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Planning Humanlike Actions in Blending Spaces
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Abstract— We introduce an approach for enabling sampling-
based planners to compute motions with humanlike appearance.
The proposed method is based on a space of blendable example
motions collected by motion capture. This space is explored
by a sampling-based planner that is able to produce motions
around obstacles while keeping solutions similar to the original
examples. The results therefore largely maintain the humanlike
characteristics observed in the example motions. The method is
applied to generic upper-body actions and is complemented by
a locomotion planner that searches for suitable body placements
for executing upper-body actions successfully. As a result, our
overall multi-modal planning method is able to automatically
coordinate whole-body motions for action execution among
obstacles, and the produced motions remain similar to example
motions given as input to the system.

I. INTRODUCTION

Despite several successes in the motion planning domain,
achieving whole-body humanoid motions with humanlike
characteristics remains a challenge. One main difficulty that
emerges from this problem is to strike the right balance be-
tween how much to explore solutions during motion planning
and how much to constrain the search space in order to obtain
solutions with humanlike characteristics.

Our proposed method starts by decomposing the problem
into a multi-modal planning problem, where basic skills are
planned individually and also coordinated with each other.
This approach facilitates addressing the specific needs of
each skill, and is inspired by how humans may solve real
motion planning problems. This paper addresses the case of
planning motions composed of two skills, locomotion and
generic upper-body actions, and we use example motions
from motion capture as a way to build search spaces with
humanlike characteristics.

For example, consider the simple scenario where a character
walks toward a light switch and turns it on, as shown
in Figure 1. Solving this problem requires a locomotion
planner able to place the character in a suitable location near
the switch, and then an upper-body action is required for
reaching and pushing the light switch. Our overall method
solves such class of full-body motion problems.

Upper-body actions are synthesized with a novel motion
planner that searches for solutions in a space of blendings
between example motions. The method produces collision-
free motions to precise targets and achieves solutions with
humanlike characteristics similar to the ones observed in the
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Fig. 1. Our overall planning approach achieves precise end-effector
placement for action execution among obstacles and produces humanlike
results in coordination with locomotion.

original example motions. The planner is therefore limited
to explore the variations embedded in the example motions,
and a suitable body placement is essential for enabling the
upper-body planner to be successful.

The upper-body planner is thus complemented with a stan-
dard locomotion planner based on a motion graph. The
locomotion planner will search for suitable body placements
in coordination with the upper-body planner until an overall
whole-body motion for performing the target upper-body
action is found.

As a result, our combined approach is able to automatically
coordinate locomotion with generic actions, and the pro-
duced motions are realistic, collision-free, and can precisely
interact with the environment. Our overall method is able
to address a broad range of real-life tasks and is therefore
useful to a number of applications in ergonomics, training,
education, entertainment, and also humanoid robotics.

II. RELATED WORK

Traditional motion planning methods [24, 27, 29] are based
on the systematic search of configuration spaces. Among
the several techniques, sampling-based methods [18, 23, 28]
have become extremely popular for planning in continu-
ous configuration spaces. Such methods are also popular
for planning humanoid motions, in particular for planning
footsteps [4, 5, 21] and reaching motions [2, 7, 8, 15, 19].



Multi-modal planning has recently emerged for humanoids
and has been developed for locomotion and climbing in dif-
ficult terrains [3, 11, 12], and also to sequentially coordinate
walking and pushing [13]. With a focus on locomotion, ex-
tensions to the basic PRM method for handling multi-modal
problems have been proposed [10], and generic multi-skill
planners have been developed [17]. However, no previous
work in motion planning has addressed the computation of
motions with humanlike characteristics.

In contrast, methods originated from the computer animation
area focus on achieving humanlike results from motion
capture, without much importance given to searching for
collision-free motions in complex environments. Probably
the most popular approach for computing realistic full-body
motions is to extract motions from a motion graph structure.
Motion graphs are built by connecting the frames of high
similarity in a database of motion capture examples [1, 20,
30, 31, 34, 35]. Once the motion graph is available, a graph
search is performed in order to extract motions with desired
properties. The main drawback of motion graphs is that a
prohibitively large structure would be needed in order to
produce motions satisfying many constraints, such as around
obstacles and addressing precise placements of end-effectors.

