintain min-
imum distortion to the captured motions. In this paper we present a simple and
efficient Inverse Kinematics (IK) branch deformation technique to address this

1 Accompanying video at http://graphics.ucmerced.edu/videos/11-mig-fmg.m4v



2 Mentar Mahmudi and Marcelo Kallmann

problem. Each branch of the search is treated as a kinematic chain of motion
segments with joint limits representing the allowed rotational deformation at
transitions. This technique produces motions precisely reaching given targets,
and at the same time leads to an earlier successful termination of each search.
These benefits do not sacrifice the quality of the motions as the error introduced
in the deformed transitions does not exceed the same predefined threshold error
used to construct the graph.

Our deformation method is also free of feet sliding artifacts thanks to a
proposed new feature-based approach for constructing improved motion graphs.
Feature-based motion graphs can be constructed significantly faster than tradi-
tional motions graphs by avoiding the pairwise comparison between all frames
in the database. Instead, only suitable pairs of frames are chosen for transition
evaluation. The chosen pairs are the output of feature detectors encoding rela-
tionships of interest among key joint positions of the given skeleton. Once these
suitable frames are detected, transitions are evaluated with the usual threshold-
based comparison metric, thus achieving the same quality of results.

Depending on the application, different feature detectors can be employed.
A wide range of feature detectors have been proposed by Müller et al [14]. These
feature detectors can be quickly evaluated and are based on spatial relationships
between the joints of the character at any given frame. We have noticed that,
for the purpose of locomotion synthesis, a very small set of feature detectors
is sufficient to successfully segment various walking motions. For example, the
forward walk detector checks for a crossing event at the ankle joints, leading to
motion segments with one foot always planted on the floor. This is a desirable
property as it eliminates the need for post-processing due foot-skating artifacts.
Similar strategies were demonstrated by previous authors [20], but employing
manually crafted clips.

We also present a search pruning technique based on planar channels with
guaranteed clearance from obstacles. This is achieved by projecting all obstacles
on the floor plane and maintaining a triangulation of the environment [7]. For any
given start and goal positions, the triangulation returns a collision-free channel
that is used to prune the branches unrolled by the motion graph search that
lie outside of the channel. This results in improved search times, especially in
environments with many obstacles.

Finally, extensive evaluations are presented for synthesizing locomotion among
obstacles, and our results demonstrate significant improvements in time of com-
putation, in finding solutions, and in the quality of results.

2 Related Work

A large body of work has been devoted to animating characters using human
motion capture data. Motion graphs [9, 1, 12, 2, 6] represent a popular approach
that is based on connecting similar frames in a database of motion capture
examples. Once a motion graph is available, graph search is performed in order
to extract motions with desired properties.



Locomotion with Inverse Branch Kinematics 3

Kovar et al. [9] cast the search as an optimization problem and use a branch
and bound algorithm to find motions that follow a user specified path. Arikan
and Forsyth [1] build a hierarchy of graphs and use a randomized search to
satisfy user constraints. Arikan et al. [2] use dynamic programming to search for
motions satisfying user annotations. Lee et al. [12] construct a cluster forest of
similar frames in order to improve the motion search efficiency. All these methods
require quadratic construction time for comparing the similarity between all the
frames in the database. Our method improves on this operation by connecting
only selected frames.

Many improvements to motion graphs have already been proposed. Ren et
al [16] combine motion graphs with constrained optimization. Shin and Oh [18]
combine groups of parametrized edges into a fat edge for interactive control.
Beaudoin et al [3] use a string-based model to organize large quantities of mo-
tion capture data in a compact manner. Our contributions focus on deforming
motions without accruing additional error, improved construction and represen-
tation and can be used to improve any previous method relying on a motion
graph structure.

Motion capture data has also been extensively used for locomotion planning
among obstacles [5, 15, 11, 21, 19]. In particular, Lau and Kuffner [10] manually
build a behaviour-based finite state machine of motions, which in later work is
precomputed [11] to speed up the search for solutions. Choi et al [4] combine
motion segments with probabilistic roadmaps. These methods however require
the user to manually organize motion examples in suitable ways.

Other approaches [17, 23, 13] are based on the interpolation of two time-scaled
paths or involve methods that solve a linear system of constraints [8]. Although
these methods increase the solution space, they come with the expense of further
distorting synthesized motions and they often increase the involved computation
time and complexity.

