
In Proceedings of the Third International Conference on Motion In Games (MIG), Zeist, the
Netherlands, 2010

Motion Parameterization with Inverse Blending

Yazhou Huang and Marcelo Kallmann

University of California, Merced

Abstract. Motion blending is a popular motion synthesis technique which in-
terpolates similar motion examples according to blending weighs parameterizing
high-level characteristics of interest. We present in this paper an optimization
framework for determining blending weights able to produce motions precisely
satisfying multiple given spatial constraints. Our proposed method is simpler than
previous approaches, and yet it can quickly achieve locally optimal solutions
without pre–processing of basis functions. The effectiveness of our method is
demonstrated in solving two classes of problems: 1) we show the precise con-
trol of end-effectors during the execution of diverse upper–body actions, and 2)
we also address the problem of synthesizing walking animations with precise feet
placements, demonstrating the ability to simultaneously meet multiple constraints
and at different frames. Our several experimental results demonstrate that the
proposed optimization approach is simple to implement and effectively achieves
realistic results with precise motion control.

Keywords: motion parameterization, character animation, walk synthesis, spa-
tial constraints.

1 Introduction

Keyframe animation and motion capture represent popular approaches for achieving
high–quality character animation in interactive applications such as in 3D computer
games and virtual reality systems. In particular, motion blending techniques [17, 18,
15] provide powerful interpolation approaches for parameterizing pre–defined example
animations according to high–level characteristics. While direct blending of motions
is able to produce fast and realistic motions, it remains difficult to achieve blendings
and parameterizations able to precisely satisfy generic spatial constraints. We show that
with an optimization approach we are able to always solve spatial constraints when
possible, and usually less example motions are required to cover the spatial variations
of interest.

Our method models each spatial constraint as an objective function whose error is
to be minimized. The overall multi–objective inverse blending problem is solved by
optimizing the blending weights until a locally optimal solution is reached. Solutions
can be found in few milliseconds and no pre–computation of basis functions is needed.
The method is therefore suitable for interactive applications and several results running
in real–time are presented.

While previous work has addressed the maintenance of spatial properties in a single
motion interpolation step [18, 15, 11], we focus on optimizing blending weights until

2 Y. Huang, M. Kallmann

best meeting multiple spatial constraints. Our approach has the additional flexibility
of modeling spatial constraints with objective functions which are independent of the
abstract space used by the motion blending. Generic spatial constraints can be handled
and Inverse Kinematics problems can also be solved based on motion blending. We have
in particular recently applied the presented framework to an interactive virtual reality
training application [5], and the obtained results were very effective.

This paper demonstrates our methods in three scenarios: pointing to objects, pouring
water and character locomotion. The spatial constraints of inverse blending are modeled
differently for each scenario. As a result, our interactive motion modeling framework
allows animators to easily build a repertoire of realistic parameterized human–like mo-
tions (gestures, actions, locomotion, etc) from examples which can be designed by hand
or collected with motion capture devices.

2 Related Work

Several approaches to motion interpolation have been proposed involving different tech-
niques such as: parameterization using Fourier coefficients [22], hierarchical filtering
[4], stochastic sampling [23], and interpolation based on radial basis functions (RBFs)
[17]. Our motion blending framework is closely related to an extension of the verbs and
adverbs system which performs RBF interpolation to solve the Inverse Kinematics (IK)
problem [18]. RBFs can smoothly interpolate given motion examples and the types and
shapes of the basis functions are optimized in order to better satisfy the constraint of
reaching a given position with the hand.

More generically, spatial properties such as feet sliding or hand placements are well
addressed by the geostatistical interpolation method [15], which computes optimal in-
terpolation kernels in accordance with statistical observations correlating the control
parameters and the motion samples. Another approach for improving the maintenance
of spatial constraints is to adaptively add pseudo–examples [18, 11] in order to better
cover the continuous space of the constraint. This random sampling approach however
requires significant computation and storage in order to meet constraints accurately and
is not suited for handling several constraints.

In all these previous methods spatial constraints are only handled as part of the mo-
tion blending technique employed, i.e., by choosing sample motions which are close to
the desired constraints and then using the abstract interpolation space to obtain motion
variations which should then satisfy the constraints. Another possible technique some-
times employed is to apply Inverse Kinematics solvers in addition to blending [18, 6],
however risking to penalize the obtained realism.

