
In Proceedings of the Third International Conference on Motion in Games (MIG), 2010

Navigation Queries from Triangular Meshes

Marcelo Kallmann

University of California, Merced

Abstract. Navigation meshes are commonly employed as a practical represen-
tation for path planning and other navigation queries in animated virtual envi-
ronments and computer games. This paper explores the use of triangulations as a
navigation mesh, and discusses several useful triangulation–based algorithms and
operations: environment modeling and validity, automatic agent placement, track-
ing moving obstacles, ray–obstacle intersection queries, path planning with arbi-
trary clearance, determination of corridors, etc. While several of the addressed
queries and operations can be applied to generic triangular meshes, the efficient
computation of paths with arbitrary clearance requires a new type of triangular
mesh, called a Local Clearance Triangulation, which enables the efficient and
correct determination if a disc of arbitrary size can pass through any narrow pas-
sages of the mesh. This paper shows that triangular meshes can support the effi-
cient computation of several navigation procedures and an implementation of the
presented methods is available.

Keywords: path planning, reactive behaviors, navigation, crowd simulation.

1 Introduction

Navigation meshes are commonly used as a representation for computing navigation
procedures for autonomous characters. The term navigation mesh however has been
broadly used to refer to any type of polygonal mesh able to represent walkable areas in
a given environment, and no specific attention has been given to establishing properties
and algorithms for specific types of navigation meshes. This paper explores the use of
triangulated meshes and summarizes several operations, queries and properties which
are useful for the implementation of navigation strategies for autonomous agents.

One main advantage of relying on triangulations is that the obtained triangular cell
decomposition of the environment has O(n) cells, where n is the number of segments
used to describe the obstacles in the environment. As a result, spatial processing algo-
rithms will depend on n, which is related to the complexity of the environment (the
number of edges to describe obstacles) and not to the size (or extent) of the environ-
ment. Therefore triangulated meshes are in particular advantageous for representing
large environments where uniform grid–based methods become significantly slower.

The algorithms described in this paper target several navigation queries needed in
applications with many agents in complex and large environments. There are two main
types of obstacles which have to be addressed: 1) static objects are those describing
the environment, they typically do not move over time but it is acceptable that they
change their position from time to time (like a door which can be open or closed), and



2 M. Kallmann

2) dynamic objects are those which are continuously in movement, as for example the
agents themselves.

Following the most typical approach taken with navigation meshes, the presented
triangulations are considered to only represent static objects. Even if dynamic updates
of obstacles are possible, specific approaches (based on triangulations or not) for han-
dling dynamic objects will usually be more efficient. This paper addresses the use of
triangulations for handling these issues and also for computing several additional navi-
gation queries, such as ray–obstacle intersections and path planning with clearance (see
Figure 1). The discussed data structures and algorithms have been implemented and are
available from the author’s web site1.

Fig. 1. Examples of several paths computed with arbitrary clearances in different environments.

2 Related Work

Triangulations are powerful representation structures which have been used in different
ways for the purpose of computing navigation queries. Triangulations have in particular
been used for extracting adjacency graphs for path planning from given environments.
A variety of approaches have been devised, as for example to automatically extract
roadmaps considering several layers (or floors) [16], and to hierarchically represent
environments with semantic information and agents of different capabilities [19].

Most of the previous work on the area has however focused on specific application
goals, and not on the underlying algorithms and representations. For instance, one main
drawback of reducing the path planning problem to a search in a roadmap graph is that
the obtained paths will still need to be smoothed. In addition, it also becomes difficult to
compute paths with other useful properties, such as being optimal in length and having
a given clearance from obstacles.