In general, the main drawback of motion graph structures is the prohibitively
large amount of data that may be needed in order to address practical applica-
tions involving obstacles and precise placements. The solutions presented in this
paper address these problems.

3 Feature-Based Motion Graph

As usual, we build our motion capture database by concatenating multiple mo-
tions together. Each motion is composed of a sequence of frames. A frame
f = (pr, q0, q1, ..., qk) defines the pose of the character where pr is the root
position and qi is the orientation of the i-th joint.

We start by segmenting the motions into semantically similar clips using fea-
ture detectors. For each motion type of interest, a feature detector is assigned
to it. For example, for forward walking motions (straight and turning), the seg-
mentation extracts from the motion capture database relatively small clips, each
containing one walk cycle. Each frame is tested against a foot crossing binary
test which looks whether the right ankle of the character is behind or in front



4 Mentar Mahmudi and Marcelo Kallmann

Fig. 1. Left: The alternating colors in the trajectories represent the segmentation of a
walking motion into walk cycles. Right: Segmentation of steps similar to lateral steps.
For clarity, only every second segmentation is displayed.

of the plane created by the left hip, right hip and the left ankle joint positions.
This rule leads to a robust segmentation procedure as shown in Figure 1. Our
motion capture database also contains lateral stepping motions. For these type
of motions, we devised a feature that segments the motion when the velocity of
both the left and right ankle joints is close to zero. See Figure 1 for an example.

The segmented clips start and end with frames that are very similar to the
equivalent ones in the other segmented motion clips. This segmentation proce-
dure is therefore suitable for a motion graph construction. Additional feature de-
tectors can be designed in order to segment motions of different nature. Adding
new feature detectors is straightforward and simple rules can achieve robust
segmentation. For the purpose of locomotion synthesis, the two described seg-
mentation criteria suffice to ensure that useful clips are obtained. The obtained
clips are semantically similar in form and length and could potentially be cate-
gorized, parametrized or dropped if sufficient amount of motion segments have
already been segmented. Another advantage of feature-based motion graphs is
the automatic avoidance of foot-skating artifacts. Since blending operations are
performed only at the extremities of each segmented clip, where there are only
frames with one foot in contact with the floor, the skeleton can be re-parented at
the contact foot before the blending operations, ensuring that the contact foot is
not altered from its original position. This is done during transition generation
avoiding any IK-based post-processing step for foot-skating correction. Motions
extracted from a feature-based motion graph contain no foot-skating.

Our motion graph is then formed by performing a pairwise test between the
initial and final frames of each segmented clip. A transition is created whenever
the frame comparison metric returns a value under a threshold pre-specified by
the user. We use the same distance metric and alignment transformation as in
the original motion graph work [9]. In order to compute the rotation range for the
transition, as will be required by our IK-based deformation model, we start with
the initial transformation as returned by the metric and change the rotational
component about the vertical axis in incremental steps in both clockwise and
counterclockwise directions until before the transitional cost exceeds the pre-
defined threshold. The achieved range is stored on each transition and defines



Locomotion with Inverse Branch Kinematics 5

Fig. 2. 2D error image between the frames of 3 walking motion cycles containing 693
frames sampled at 60 Hz. The red regions (circular) represent highest error and the
blue regions (thin and long) represent lowest error. The red points marked are the local
minima and the black crosses are transitions detected by the feature segmentation.
There are 57 black transitions and 42 red transitions. The bars at the top and left
of the image indicate the frames that were selected during the feature segmentation
phase. Black transitions are always located at intersections of segmented frames.

the allowed rotational range during motion deformation. As a final step, the
largest strongly connected subgraph of the graph is selected. The remaining
subgraph represents the final feature-based motion graph.

4 Analyzing Feature-Based Graphs

Figure 2 compares the transition locations selected with the standard motion
graph procedure against the proposed feature segmentation. These transitions
are superimposed on the 2D error image of the entire motion database. The same
frame comparison threshold is used for both methods. Note that the computation
of the 2D error image is required by the standard motion graph but not by the
feature-based motion graph. The transitions selected by the standard motion
graph are selected by detecting local minima in the 2D error image; whereas
for feature-based graphs, candidate transitions are determined by the feature
segmentation directly and are independent of the 2D error image.

Figure 2 shows that the feature-based transitions often occur in similar loca-
tions as the local minima ones. Since the possible transition frames are segmented
by the same feature detectors, they satisfy the same geometrical constraints and
thus have high chances of forming transitions. The motion capture database is
also segmented at less points; moreover, our experiments show that the feature
segmentation criterion will result on transition points that have higher connec-
tivity with other transition points.