The work on mesh–based IK [20] does address the optimization of blending weights
for the problem of blending example meshes. However, although our approach is simple
and intuitive, no specific previous work has specifically analyzed and reported results
applied to skeletal motion, and in particular also simultaneously solving multiple con-
straints and at different frames.

The Scaled Gaussian Process Latent Variable Model (SGPLVM)[9] provides a more
specific framework targeting the IK problem which optimizes interpolation kernels
specifically for generating plausible poses from constrained curves such as positional

Motion Parameterization with Inverse Blending 3

trajectories of end–effectors. The approach however focuses on maintaining constraints
described by the optimized latent spaces. Although good results are obtained, con-
straints cannot be guaranteed to be precisely met.

The presented approach can be seen as a post–processing step for optimizing a given
set of blending weights, which can be initially computed by any motion blending tech-
nique. We demonstrate in this paper that our optimization framework is able to address
any kind of constraints without even the need of specifying an abstract parameterization
space explicitly. Only error functions for the spatial constraints are necessary in order
to optimize the blending weights using a given motion interpolation scheme.

We also apply our method for parameterization of locomotion, which is a key prob-
lem in character animation. Many methods have been previously proposed for finding
optimal solutions for path following [14, 12], for reaching specified locomotion targets
[19, 10], or also for allowing interactive user control [21, 14, 1]. Most of these works
combine motion blending techniques with motion graphs [12, 2, 3, 8, 19] and can then
generate different styles of locomotion and actions. Different than these methods, we
give specific attention to precisely meet specified feet placements. The geostatistical
interpolation method [15] reduces feet sliding problems but still cannot guarantee to
eliminate them. Other precise feet placement techniques [13, 7] are available, however
not based on a generic motion blending approach.

In conclusion, diverse techniques based on motion blending are available and sev-
eral of these methods are already extensively used in commercial animation pipelines
for different purposes. Our work presents valuable experimental results demonstrating
the flexibility and efficiency of a simple optimization framework for solving inverse
blending problems involving multiple spatial constraints. Our approach is effective and
easy to implement, and was first described in [5], where it was applied to an inter-
active virtual reality training application. The formulation is again described here for
completeness purposes, and then several extensions and new results are presented to
effectively model diverse parameterized upper–body actions, and also to model param-
eterized walking animations with precise footstep placements.

3 Inverse Blending

Given a set of similar and time–aligned motion examples, we first employ a traditional
RBF motion interpolation scheme to compute an initial set of blending weights. These
weights are then optimized to meet a given constraint C.

Each motion M being interpolated is represented as a sequence of poses with a dis-
crete time (or frame) parameterization t. A pose is a vector which encodes the root joint
position and the rotations of all the joints of the character. Rotations are encoded with
exponential maps but other representations for rotations (as quaternions) can also be
used. Each constraint C is modeled with a function e = f(M), which returns the error
evaluation e quantifying how far away the given motion is from satisfying constraint
C. We first select the k motions which are the ones best satisfying the constraints being
solved. For example, in a typical reaching task, the k motion examples having the hand
joint closest to the target will be selected. The k initial motions are therefore the ones
with minimal error evaluations. The initial set of blending weights wj , j = {1, . . . , k},

4 Y. Huang, M. Kallmann

are then initialized with a RBF kernel output of the input ej = f(Mj). We constrain
the weights to be in interval [0, 1] in order to stay in a meaningful interpolation range
and we also normalize them to sum to 1. Any kernel function can be used, as for ex-
ample kernels in the form of exp−‖e‖

2/σ2
. In this work we do not attempt to optimize

kernel functions in respect to the constraints [17, 15] and instead we will optimize the
weights independently of the interpolation method. Our interpolation scheme computes
a blended motion with:

M(w) =
k∑
j=1

wjMj , w = {w1, . . . , wk}. (1)

In order to enforce the given constraint C, our goal is to find the optimal set of
blending weights w, which will produce the minimum error e∗ as measured by the
constraint error function f :

e∗ = minwj∈[0,1] f

 k∑
j=1

wjMj

 . (2)

The presented formulation can easily account for multiple constraints by combining
the error metric of the given constraints in a single weighted summation. In doing so
we introduce two more coefficients for each constraint Ci, i = {1, . . . , n}: a normal-
ization coefficient ni and a prioritization coefficient ci. The goal of ni is to balance the
magnitude of the different constraint errors. For example, positional constraints depend
on the used units and in general have much larger values than angular values in radians,
which are typically used by orientation errors. Once the normalization coefficients are
set, coefficients ci ∈ [0, 1] can be interactively controlled by the user in order to vary
the influence (or priority) of one constraint over the other.