Planning methods have been integrated with motion capture
data in many ways. For instance, Lau and Kuffner [25] plan
over a behavior-based finite state machine of motions [26],
Choi et al [6] combine motion capture with probabilistic
roadmaps, and many other planning methods have been
proposed for synthesizing full-body motions among obstacles
[9, 16, 22, 26, 33]. However, none of these methods have
proposed a solution for planning generic upper-body actions
in a continuous space and in coordination with locomotion.
The ability to search in a continuous action space allows
planners to compute much more complex solutions. Our
proposed method represents the first approach for solving
this problem with humanlike results, and is based on a
novel sampling-based search defined on a space of motion
blendings.

III. LOCOMOTION PLANNER

We start from the observation that correct body positioning
is essential for the execution of humanlike upper-body ac-
tions. A locomotion planner is therefore needed to explore
suitable body placements nearby the action target location.
Any locomotion planner could be integrated in our overall
approach to the problem, and in this paper we have developed
a locomotion planner based on a motion graph.

We construct our locomotion graph similarly to Kovar et
al [20], however using a more efficient segmentation pro-
cedure designed for detecting useful walking cycles. The
procedure is based on feature-based segmentation rules,
similarly to the ones employed by Müller et al [32]. Each
frame in the motion capture database is tested against a foot-
crossing binary test which looks whether the right ankle of

the character is behind or in front of the plane created by
the left hip, right hip and the left ankle joint positions. All
frames in a motion capture sequence that lead to a change
in the binary test become candidate transition frames for the
final locomotion graph.

After all motion clips are segmented, a pairwise test between
the candidate transitions is then performed only between
the initial and final frames of each segmented clip in order
to determine the acceptable transitions. We use the same
distance metric alignment transformation as in the original
motion graph work [20]. With our segmentation method the
graph construction is sped up dramatically in comparison
to the traditional pairwise comparison among all pairs of
frames. For instance in a database with 567 motions, the
graph construction time improved from 2min to 1s, and for
a database with 2245 motions, the improvement was from
32min to 11.5s. No drawbacks were detected for employing
our simplified segmentation procedure and the locomotion
planning results remained of high quality.

Let qi represent the initial full-body posture of the character.
The task of the overall planning problem is to find a full-
body motion composed of two parts: locomotion for body
positioning, and then upper-body action execution satisfying
a given end-effector goal location pg . The goal location may
be a position target to point to, a 6 degrees of freedom
vector encoding position and orientation of a precise hand
placement for grasping, etc. The set Qg denotes all possible
body postures satisfying the action goal point pg .

The task of the locomotion planner is to explore suitable
body placements for enabling the action planner to reach a
posture in Qg . Once the locomotion graph is available, an
A* search for unrolling the graph is employed with the cost-
to-go heuristic attracting the search towards pg , and only
allowing collision-free motions to be expanded. Figure 2
illustrates several expansions obtained with the unrolling of
the motion graph.

Fig. 2. The images illustrate expansions obtained by unrolling the
locomotion graph. The expansions generate several possible trajectories
nearby obstacles (left), which will be later considered for upper-body action
execution. If a long locomotion is expected, the branching factor of the
search can be constrained to only allow expansions nearby a 2D path planned
on the floor plan (center), otherwise too many unnecessary expansions may
occur (right). A large literature on motion graphs is available with several
extensions that can be integrated to customize the locomotion planner to
specific situations.

Whenever the locomotion search expansion generates a char-



acter posture qa that is close enough to pg , qa is then
considered as a transition point to the upper body action
and qa becomes the initial posture for the upper-body action
planner, which will in turn launch a bidirectional search
attempting to reach a posture in Qg . The upper-body planner
is explained in Section IV.