6 Mentar Mahmudi and Marcelo Kallmann

Table 1. Numerical comparison between standard motion graphs (SMG) and feature-
based motion graphs (FMG). Column ’BF’ illustrates the connectivity of each graph
with its average branching factor, which is computed as the number of edges divided
by the number of nodes.

SMG FMG

Frames Constr. time (s) Nodes Edges BF Constr. time (s) Nodes Edges BF

693 208.1 42 16 1.27 1.5 51 80 1.61

1185 650.0 198 102 1.34 4.0 20 51 1.72

1660 1297.7 135 59 1.30 6.3 35 125 1.78

2329 2577.5 188 81 1.30 6.5 22 46 1.68

3347 4853.5 310 211 1.40 6.6 19 47 1.71

6887 22272.5 1245 933 1.42 27.0 100 403 1.80

Fig. 3. Construction time spent for SMG (top line) and FMG (bottom line) as a
function of the number of frames. The vertical axis represent time on a logarithmic
scale (base 10). See also Table 1.

In order to evaluate our approach, we have computed both a standard mo-
tion graph (SMG) and a feature-based motion graph (FMG) from 6 different
motion capture databases containing an increasing number of frames. Table 1
shows numerical comparisons between the structures, using the same transition
threshold. It is possible to notice that FMGs have less nodes and more edges in
most of the cases. The ’BF’ column in the table shows the average branching
factor obtained in each case. This column clearly indicates that FMGs exhibit
higher connectivity compared to SMGs in all cases. This property makes FMGs
particularily suitable for our deformation method.

FMGs are also computed much faster. The time spent for constructing a
feature-based motion graph is often improved from several minutes to just a few
seconds. Figure 3 depicts this comparison in logarithmic scale (with a base of
10) and shows that FMGs can be constructed 2 to 3 orders of magnitude faster
than SMGs. For instance, it took 27s to create a feature-based graph from 6887
motion frames while the standard motion-graph took about 6h.



Locomotion with Inverse Branch Kinematics 7

Table 2. Statistics when searching for locomotion sequences in different environments.
The same threshold was used for both of the graphs. ‘Size’ is the number of nodes and
‘BF’ is the branching factor in each graph. ‘Length’ represents the average arc-length
of the solution motions, measured with the character’s root position projected to the
floor. ‘Exp’ is the average number of node expansions during each search and ‘Time’ is
the average time spent searching for each solution in seconds. The last three columns
show the percentage improvement of FMGs over SMGs.

SMG FMG Comparison

Env. Size BF Length Exp. Time Size BF Length Exp. Time Length Exp. Time

1 344 1.30 239.6 2391 145.3 130 1.66 219.8 1015 115.4 8.28 57.55 20.57

2 344 1.30 250.3 2903 148.1 130 1.66 229.2 1072 97.8 8.44 63.07 33.91

3 344 1.30 267.6 3745 145.6 130 1.66 243.0 1263 85.0 9.20 66.28 41.59

4 344 1.30 259.0 3671 121.9 130 1.66 234.3 1292 74.5 9.53 64.79 38.88

As showed in Table 1, FMGs contain less nodes and higher connectivity
between nodes. The higher connectivity is key for improving the solutions gen-
erated from search queries. In order to quantify and evaluate the solution space
of the graphs, we now present several experiments measuring and comparing the
quality of our solutions in different environments with obstacles.

Table 2 summarizes the obtained statistics from 4 different environments with
increasing number of obstacles. Both SMG and FMG were constructed using the
same transition threshold. SMG had 344 nodes with an average branching factor
of 1.30, whereas FMG had 130 nodes with an average branching factor of 1.66.
Three metrics were used to compare the performance of the graphs: average
optimal solution length, average expansion count and average search time (in
seconds) spent during the graph search. As it can be seen on the table, FMG
in average expands less nodes, spends less time searching and produces smaller
errors in all of the cases. In average, FMGs show an improvement between 8-
9% in length error and between 20-40% in search time in comparison to SMGs
thanks to the increased solution space achieved with the higher connectivity.