1 http://graphics.ucmerced.edu/software.html



Navigation Queries from Triangular Meshes 3

The most popular approach for computing the geometric shortest path among polyg-
onal obstacles defined by n segments is to build and search the visibility graph [3,17] of
the obstacles, what can be achieved in O(n2) time [21, 24]. The shortest path problem
is however O(n log n) and optimal [11] and near-optimal [20] algorithms are available
following the continuous Dijkstra paradigm. However, in particular when considering
arbitrary clearances from obstacles, it is difficult to achieve efficient algorithms which
are suitable for practical implementations. The visibility–voronoi complex [27] is able
to compute paths in O(n2) time and is probably the most efficient implemented ap-
proach to compute paths addressing both global optimality and arbitrary clearance. It
is possible to note that the use of dedicated structures is important and planar meshes
have not been useful for computing globally-optimal geometric shortest paths.

Nevertheless, navigation meshes remain a popular representation in practice, and
recent works have started to address properties and algorithms specifically for them.
My previous work of 2003 [14] addressed the insertion and removal of constraints in a
Constrained Delaunay Triangulation (CDT), and showed that environments can be well
represented by CDTs for the purpose of path planning. The implementation developed
in [14] has been used by other researchers [4] and significant improvements in perfor-
mance were reported in comparison to grid–based methods. Extensions to the original
method for handling clearance have also been reported [4], however without correctly
solving the problem. In a recent publication [13], I have showed how arbitrary clear-
ances can be properly addressed with the introduction of a new triangulation called a
Local Clearance Triangulation (LCT), which after a precomputation of O(n2), is able
to compute locally shortest paths inO(n log n), and even inO(n) time, achieving high
quality paths very efficiently. A summary of this approach is given in Section 7.

Other efficient geometric approaches are also available. In particular the approach
based on corridor maps [7,8] is also able to efficiently achieve paths with clearance. One
fundamental advantage of using triangulated meshes is that the environment is already
triangulated, and thus channels or corridors do not need to be triangulated at every path
query according to given clearances.

Path planning is not the only navigation query needed for the simulation of loco-
motion in complex environments. Handling dynamic agents during path execution is
also important and several approaches have been proposed: elastic roadmaps [6], multi
agent navigation graphs [26], etc. Avoidance of dynamic obstacles has also been solved
in a reactive way, for instance with the use of velocity obstacles [2, 5]. Hardware ac-
celeration has also been extensively applied [12] for improving the computation times
in diverse algorithms. Although these methods are most suitable for grid–based ap-
proaches, methods for efficiently computing Delaunay triangulations using GPUs have
also been developed [22].

Among the several approaches for computing navigation queries, this paper focuses
on summarizing techniques which are only based on triangulations.

3 The Symedge Data Structure for Mesh Representation

The algorithms presented in this paper require a data structure able to represent planar
meshes and to encode all adjacency relations between the mesh elements in constant



4 M. Kallmann

time. The data structure used here follows the adjacency encoding strategy of the quad–
edge structure [9] and integrates adjacency operators and attachment of information per
element similarly to the half–edge structure [18]. The obtained data structure is called
Symedge, and its main element represents an oriented edge which is always symmetrical
to the other oriented edge adjacent to the same edge. Oriented edges in this represen-
tation are hence called symedges, and each one will always be adjacent to only one
vertex, one edge, and one face.

Each symedge keeps a pointer to the next symedge adjacent to the same face, and
another pointer to the next symedge adjacent to the same vertex. The first pointer is
accessed with the nxt() operator and the second with the rot() operator, since it has
the effect of rotating around the adjacent vertex. These operators rely on a consistent
counter-clockwise orientation encoding. In addition, three optional pointers are stored
in each symedge for quick access to the adjacent vertex, edge and face elements, which
are used to store user–defined data as needed. These pointers are accessed with opera-
tors vtx(), edg(), and fac(), respectively. Figure 2-left illustrates these operators.

Note that the two described primitive adjacency operators are enough for retriev-
ing all adjacent elements of a given symedge in constant time and additional operators
can be defined by composition. For instance operator sym() is defined as sym() =
nxt() → rot() for accessing the symmetrical symedge of a given symedge s. In-
verse operators are also defined: pri() = nxt()−1 = rot() → sym(), and ret() =
rot()−1 = sym() → nxt(). Also note that sym()−1 = sym(). Figure 2 illustrates all
the mentioned element retrieval and adjacency operators.