If the upper-body planner is not successful after a fixed
number of iterations, the locomotion planner continues to
expand towards additional candidate body placements until
the action can be executed or until a maximum time limit
is reached, in which case the overall planner returns failure.
Figure 3 illustrates the bi-modal overall search procedure.
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Fig. 3. The locomotion planner unrolls motion capture locomotion clips
(left blue tree), and for each candidate initial action posture, a bidirectional
upper-body action planning is performed. Here qa was not able to generate
a solution after a fixed maximum number of iterations and a new body
placement q′a was finally successful.

IV. UPPER-BODY ACTION PLANNER

Every time one branch of the locomotion graph expansion
reaches a character pose qa that is close enough to the action
target, qa becomes a candidate initial pose for initializing the
action planner. Selecting a suitable proximity threshold is
action-dependent. For example, for reaching motions a suit-
able distance will be related to the length of the character’s
arm, while for pointing actions larger values can be used for
enabling pointing to targets from a certain distance.

The upper-body action is specified with a database of similar
and time-aligned example motions, which are realistic upper-
body action instances collected from motion capture.

Let a motion M(t) be represented as a sequence of poses
with a discrete time (or frame) parameterization t. With
the character at pose qa, we employ an Inverse Blending
optimization procedure [14] in order to obtain a set of
blending weights wg creating an upper-body action motion
M(wg) precisely reaching the action target pg:

M(wg) =

k∑
j=1

wjMj, wg = {w1, . . . , wk}, (1)

where k is a fixed parameter specifying the number of
example motions from the database to be considered for
blending. For a given pg the k example actions that reach

Fig. 4. The images show the trajectories of the character’s hand from
example motions in a database of 36 pointings. The character’s pose shows
the final posture of the motion obtained by blending the 10 examples with
the trajectories in red (k = 10). The blending weights were obtained by
inverse blending optimization. The blended pointing motion successfully
reaches the action target pg , which is represented by the gray sphere.

locations closest to pg are selected. Figure 4 illustrates one
database of example motions used in our experiments.

In our experiments wg can be determined by inverse blend-
ing optimization under 2 milliseconds of computation. The
routine returns when the error (proximity to target pg)
reaches zero or cannot be further minimized, in which case
failure is returned and qa is discarded as a candidate body
placement.

Whenever wg is successfully computed from the inverse
blending procedure, motion M(wg) provides a realistic
humanlike upper-body action precisely meeting the action
goal pg . Motion M(wg) is then tested with several dis-
crete collision checks over its time parameterization interval
[ta, tg]. If no collisions are detected the overall planning
problem is solved.

The planner: when motion M(wg) collides with the en-
vironment, all the non-valid frames are removed and the
motion is split in two pieces: the first piece contains the
adjacent valid frames starting from time ta, and the second
piece contains the adjacent valid frames leading to the frame
at time tg . These motion pieces will define two initial trees
T1 and T2 to initialize the bidirectional action planner. A few
frames equally spaced in time are taken from each motion
piece to define the initial nodes of the trees. The upper-body
planner is only initialized if posture qg at time tg is a valid
posture, therefore trees T1 and T2 can be always initialized
since posture qa at time ta is a valid posture determined by
the locomotion planner.

With the initial search trees defined a bidirectional search
procedure is repetitively called until a collision-free motion
can be found to reconnect the two trees. The state space of
the search is a weight-temporal space. The nodes stored in
trees T1 and T2 will each contain a pair (w, t) where the
blending weight vector w specifies the posture (by direct
blending) associated with the node, and the time t indicates
at which time that posture is specified along the motion being
planned. In other words, each node (w, t) specifies a posture
q(w, t) that is the frame of M(w) at time t.



Fig. 5. The top sequence illustrates the invalid frames in M(wg) due to collisions, and the bottom image illustrates the solution motion obtained by the
action planner. The images also show the expanded nodes of trees T1 and T2. The thicker edges represent the initial branches that were used to initialize
the trees. The search is performed in the weight-time space and the position of the wrist joint was used to plot the edges of the search trees.