The result is essentially a multi–objective optimization problem, with the goal being
to minimize a new error metric composed of the weighted sum of all constraints’ errors:

f(M(w)) =
n∑
i=1

(ci ni fi (M(w))) . (3)

Independent of the number of constraints being addressed, when constraints are
fully satisfied, e∗ → 0.

4 Action Parameterization with Inverse Blending

Figure 1 presents several examples obtained for parameterizing upper–body actions.
Different types of spatial constraints were used. Constraint Cpos is a 3-DOF positional
constraint which requires the end–effector (hand, finger tip, etc) to precisely reach a
given target location. Constraint Cline is a 2-DOF positional constraint for aligning the
hand joint with a given straight line in 3D space. Constraint Cori is a 1 to 3 DOFs rota-
tional constraint which requires the hand to comply to a certain given orientation. Note
that all these constraints are only enforced at one given frame of the motion. Constraints

Motion Parameterization with Inverse Blending 5

Fig. 1. This figure presents several results obtained by inverse blending. ACline constraint is used
for precisely pointing to distant objects (a) and for pouring exactly above the teapot (c). Positional
Cpos and rotationalCori constraints are used for pin–pointing a button on the telephone (b). Note
that the finger tip precisely reaches the button, and the hand orientation matches that of the shown
x-axis. Constraints Cpos and Cori are also used for achieving precise grasping motions (d).

can also be combined in order to allow additional ways of parameterizing motions. For
example by combining Cline and Cori, precise grasping targets can be achieved (Fig-
ure 1-d), and different hand orientations can be obtained when pin–pointing buttons
(Figure 1-b).

5 Parameterized Character Locomotion with Inverse Blending

This section demonstrates our inverse blending framework for generating parameterized
walking motions with precise control of feet placements for character navigation.

First, two sets of motion examples are prepared with clips obtained from motion
capture. The first set Rm consists of right foot stepping motions. Each example motion
Mr ∈ Rm represents one full step forward with the right foot while the left foot remains
in contact with floor as the support foot, see Figure 2-a. The second set of example
motions Lm is prepared in the same way but containing stepping examples for left foot.

The motions in both sets contain many variations, e.g. step length, step direction,
body orientation, velocity, root joint position, etc. These should well span the variations
of interest, which are to be precisely parameterized by inverse blending. Figure 2-b
illustrates how some of the motions in our database look like. No alignment of the
motions is needed and the variations will actually be explored by the inverse blending
optimization in order to reach any needed alignments on–line. We also mirror the ex-
ample motions in both sets in order to guarantee the same number of examples (and
variations) are available in each set.

As we are interested in precisely controlling each footstep location during walking,
the length and direction of each step is parameterized while the support foot contact
on the floor is maintained. Let θe be the orientation of the support foot at the starting
frame of one stepping motion example (rotational constraint). Let vs and ve be vectors
encoding the position of the stepping foot in respect to the support foot at the start
and at the end frames respectively (positional constraints). Figure 2-c illustrates these
parameters for one left step. Each stepping motion of interest is then specified as a

6 Y. Huang, M. Kallmann

L
L

e
i 1+

θ

e
iRv)1(+

)()()1(
e

iLi
s
R vv −=+

e
iθ

s
iLv)(

)(i
e
Lv

Step i Step i+1

R
L

L

R

L

Fig. 2. (a) shows snapshots of one right foot stepping motion from Rm example set. (b) is a top–
down footprint view of several left foot stepping motions used in Lm example set. The footprints
are from diverse walk segments and do not need to be aligned. (c) shows the constraints for
computing step i: θe is the rotational constraint for the support foot (with lock icon), vs and ve

are positional constraints for the stepping foot at the start and end of the motion respectively. (d)
shows the constraints for step i+ 1, which immediately follows step i.

function of these parameters with M(vs, ve, θe), which will be obtained by inverse
blending procedures based only on the stepping examples available in the Rm and Lm

motion sets.