M. Kallmann - UCM

1
Sym-Edge

vtx()

nxt()

edg()
rot()

fac()
s→nxt()

s→sym()

s→pri()
s

s→ret()
s→sym→pri()

Symedge.pdf
crop: 3.35, 3.9, 2.15, 3.2 in

Fig. 2. Pointers are stored per symedge for fast retrieval of adjacent information (left), and several
adjacency operators are defined for accessing any adjacent symedge in constant time (right).

The described symedge structure includes many additional utilities useful for the
construction of generic meshes. In particular, construction operators are also included
as a safe interface to manipulate the structure and Mäntylä’s Euler operators [18] are
implemented as the lowest–level interface. In a previous work [15], the mentioned sim-
plified quad–edge structure is equivalent to the symedge structure described here. The
benchmark performed in this previous work indicates that the symedge structure is
among the fastest ones for describing general meshes. Although the algorithms dis-
cussed here mainly rely on triangulated meshes, using a generic structure has several
advantages, in particular for the correct description of intermediate meshes during op-
erations, and for the correct description of generic outer borders. The algorithms de-



Navigation Queries from Triangular Meshes 5

scribed in this paper have been implemented using the described symedge data struc-
ture, which is therefore also included in the available implementation.

4 Mesh Construction and Maintenance

Let S = {s1, s2, ..., sn} be a set of n input segments describing the polygonal obstacles
in a given planar environment. Segments in S may be isolated or may share endpoints
forming closed or open polygons. The input segments are also called constraints, and
the set of all their endpoints is denoted as P .

A suitable navigation mesh can be obtained with the Constrained Delaunay Trian-
gulation (CDT) of the input segments. Let T be a triangulation of P , and consider two
arbitrary vertices of T to be visible to each other only if the segment connecting them
does not intercept the interior of any constraint.

Triangulation T will be the CDT of S if 1) it enforces the constraints, i.e., all
segments of S are also edges in T , and 2) it respects the Delaunay Criterion, i.e., the
circumcircle of every triangle t of T contains no vertex in its interior which is visible
from all three nodes of t.

The first step to build a CDT therefore consists of identifying the segments de-
limiting obstacles in a given environment. Sometimes these segments will already be
available, but very often designers will specify them by hand. One main difficulty in
the process is that most CDT implementations will require a clean input segment set.
Instead, the implemented solution chooses to handle self–intersections, overlaps, and
duplicated vertices automatically as constraints are inserted in the triangulation. For ex-
ample, Figure 3 shows the segments modeled by a designer to represent the walls of
an apartment. The segments were intuitively organized in rectangles but with several
intersections and overlapping parts. Nevertheless a correct CDT can still be obtained.

Fig. 3. Given the input set S of segments delimiting a given environment (left), CDT (S) pro-
vides a suitable navigation mesh for several queries (center). Note that included validity tests [14]
are able to automatically handle overlapping and intersecting constraints. Additional obstacles in
the environment can also be incrementally inserted in the CDT as needed (right).

The employed corrective incremental insertion of constraints is described in a previ-
ous work [14]. Note that the alignment problem is in particular important. For instance



6 M. Kallmann

if two adjacent walls do not precisely share common vertices, a non–existing gap will
be formed. In order to automatically detect and fix such possible gaps, the whole CDT
construction uses a user–provided ε value and performs two specific corrective tests
for each new segment inserted in the CDT : 1) if the distance between a new vertex
and an existing one is smaller than ε, the new vertex is not inserted and instead the
existing one becomes part of the input segment currently being inserted, and 2) if the
distance between a new vertex and an already inserted segment (a constrained edge in
the current CDT ) is smaller than ε, the vertex is projected to the segment and its in-
sertion precisely subdivides the segment in two collinear sub–segments. This ε–based
approach for cleaning the input data also represents a way to improve the robustness
of the geometric algorithms involved during the CDT construction. However robust-
ness cannot be guaranteed for all types of input sets only using these two tests. Still,
it seems to be possible to extend the approach to handle any possible situation. Note
that this corrective approach for robustness is fundamentally different than addressing
robustness only in the involved geometric computations, which is the usual approach in
CDT implementations targeting mesh generation for finite element applications [23].