The strategy of searching in the weight-temporal space is
the key element of the proposed planner: it enables a search
procedure that explores the motion variations available in
the set of example action motions. The planner will never
synthesize new motions from scratch but instead will search
for combinations of existing motion variations. The solution
plan is a sequence of time parameterized blending weights
that are afterwards interpolated to achieve a smooth solution
motion with varying contributions from the example actions.
See figure 5 for an example.

The bidirectional search routine performs successive search
expansions until trees T1 and T2 are connected, or until a
maximum of Nmax iterations pass, in which case failure
is returned. The expansion routine of the action planner is
detailed in Algorithm 1. At each expansion the algorithm
tries to connect the trees, and if not possible it tries to grow
each tree in the direction of the random time sample trand by
a time interval t∆. The details of the algorithm are explained
in the paragraphs below.

Algorithm 1 Action Planner Expansion Routine
Expand Bidirectional Search ( pa, wg )

1. T1 ← tree starting at qa
2. T2 ← tree reaching qg
3. (wrand, trand)← sample in weight-time space
4. (w1, t1)← T1 node closest to trand, t1 < trand
5. (w2, t2)← T2 node closest to trand, trand < t2
6. if ( connection (w1, t1) to (w2, t2) is valid ) then
7. return CONNECTION FOUND
8. else
9. try to expand ( (w1, t1), (wrand, trand), t∆ )

10. try to expand ( (w2, t2), (wrand, trand), t∆ )
11. return NOT YET FOUND
12. end if

Sampling the weight-time space: in line 3 of the algorithm
a (wrand, trand) pair is sampled. Time trand is randomly
sampled in interval [ta + ta∆, tg − tb∆]. The ta,b∆ parameters
concentrate the sampling on the parts of the environment

where collisions are most often found, since the extremities
of the original motion M(wg) are always valid.

A more specific strategy for sampling the weight space
is required for the algorithm to well explore the motion
variations embedded in the example actions being blended.
We first sample one example motion index mrand among
the full set of example motions in the database. We also bias
the index sampling to select more samples outside of the k
motions used by the initial inverse blending solution in order
to favor variations and avoid duplication of blended motions.
Then a relatively large blending weight wrand is sampled (in
interval [0.5, 1.0]) and associated to the motion with index
mrand. The new weight wrand is incorporated to the overall
weight vector wrand and the other weights are lowered by
uniform scaling such that wrand is re-normalized to 1 and the
influence from example motion mrand remains higher than
the other influences. Our experiments have showed that this
procedure generates more collision-free samples and yields a
better overall planning performance than a simplistic uniform
sampling over the overall weight space.

Node expansion: after a node (wrand, trand) is sampled, the
algorithm will then select on each tree the nodes (w1, t1)
and (w2, t2) that are closest in time to trand, respecting
the monotone time condition t1 < trand < t2, and then
attempt to connect the two nodes (line 6 in the algorithm). If
a connection is found the algorithm successfully terminates,
otherwise the two trees are expanded.

Routine try to expand() in lines 9 and 10 of the algorithm
will try to grow each tree in the direction of (wrand, trand)
by a time step t∆. This procedure yields a new node (w′

1, t
′
1)

to be connected to (w1, t1) on T1. Weight vector w′
1 is an

interpolation between w1 and wrand at time t′1, where t′1 =
t1 + t∆, adjusted such that t′1 ≤ trand. A discrete collision
test is performed for q(w′

1, t
′
1) and it is added to T1 only if no

collisions are detected. An equivalent expansion procedure is
performed to add node (w′

2, t
′
2) to tree T2.

Lazy collision tests: the algorithm postpones fine resolution
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Fig. 6. Illustration of the bidirectional expansion procedure.

of collision tests along tree edges until the trees are con-
nected, in order to promote fast exploration of the search
space. When the trees connect, discrete collision tests are
performed over the segments composing the solution path
that have not yet been tested for collision, and a solution is
found if no collisions are detected. If collisions are found,
the connection between the trees is broken at the invalid
edge and the expansion iterations re-start in search of new
connections. When a solution is found, the solution motion is
generated by smoothly interpolating (with ease-in and ease-
out interpolators) each pair of motions generated by adjacent
weight vectors in the solution plan. Such interpolated con-
catenation of motion pieces is illustrated in Figure 7.