With the given constraints vs, ve, θe described above, the process for obtaining
M(vs, ve, θe) is composed of 4 phases, as described in the next paragraphs.

Phase 1: the set of blending weights ws is computed by inverse blending such
that the stepping foot respects the positional constraint vs at the start frame ts. As
these weights are computed to meet constraints vs we use the notation ws(vs) for the
obtained blending weights.

Phase 2: we solve a new inverse blending problem for determining the blending
weights we at the end frame te in order to meet two constraints: the positional constraint
ve for the stepping foot and the rotational constraint θe for the support foot. Therefore
the obtained weights we(ve, θe) produce an end posture with the stepping foot reaching
location ve, while the support foot respects the orientation specified by θe.

Phase 3: the average lengths lavg of the example motions in phase 1 and 2 is used
to time–align the blended motions. The blending weights used to produce the required
stepping motion is finally obtained as a function of the frame time t, such that w(t)
=interp(ws(vs),we(ve, θe), t), t ∈ [0, lavg]. The interpolation function interp em-
ploys a smooth in and out sine curve and each of the motions are time warped to lavg in
order to cope with variations of step lengths and speeds in the used motion set. The final
parameterized stepping motion is then obtained with M(vs, ve, θe) = w(t)Σk

i=1Mi .
This process is illustrated in Figure 3.

Motion Parameterization with Inverse Blending 7

Phase 4: this phase consists of a velocity profile correction [24] in order to maxi-
mally preserve the overall quality of the original motions since several blending opera-
tions have been performed at this point. For that we select the root joint velocity profile
of the motion example which gave most contribution in the inverse blending procedures.
The time parameterization of w(t) is then adapted on the fly in order to obtain a mo-
tion with the root joint velocity profile matching the selected reference profile. Figure 3
bottom–right exemplifies the root increment against frames during a two–step walking
sequence showing how root velocity changes over time. This has been proven to well
preserve the quality of the obtained results.

M2

M3

M1

Mk

w1(t)

w2(t)

w3(t)
.
.
.

wk(t)

ws

P1(t)

P2(t)

Pk(t)

Motion Database

we(1)

we(2)

we(3)

.

.

.

we(k)

ws(1)

ws(2)

ws(3)

.

.

.

ws(k)

wew(t)

M (vs, ve,)eθ

P3(t)

Fig. 3. The motion examples selected by the inverse blending M i(i = 1 ∼ k) are blended with
interpolated weights w(t) which ensure spatial constraints both at the start and end frame of the
motions. Velocity profiles are adapted on–line to preserve the original quality and realism.

The procedure described above is applied each time a stepping motion has to be
generated. For producing stepping motions for the right foot,MR(vs, ve, θe) is obtained
by using the example motions from Rm. Left foot stepping motions ML(vs, ve, θe) are
similarly obtained using examples from Lm. As a result a walking sequence achieving
precise feet placements at each step can be obtained with the following concatenation
of alternating steps: ML(vs1, v

e
1, θ

e
1), MR(vs2, v

e
2, θ

e
2), ML(vs3, v

e
3, θ

e
3), · · · .

During each stepping motion in the sequence above, the character is translated at
every frame to make sure the support foot does not slide on the floor (i.e. its location and
orientation are maintained), this will essentially make the character walk forward. At
the end of each stepping, the support foot changes, and its location and orientation are

8 Y. Huang, M. Kallmann

updated, ready for the following step. With this, the common problem of feet–sliding is
here eliminated.

When computing each stepping motion, we make constraint vsi+1 equal to−vei from
the previous step (see Figure 2-c and 2-d), for smooth transition between step i and step
i + 1. The negation appears because the support foot and stepping foot are swapped
from step i to i+ 1.

Figure 4 shows the end posture P eL (thick red line) of the left step ML(vsi , v
e
i , θ

e
i)

and the start posture P sR (thick green line) of the right step MR(vsi+1, v
e
i+1, θ

e
i+1). With

vsi+1 = −vei , inverse blending generates postures P eL and P sR matching the constraints
and with body postures which are very close to each other. The small difference in the
body posture is handled by smoothly concatenating the stepping motions with a brief
ease–in blending period fromML going intoMR, achieving a smooth overall transition.