Given that the input segment set S can be correctly handled, the mesh obtained with
CDT (S) will always well conform to the obstacles. If only closed obstacles are rep-
resented, each triangle of the mesh will be either inside or outside each obstacle. Note
that it is also possible to represent open polygons or simple segments, and therefore the
representation is flexible to be used in diverse situations (see Figure 7). The obtained
CDT (S) is suitable for all operations described in this paper, except for the determi-
nation of paths with clearance, which will require additional properties leading to the
introduction of the Local Clearance Triangulation LCT (S), as discussed in Section 7.

Obstacles can also at any point be removed and re–inserted inCDT (S). This is pos-
sible by associating with each inserted segment an id which can be later used to identify
segments to be removed. The correct management of ids is described in detail in [14].
Removal of segments only involves local operations, however if the segment is long and
connects to most of other segments in the triangulation, the removal may be equivalent
to a full re–triangulation of the environment. In any case, the ability to efficiently update
the position of small obstacles is often important. For example, Figure 3-right shows the
apartment environment with additional obstacles representing some furniture. The abil-
ity to update the position of furniture or doors as the simulation progresses is important
in many situations.

5 Agent Placement and Avoidance

Once the mesh representation of the environment is available, one particular problem
which often appears is to efficiently place several agents in valid initial locations. Usual
approaches will often make use of spatial subdivisions to keep track of the agents al-
ready inserted in different parts of the environment, in order to locally verify the validity
of new agents being inserted. An efficient approach only based on the maintenance of a
Delaunay triangulation of the agents as they are inserted is also possible.

Let r be the radius of the circle representing the agent location and let T be a
Delaunay triangulation (of points) being built. First, T is initialized with (usually four)



Navigation Queries from Triangular Meshes 7

points delimiting a region containing the entire environment, with a margin of 2r space.
Candidate locations are then sampled at random or following any scripted distribution
strategy. Each candidate location p is only inserted in T if no vertices of T are closer
to p than 2r. The triangle t containing p is then determined by efficient point location
routines [14,23], and all edges around t are recursively visited for testing if their vertices
respect the distance of 2r from p. Adjacency operators are used to recurse from the seed
edges (the edges of t) to their neighbor edges, and marking of visited vertices will avoid
overlaps. When all edges closer to p than 2r are visited with no illegal vertices found,
then p is inserted as a new vertex of the triangulation and a new agent of radius r can be
safely inserted at p without intersection with other agents. If the environment also has
obstacles, an additional similar recursive test is performed to check if the circle centered
at p with radius r does not intersect any constrained edge represented in the navigation
mesh of the environment. See Figure 4 for examples.

Agents of different sizes can also be handled by storing the size of each agent in the
vertices of the triangulation and performing vertex–specific distance tests during the
recursive procedures described above. Alternatively, the recursive test can be avoided
by first inserting each candidate point as a new vertex v in T , and then if an adjacent
vertex v is too close, v is removed from T and a new candidate location is processed.

Fig. 4. The placement of non-overlapping agents with a given radius can be efficiently performed
with a Delaunay triangulation tracking the inserted locations. Each location is also tested against
the obstacles represented in the navigation mesh in order to achieve valid placements in the given
environment.

After agents are correctly placed in valid locations navigation modules can then
take control of the agents. The described Delaunay placement strategy can also be ex-
tended to efficiently perform collision avoidance strategies between the agents. One
typical scenario is when agents are following given free paths in respect to the static
environment while reactively avoiding the other agents on the way. For that, each agent
needs to know the location of the closest agents around it at all times. The vertices of
the initial Delaunay triangulation used to place the agents can then be updated as the
agents move, such that each agent can quickly query the location of all agents around it.
The key element of this strategy is to efficiently update the vertices of the triangulation.
Fortunately there are several known algorithms able to track the position of moving
vertices and only perform topological changes (of O(n log n) cost) when needed [1].