MWg MWr1 MWr2 MWr(n-1) MWrn MWg

Fig. 7. Nodes (w, t) along a tree branch are concatenated with smooth
transitions to form the corresponding motion.

Extensions: We have also obtained improvements with the
popular strategy of sampling nearby obstacles. We identify
the nodes that, after a few iterations, could not connect to
samples due collisions. These nodes indicate proximity to
obstacles. The algorithm can then prioritize the sampling
(temporally) near these nodes, within a window of ±t∆, so
that the success rate of finding collision-free nodes around
these locations is improved.

Several other extensions have been integrated in our frame-
work, in particular, the gaze of the character can be in-
dependently controlled to fixate the action target and the
obstacles. The velocity profile of the end-effector in each
solution motion obtained is also smoothed as a final post-
processing operation in order to maintain the final motion
with a velocity profile close to the velocity profile of the
most similar motion (in duration) in the database.

V. RESULTS AND DISCUSSION

Several animations have been produced for demonstrating
the results of our overall method. See Figure 1, 8 and 9

for examples. The accompanying video also presents several
obtained results. The locomotion planner quickly expands
several body placements nearby the action targets, providing
the upper-body planner several options for planning the
upper-body action. The overall full-body planner therefore
evaluates different body placements until a suitable valid and
collision-free action is found.

The decoupling between locomotion and upper-body actions
avoids several problems related to large motion graphs
including both locomotion and upper-body actions. The
weight-time space of action blendings provides a continuous
space for planning where only the humanlike strategies
encoded in the example actions are explored. The action
planner uses a relatively large t∆ in order to quickly explore
the space around the obstacles, such that the action planner
can quickly return to the locomotion planner in case of fail-
ure, and it also minimizes jerky variations in found solutions.
In practice the planner showed to always produce smooth
motions with the only post-processing operation being the
tuning of the final velocity profile for the end-effector. No
other post-processing smoothing procedures were required.
The solution motion always resembles the given examples in
the action database and “no surprises”’ in the final motion
will appear.

The performance of the planner largely depends on the
considered example motions and on the number of triangles
considered for collision detection. In the example in Figure 8
a database of 36 motions (shown in Figure 4) was used
and 5K triangles were considered for collision detection.
A 10000-trial benchmarking test of the action planner with
random obstacle and target locations found solutions in 78%
of the cases, with each bidirectional search taking in average
4.92 milliseconds. For the remaining cases the planner re-
turned failure after hitting the limit of 500 expansions within
an average of 12.76 milliseconds of computation. These
times demonstrate that an extensive overall search composed
of both locomotion and action planning can be executed in
less than one second in reasonably complex environments.

VI. CONCLUSIONS

This paper describes a multi-skill motion planning approach
that integrates discrete search in a locomotion graph with
a systematic bidirectional expansion in a novel weight-
time action search space. The search spaces are based on
motion capture data, ensuring the achievement of humanlike
results. The approach for the upper-body action planning
represents the first sampling-based search algorithm defined
on a continuous space based on humanlike motion capture
examples. The overall approach is able to automatically
coordinate locomotion with generic actions among obstacles,
and the produced motions are realistic, collision-free, and
precisely meeting given targets in the environment. Since
actions are modeled from motion capture examples, any
upper body actions can be planned, from reaching motions
and pointings to generic gestures.



Fig. 8. The top sequence shows the initial motion computed by inverse blending. The initial motion collides with the environment and it is therefore used
to initialize the action planner (Algorithm 1). The bottom sequence illustrates the collision-free solution obtained with the planner. Since the planner is
restricted to search in a blending space of example actions, the particular strategy obtained in the solution also exists in the database of example actions.
The solution of “pointing over obstacles” can therefore be considered to be a humanlike solution.

Fig. 9. Example of pouring water on a distant location on a table, among obstacles, and coordinated with locomotion. The behavior of the left arm going
backwards in order to assist with balance completely comes from the example motions being blended by the action planner.
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