5 Improving Search Among Obstacles with Channels

The search procedure used in the previous section represents the standard search
solution for extracting locomotion sequences from a given motion graph. We
now describe our improved search for faster motion extraction, which is based
on constraining the search to pre-computed channels. While the idea of pruning
the search has been explored before [17], our approach employs a new technique
based on fast geometrically-computed channels.

We first compute a free 2D path on the floor plane between the current po-
sition of the character and the target position using an available triangulation-
based path planning technique [7]. The computed paths are obtained well under
a millisecond in the presented environments. The path is computed with guaran-
teed clearance, therefore guaranteeing that sufficient clearance for the character



8 Mentar Mahmudi and Marcelo Kallmann

Fig. 4. Unrolled branches by a motion graph search with channel pruning disabled
(left) and enabled (right).

to reach the goal is available. Once a 2D path is available, we perform a graph
search by unrolling the motion graph in the environment and expanding only
the nodes that remain close enough to the path. Since the path is guaranteed
to be free of obstacles within its channel (i.e. within a distance r to the path),
only nodes generating motion clips completely inside the free channel are ex-
panded, and collision tests with the environment are not needed. As a result,
faster searches are achieved by avoiding collision checking, which represents a
major computational bottleneck when employed.

We test if a motion clip remains inside the free channel by projecting the
position of key extreme joints of the character (like the hand and feet joints) to
the floor, and measuring if their distances to the path are smaller than r. The
projected positions are taken from the final frame and few intermediate frames
of each motion clip. Collision tests are therefore reduced to point-path distance
computations.

The overall search procedure starts from the node in the motion graph con-
taining the initial character pose. This node is expanded, and every valid expan-
sion remaining inside the free channel is inserted in a priority queue Q storing
the expansion front of the search. The priority queue is sorted according to a
function f(node) = g(node) + h(node), where g(node) is the cost-to-come value
and h(node) is the distance to the goal. The search stops when a node is within a
distance d to the goal or when the priority queue is empty, in which case failure
is reported. In our experiments d is set to 10cm. Figure 4 clearly depicts the
advantage of confining the search within the computed channel.

6 IK-based Motion Deformation

Combined with our FMG and triangulation based pruning technique, a new
Inverse Branch Kinematics (IBK) procedure is proposed for improving the ob-
tained solutions. As previously mentioned, section 3, we compute a lower and
upper limit for the rotational component of each created transition during the
graph construction step.



Locomotion with Inverse Branch Kinematics 9

Fig. 5. A graph branch represented as a kinematic chain. Motion transitions are repre-
sented as rotational joints and the red lines represent the joint limits which are identical
to the corresponding rotation limits stored in the motion graph transitions.

The search procedure is performed as previously described, stopping when a
branch becomes close enough to the target in respect to a user-specified distance
do. Then, our IBK solver is employed to iteratively optimize the solution towards
the exact target location, up to a given tolerance di. Therefore, when h(node) <
do and g(node) > dist(start, goal), di < do, the IBK procedure is invoked. In
other words, when the distance between the node being expanded and the goal
is under do and the length of the current path is longer than the Euclidean
distance between the start and goal positions (meaning that there is room for a
branch deformation), the search is then paused and the branch is deformed as
a 2D kinematic chain with joint limits taken from the transition limits stored
in the transitions. In our experiments we have set do to 50cm, di to 10cm. See
Figure 5 for an example.

Depending on the nature of the transitions, the chain might have different
joint limits. In Figure 5, the transition between the third and four node of the
branch is not flexible. Thus this joint of the chain remains fixed. Also, the lower
and upper joint limits do not have to be symmetric. For example, the second
link has only room to move in respect to the upper limit. Once a candidate
solution chain with its joints limits is obtained, the IBK solver can then evaluate
rotational values at the joints in order to reach the target with the end-node of
the search path. Several experiments were performed and our solver achieved
best results with a Cyclic Coordinate Descent (CCD) solver [22]. We have in
particular experimented with a Jacobian-based pseudo-inverse solver, however,
in our highly constrained 2D kinematics chains the much simpler CCD solver
was faster.

Each CCD iteration increments rotations at each joint, starting from the base
joint towards the end-effector joint. At each joint two vectors vend and vgoal are
calculated. Vector vend is from the current joint to the end-effector and vgoal is
the vector from the current joint to the goal. These two vectors are shown in
Figure 5 for the fifth link of the chain. The angle between the two vectors is
incremented to the current joint and the result clipped against the joint limits.
The last step of the CCD iteration consists of calculating the improvement from



10 Mentar Mahmudi and Marcelo Kallmann

Fig. 6. The left image shows a typical problematic motion graph solution where an
overly long motion is returned as solution to a given target. The right image shows
the correct solution obtained by coupling the search with our IBK solver, which is able
to deform nearby motions to the exact target without degrading the quality of the
solution.