8 M. Kallmann

6 Ray–Obstacle Intersection Queries

Another important class of navigation queries is related to the simulation of sensors.
Sensors are useful in a number of situations: for simulating laser sensors attached to
robotic agents, for obtaining a simplified synthetic vision module, for querying visibility
length along given directions, for aiming and shooting actions, etc. Figure 5 shows the
example of a generic ray–obstacle intersection query. In this example a ray direction is
given, and the ray query can be computed as follows. First, the edge e0 first crossing
the ray is determined by testing among the three edges of the triangle containing the
ray source point. Then, the other edges on the next triangle adjacent to e0 are tested for
intersection and the next intersection edge e1 is determined. The process continues until
a given number of constrained edges are crossed or until a given ray length is reached.
In most cases only the first crossing is important, but the algorithm can compute any
number of crossings, as showed in Figure 5. Several extensions can be easily designed,
for example for covering a cone sector, or a full circular region around the agent.

Fig. 5. In both examples, the illustrated ray–obstacle intersection query starts at the marked bot-
tom location and identifies the first three obstacle intersections. All traversed edges are marked
in black and the final top location represents the length of the query.

7 Path Planning and Paths with Clearance

Although CDT (S) is already able to well represent environments, an additional prop-
erty is required for enabling the efficient computation of paths with arbitrary clearance.
This property is called the local clearance property [13] and will guarantee that only
local clearance tests are required during the search for paths with clearance. Its con-
struction starts with the CDT (S), and then refinement operations are performed until



Navigation Queries from Triangular Meshes 9

the local clearance property is enforced for all triangle traversals in the mesh. The ob-
tained mesh is a Local Clearance Triangulation (LCT ) of the input segments.

Once T = LCT (S) is computed, T can be efficiently used for computing free paths
of arbitrary clearance. Let p and q be two points in R2. A non–trivial free path between
p and q will cross several triangles sharing unconstrained edges, and the union of all
traversed triangles is called a channel. A path of r clearance is called locally optimal if
1) it remains of distance r from all constrained edges in T and 2) it cannot be reduced
to a shorter path of clearance r on the same channel. Such a path is denoted πr, and
its channel Cr. Note that a given path πr joining two points may or not be the globally
shortest path. If no shorter path of clearance r can be found among all possible channels
connecting the two endpoints, the path is then the globally optimal one.

The key issue for finding a path πr is to search for a channel Cr which guarantees
that there is enough clearance in all traversed triangles. A graph search over the ad-
jacency graph of the triangulation is then performed, starting from the initial triangle
containing p, and until reaching q. For each triangle traversed during this search, a pre-
computed clearance value will determine if that single triangle traversal is guaranteed to
have clearance r. The refinement operations performed to build a LCT will guarantee
that each traversal can be locally tested for clearance and thus enabling the precompu-
tation of two clearance values per edge for testing the clearance of all possible triangle
traversals. Figure 6 shows a typical problem which can occur in CDTs but which will
not occur in LCTs. Note that if a channel Cr is not found, the goal is not reachable.

Fig. 6. Local clearance tests in CDT s cannot guarantee the correct clearance determination of
paths (left). The corresponding LCT (right) will always lead to free paths with correct clearances.

Once a channel Cr of arbitrary clearance is found, its locally optimal path πr can
be computed in linear time in respect to the number of triangles in the channel. This is
achieved with an extended funnel algorithm [10] handling clearances, which is detailed
in [13].

The result is a flexible and efficient approach for path planning. The LCT can
be precomputed in O(n2), and then paths of arbitrary clearance can be retrieved in
O(n log n) by using a standard A* search (as implemented in [13]), or even in O(n)
time as the generated structure is suitable for the application of linear time planar search
algorithms [25]. Figures 1 and 7 show several examples.