In the examples presented in this paper we have used only six stepping motion
examples in each motion set, and yet the described inverse blending procedure can
precisely control each foot placement within a reasonable range. If larger databases are
used, a wider range for the constraints can be specified. Figure 5 shows several results
obtained by our real–time walking control application. Several animation sequences are
also available in the video accompanying this paper.

ML (vs
i, ve

i, i)
start end

MR (vs
i+1, ve

i+1, i+1)
start end

ease-in

ease-in

ease-in

time

wL
e

wR
e

wR
s

wL
s

tL
s tL

e tR
e

wL(t)

tL

ease-in

MR (vs
i+1, ve

i+1, i+1)

ML (vs
i, ve

i, i)

pR
s pR

e

pL(t)pL
s pL

e

(tR
s)

θ

θ

vs
i ve

i

vs
i+1 ve

i+1

θ

θ

Fig. 4. This figure illustrates the generation of ML(vn), and the concatenation of ML(vn) and
MR(vn+1) for achieving the final walking synthesis.

Motion Parameterization with Inverse Blending 9

Fig. 5. The figure presents several snapshots of obtained walking motions where each step pre-
cisely meets the given feet targets (a and c). The targets for each step can be adjusted on the fly
achieving a controllable locomotion generator with precise feet placements. The generation of
the stepping motions is illustrated in the lower-left image (b), where the gray skeleton shows the
inverse blending solution for the left foot, prior to concatenation.

6 Results and Discussion

With suitable example motions in a given cluster, inverse blending can produce motions
exactly satisfying given spatial constraints and fast enough for real–time applications.
Several of the figures in this paper illustrate the many experiments successfully con-
ducted in different scenarios. To evaluate the performance of our method, a reaching
task was designed to measure the errors produced by our method against a single RBF
interpolation, with the 16 reaching motion database from Mukai et.al [15]. A total of
144 reaching targets (shown as yellow dots in Figure 6, each specifying a 3-DOF Cpos
constraint) were placed evenly on a spherical surface within reach of the character. The
end locations of the hand trajectory in 16 example motions are shown as gray dots.

For each reaching target we first apply standard RBF interpolation alone to gener-
ate a reaching motion and record the final hand position where the character actually
reaches. These 144 final positions were used to construct a mesh grid, which is shown in
Figure 6-a. Each triangle on the mesh is colored in respect to the average errors from its
vertices, representing the distance error between the final hand positions and their cor-
responding reaching targets. We then use our inverse blending optimization to perform
the same tasks, and the constructed mesh is shown in Figure 6-b. The reaching motions
generated by inverse blending can precisely reach most of the targets. Errors measured
are practically zero across most of the mesh, and increase only at the boundary of the
surface. In this specific task, the radius of the spherical surface was set to 80cm, and

10 Y. Huang, M. Kallmann

both methods used eight example motions from the database (k = 8) for computing
each reaching task.

(a)

(b)

(c)

(d)

Fig. 6. Error evaluations. The meshes constructed by a standard RBF interpolation (a and c) result
in much larger errors than by our inverse blending optimization (b and d), which most often
produces no error.

Additional experiments were performed by varying the radius of the spherical sur-
face to be 65, 70, 75, 80, 85 and 90cm. Again a total of 144 reaching targets were
generated on the spherical surfaces, covering a large volume of the workspace. These
spherical surfaces are shown in Figures 6-c and 6-d. The constructed meshes by inverse
blending are shown in Figure 6-d, and the results obtained with the RBF interpolation

Motion Parameterization with Inverse Blending 11

are shown in Figure 6-c. It is possible to note that the inverse blending optimization pro-
duces a smooth mesh very well approximating the yellow dots, and the errors produced
by our method are clearly much lower, with most areas in pure blue.

Using standard optimization techniques [16] our inverse blending problems could
be solved under 1.16 ms of computation time on average, with worse cases taking 2.29
ms (with a non–optimized single core code on a Core 2 Duo 2.13 GHz). Three scenar-
ios (character performing pointing, pouring water and walking with precise feet place-
ments) were used for this evaluation, with each scenario solving 5000 inverse blending
problems towards random placements.The approach is therefore suitable for real–time
applications, and in addition, it does not require pre–processing of the motion database,
making it suitable for systems interactively updating the motion database (as in [5]).