Table 3. Improvements gained when deploying IBK during search. Comparisons for
both SMGs and FMGs with and without channel pruning for four different environ-
ments are shown. All values are represented as percentages. Each value is calculated
as follows: if v is the value measured without deploying IBK and vibk is the value with
IBK deployed then the reported percentage p is calculated a p = −(vibk − v)/v.

SMG FMG
Channel Prunning Without Channel Channel Prunning Without Channel

Env. Length Exp. Time Length Exp. Time Length Exp. Time Length Exp. Time

1 17.9 73.3 36.8 1.5 55.0 29.2 18.0 80.0 57.2 5.0 49.1 30.8

2 17.6 67.4 29.9 2.5 53.3 21.8 16.6 75.6 43.9 4.5 49.3 13.5

3 17.6 62.7 23.4 5.6 58.1 23.9 13.7 67.1 19.9 4.2 56.5 19.0

4 17.6 67.3 29.9 5.6 48.1 15.1 12.9 55.2 6.2 4.4 47.4 14.6

the previous iteration, which is given by how much closer the end-effector is to
the target.

The CCD iterations stop if no improvements are detected after a number
of iterations. At this point, if the distance between the end-effector and the
goal is less then di then the solution with its new rotation values are evaluated
for collisions. If no collisions occur, success is reported otherwise the search
continues until another candidate branch is obtained. Figure 6 illustrates that
in several cases the IK deformation is able to achieve a solution that otherwise
the alternative solution without deformation would not be acceptable.

Table 3 shows the effect of employing the IBK solver for SMGs and FMGs
with both the channel pruning enabled and disabled. As it can be seen from
the table, IBK improves the generated solutions and reduces the search time
in all the cases. The average improvement in the length of the motions when
channel pruning is enabled is about 17% and 5% when pruning is disabled. The
improvement on average on the search time is 31% when channel pruning is
enabled and 21% when channel search is disabled. The reduced search times are
a direct consequence of being able to terminate the search process early. This
is possible because branches that are close to the goal can be deformed to meet
the goal precisely.



Locomotion with Inverse Branch Kinematics 11

7 Discussion and Conclusions

The presented evaluations demonstrate many advantages of the proposed feature
segmentation, channel pruning and IBK deformation.

The first obvious advantage of the proposed FMG is that the construction
time is dramatically improved in comparison to the standard motion graph pro-
cedure as our method does not need to compute a full 2D error image of the
motion capture database (see Table 1). The fact that we do not search for tran-
sitions in the quadratic space of possibilities does not impose any drawbacks.
On the contrary, we have shown that feature-based graphs have more connectiv-
ity and most often lead to improved results when applying search methods for
locomotion synthesis around obstacles, which is always a challenging problem
for discrete search structures to address. For instance, Table 2 shows up to 41%
improvement on the time spent searching for all four environments.

We have also showed comparisons demonstrating the several improvements
obtained by the channel pruning and the IK-based deformation technique (See
Table 3). In all scenarios, these methods were able to improve both the quality
of the synthesized solutions and the time taken during the search process. The
IK-based procedure in particular represents a novel, simple, and effective way to
optimize motions composed of motion capture segments.

In conclusion, we have presented new segmentation, search and deformation
techniques for improving motion graphs. Our techniques significantly reduce the
time spent for constructing the graph and at the same time lead to better so-
lutions from search queries. We have demonstrated these benefits with several
experiments in environments with obstacles, using both standard search pro-
cedures and the proposed channel pruning and IK-based motion deformation
techniques. The proposed methods have showed to produce superior results in
all cases.

Acknowledgments: this work was partially supported by NSF Award IIS-
0915665.

References

1. Okan Arikan and David A. Forsyth. Synthesizing constrained motions from exam-
ples. Proceedings of SIGGRAPH, 21(3):483–490, 2002.

2. Okan Arikan, David A. Forsyth, and James F. O’Brien. Motion synthesis from
annotations. Proceedings of SIGGRAPH, 22(3):402–408, 2003.

3. Philippe Beaudoin, Stelian Coros, Michiel van de Panne, and Pierre Poulin.
Motion-motif graphs. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA), pages 117–126, 2008.