10 M. Kallmann

Fig. 7. The LCT of the input segments is required for computing paths with arbitrary clearance
(left). Alternatively, if the clearance is constant, the environment can be inflated and paths without
clearance can be extracted from the CDT of the inflated input segments (right). Also note that
triangulated meshes can well represent environments described by input segments which do not
form closed obstacles (left).

8 Determination of Corridors and Extensions

Note that the search for free channels (with or without clearances) during the described
path planning procedure automatically determines free corridors around the computed
paths. A channel C is the union of all traversed triangles and therefore the boundary of
the channel will be a polygon representing a corridor containing the path. See Figure 8
for an example. Figure 8 also illustrates the computation of extra clearances, which
deform the path in order to achieve higher clearance than the minimum required. Extra
clearances can be computed with post-optimization of obtained paths and can model
a variable range of locomotion behaviors, from attentive in passages with minimum
clearance to safe navigation in higher clearance areas.

Many other extensions can be devised. For instance the corridor search procedure
can be optimized (significantly in certain cases) by introducing a smaller connectiv-
ity graph which excludes the triangles inside corridors, which are those that have two
constrained edges and thus have only one way of being traversed. Hierarchical repre-
sentations of several levels (common in grid–based approaches) can also be translated
to triangle meshes.

Note that efficient path planning queries are also important for decision modules.
For example, the ability to query goal reachability with different clearances and to com-
pute lengths of obtained paths may be important for deciding which target locations to
visit first in case of several choices. Many other uses of the proposed methods exist.
For instance, the handling of intersections and overlaps in the input segment set can be
used to perform Boolean operations with obstacles, what is useful for optimizing the
navigation mesh. Finally, one important extension in many applications is the ability



Navigation Queries from Triangular Meshes 11

to model uneven terrains. Due to their irregular decomposition nature, triangulations
are well suited for the representation of terrains, however each geometric test in the
described procedures would have to be generalized for handling non-planar surfaces.

Fig. 8. Three paths with same minimum clearance but with extra clearances of 0, 0.45, and 0.9.

9 Final Remarks

This paper presented several triangulation–based methods for the efficient computation
of diverse navigation queries for autonomous agents. With the growing research activity
in the area and the appearance of several new development tools, triangulation–based
navigation meshes can be expected to become increasingly popular.

References

1. Albers, G., Mitchell, J.S., Guibas, L.J., Roos, T.: Voronoi diagrams of moving points. Inter-
nat. J. Comput. Geom. Appl 8, 365–380

2. Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navi-
gation. In: ICRA’08: Proceedings of the International Conference on Robotics and Automa-
tion (2008)

3. De Berg, M., Cheong, O., van Kreveld, M.: Computational geometry: algorithms and appli-
cations. Springer (2008)

4. Demyen, D., Buro, M.: Efficient triangulation-based pathfinding. In: AAAI’06: Proceedings
of the 21st national conference on Artificial intelligence. pp. 942–947. AAAI Press (2006)

5. Fiorini, L.P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles.
International Journal of Robotics Research 17(7), 760–772 (1998)

6. Gayle, R., Sud, A., Andersen, E., Guy, S.J., Lin, M.C., Manocha, D.: Interactive navigation
of heterogeneous agents using adaptive roadmaps. IEEE Transactions on Visualization and
Computer Graphics 15, 34–48 (2009)

7. Geraerts, R.: Planning short paths with clearance using explicit corridors. In: ICRA’10: Pro-
ceedings of the IEEE International Conference on Robotics and Automation (2010)

8. Geraerts, R., Overmars, M.H.: The corridor map method: a general framework for real-
time high-quality path planning: Research articles. Computer Animation and Virtual Worlds
18(2), 107–119 (2007)



12 M. Kallmann

9. Guibas, L., Stolfi, J.: Primitives for the manipulation of general subdivisions and the compu-
tation of voronoi. ACM Trans. Graph. 4(2), 74–123 (1985)

10. Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class.
Computational Geometry Theory and Application 4(2), 63–97 (1994)

11. Hershberger, J., Suri, S.: An optimal algorithm for euclidean shortest paths in the plane.
SIAM Journal on Computing 28, 2215–2256 (1997)

12. Hoff, III, K.E., Culver, T., Keyser, J., Lin, M., Manocha, D.: Fast computation of gener-
alized voronoi diagrams using graphics hardware. In: Proceedings of the sixteenth annual
symposium on computational geometry (2000)

13. Kallmann, M.: Shortest paths with arbitrary clearance from navigation meshes. In: Proceed-
ings of the Eurographics / SIGGRAPH Symposium on Computer Animation (SCA) (2010)

14. Kallmann, M., Bieri, H., Thalmann, D.: Fully dynamic constrained delaunay triangulations.
In: Brunnett, G., Hamann, B., Mueller, H., Linsen, L. (eds.) Geometric Modeling for Sci-
entific Visualization, pp. 241–257. Springer-Verlag, Heidelberg, Germany (2003), iSBN 3-
540-40116-4

15. Kallmann, M., Thalmann, D.: Star vertices: A compact representation for planar meshes with
adjacency information. Journal of Graphics Tools 6(1), 7–18 (2001)

16. Lamarche, F.: TopoPlan: a topological path planner for real time human navigation under
floor and ceiling constraints. Computer Graphics Forum 28 (03 2009)

17. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among poly-
hedral obstacles. Communications of ACM 22(10), 560–570 (1979)

18. Mäntylä, M.: An introduction to solid modeling. Computer Science Press, Inc., New York,
NY, USA (1987)

19. Mekni, M.: Hierarchical path planning for situated agents in informed virtual geographic
environments. In: SIMUTools ’10: Proceedings of the 3rd International ICST Conference on
Simulation Tools and Techniques. pp. 1–10 (2010)

20. Mitchell, J.S.B.: Shortest paths among obstacles in the plane. In: SCG ’93: Proceedings of
the ninth annual symposium on computational geometry. pp. 308–317. ACM, New York,
NY, USA (1993)

21. Overmars, M.H., Welzl, E.: New methods for computing visibility graphs. In: SCG ’88: Pro-
ceedings of the fourth annual symposium on Computational geometry. pp. 164–171. ACM
(1988)

22. Rong, G., seng Tan, T., tung Cao, T.: Computing two-dimensional delaunay triangulation
using graphics hardware. In: In Proceedings of the Symposium on Interactive 3D Graphics
and Games (I3D) (2008)

23. Shewchuk, J.R.: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Trian-
gulator. In: Lin, M.C., Manocha, D. (eds.) Applied Computational Geometry: Towards Geo-
metric Engineering, Lecture Notes in Computer Science, vol. 1148, pp. 203–222. Springer-
Verlag (May 1996), from the First ACM Workshop on Applied Computational Geometry

24. Storer, J.A., Reif, J.H.: Shortest paths in the plane with polygonal obstacles. J. ACM 41(5),
982–1012 (1994)

25. Subramanian, S., Klein, P., Klein, P., Rao, S., Rao, S., Rauch, M., Rauch, M.: Faster shortest-
path algorithms for planar graphs. In: Journal of Computer and System Sciences. pp. 27–37
(1994)

26. Sud, A., Andersen, E., Curtis, S., Lin, M.C., Manocha, D.: Real-time path planning in dy-
namic virtual environments using multiagent navigation graphs. IEEE Transactions on Visu-
alization and Computer Graphics 14, 526–538 (2008)

27. Wein, R., van den Berg, J.P., Halperin, D.: The visibility–voronoi complex and its appli-
cations. In: SCG ’05: Proceedings of the twenty-first annual symposium on Computational
geometry. pp. 63–72. ACM, New York, NY, USA (2005)