4. Min Gyu Choi, Jehee Lee, and Sung Yong Shin. Planning biped locomotion using
motion capture data and probabilistic roadmaps. Proceedings of SIGGRAPH,
22(2):182–203, 2002.

5. Claudia Esteves, Gustavo Arechavaleta, Julien Pettré, and Jean-Paul Laumond.
Animation planning for virtual characters cooperation. ACM Transaction on
Graphics, 25(2):319–339, 2006.



12 Mentar Mahmudi and Marcelo Kallmann

6. Michael Gleicher, Hyun Joon Shin, Lucas Kovar, and Andrew Jepsen. Snap-
together motion: assembling run-time animations. In Proceedings of the symposium
on Interactive 3D graphics and Games (I3D), pages 181–188, NY, USA, 2003.

7. Marcelo Kallmann. Shortest paths with arbitrary clearance from navigation
meshes. In Proceedings of the Eurographics / SIGGRAPH Symposium on Com-
puter Animation (SCA), 2010.

8. Manmyung Kim, Kyunglyul Hyun, Jongmin Kim, and Jehee Lee. Synchronized
multi-character motion editing. ACM Trans. Graph., 28(3):1–9, 2009.

9. Lucas Kovar, Michael Gleicher, and Frederic H. Pighin. Motion graphs. Proceedings
of SIGGRAPH, 21(3):473–482, 2002.

10. Manfred Lau and James J. Kuffner. Behavior planning for character animation.
In 2005 ACM SIGGRAPH / Eurographics Symposium on Computer Animation,
pages 271–280, August 2005.

11. Manfred Lau and James J. Kuffner. Precomputed search trees: planning for interac-
tive goal-driven animation. In Proceedings of the ACM SIGGRAPH/Eurographics
symposium on Computer animation (SCA), pages 299–308, 2006.

12. Jehee Lee, Jinxiang Chai, Paul Reitsma, Jessica K Hodgins, and Nancy Pollard.
Interactive control of avatars animated with human motion data. Proceedings of
SIGGRAPH, 21(3):491–500, July 2002.

13. Sanjeev Khanna Liming Zhao, Aline Normoyle and Alla Safonova. Automatic
construction of a minimum size motion graph. In Proceedings of ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2009.

14. Meinard Müller, Tido Röder, and Michael Clausen. Efficient content-based retrieval
of motion capture data. In Proceedings of SIGGRAPH, pages 677–685, New York,
NY, USA, 2005. ACM Press.

15. Jia Pan, Liangjun Zhang, Ming Lin, and Dinesh Manocha. A hybrid approach
for synthesizing human motion in constrained environments. In Conference on
Computer Animation and Social Agents (CASA), 2010.

16. Cheng Ren, Liming Zhao, and Alla Safonova. Human motion synthesis with
optimization-based graphs. Computer Graphics Forum (In Proc. of Eurograph-
ics 2010, Sweden), 29(2), 2010.

17. Alla Safonova and Jessica K. Hodgins. Construction and optimal search of in-
terpolated motion graphs. ACM Transactions on Graphics (Proceedings. of SIG-
GRAPH), 26(3), 2007.

18. Hyun Joon Shin and Hyun Seok Oh. Fat graphs: constructing an interactive charac-
ter with continuous controls. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer animation (SCA), pages 291–298, 2006.

19. Makyu Sung, Lucas Kovar, and Michael Gleicher. Fast and accurate goal-directed
motion synthesis for crowds. In Proceedings of the Symposium on Computer Ani-
mation (SCA), jul 2005.

20. A. Treuille, Y. Lee, and Z. Popović. Near-optimal character animation with con-
tinuous control. In Proceedings of ACM SIGGRAPH. ACM Press, 2007.

21. Ben J.H. van Basten, Arjan Egges, and Roland Geraerts. Combinining path plan-
ners and motion graphs. Computer Animation and Virtual Worlds, 21:1–22, 2011.

22. L.-C.T. Wang and C.C. Chen. A combined optimization method for solving the
inverse kinematics problem of mechanical manipulators. IEEE Transactions on
Robotics and Automation, 7(4):489–499, 1991.

23. Liming Zhao and Alla Safonova. Achieving good connectivity in motion graphs. In
Proceedings of the 2008 ACM/Eurographics Symposium on Computer Animation
(SCA), pages 127–136, July 2008.