In terms of limitations, two main aspects have to be observed. First, the ability
of enforcing constraints greatly depends on the existing variations among the motion
examples being blended. The number of needed example motions also depend on the
size of the target volume space. For example, our walk generator can produce good
results with only 6 stepping example motions (6 for left foot stepping, mirrored to
become 12 for both feet) due to great variations available in the motions. However more
example motions are typically needed to well cover a large reaching or pointing volume,
and we have used 35 example motions in some cases. The second limitation, which is
related to the first, is that the computational time required for finding solutions will also
depend on the quality and number of motion examples (the k value). However, as shown
in our several examples, these limitations are easy to address by appropriately modeling
example motions, and balancing the coverage vs. efficiency trade–off specifically for
each action being modeled.

7 Conclusions

We have presented an optimization framework for satisfying spatial constraints with
motion blending. Our approach is simple and can handle any type of spatial constraints.
Several different actions (pointing, grasping, pouring, and walking) were successfully
modeled and parameterized with precise placement of end–effectors. Our inverse blend-
ing framework has therefore shown to be a simple and powerful tool for achieving sev-
eral useful motion parameterizations. We believe that our overall framework can signif-
icantly improve the process of modeling full–body motions for interactive characters.

Acknowledgments: This work was partially supported by NSF Awards IIS-0915665 and CNS-
0723281, and by a CITRIS seed fund.

References

1. Abe, Y., Liu, C.K., Popović, Z.: Momentum-based parameterization of dynamic character
motion. In: SCA ’04: 2004 ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation. pp. 173–182. Eurographics Association, Aire-la-Ville, Switzerland (2004)

2. Arikan, O., Forsyth, D.A.: Synthesizing constrained motions from examples. Proceedings of
SIGGRAPH 21(3), 483–490 (2002)

12 Y. Huang, M. Kallmann

3. Arikan, O., Forsyth, D.A., O’Brien, J.F.: Motion synthesis from annotations. ACM Transac-
tion on Graphics (Proceedings of SIGGRAPH) 22(3), 402–408 (2003)

4. Bruderlin, A., Williams, L.: Motion signal processing. In: SIGGRAPH ’95. pp. 97–104.
ACM, New York, NY, USA (1995)

5. Camporesi, C., Huang, Y., Kallmann, M.: Interactive motion modeling and parameterization
by direct demonstration. In: Proceedings of the 10th International Conference on Intelligent
Virtual Agents (IVA) (2010)

6. Cooper, S., Hertzmann, A., Popović, Z.: Active learning for real-time motion controllers.
ACM Transactions on Graphics (SIGGRAPH 2007) 26(3) (Aug 2007)

7. Coros, S., Beaudoin, P., Yin, K.K., van de Pann, M.: Synthesis of constrained walking skills.
ACM Trans. Graph. 27(5), 1–9 (2008)

8. Gleicher, M., Shin, H.J., Kovar, L., Jepsen, A.: Snap-together motion: assembling run-time
animations. In: Proceedings of the symposium on Interactive 3D graphics (I3D). pp. 181–
188. ACM Press, New York, NY, USA (2003)

9. Grochow, K., Martin, S., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM
Transactions on Graphics (Proceedings of SIGGRAPH) 23(3), 522–531 (2004)

10. Heck, R., Gleicher, M.: Parametric motion graphs. In: I3D ’07: Proc. of the 2007 symposium
on Interactive 3D graphics and games. pp. 129–136. ACM, New York, NY, USA (2007)

11. Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions in large data
sets. ACM Transaction on Graphics (Proceedings of SIGGRAPH) 23(3), 559–568 (2004)

12. Kovar, L., Gleicher, M., Pighin, F.H.: Motion graphs. Proceedings of SIGGRAPH 21(3),
473–482 (2002)

13. Kovar, L., Schreiner, J., Gleicher, M.: Footskate cleanup for motion capture editing. In: Pro-
ceedings of the ACM SIGGRAPH/Eurographics symposium on Computer animation (SCA).
pp. 97–104. ACM Press, New York, NY, USA (2002)

14. Kwon, T., Shin, S.Y.: Motion modeling for on-line locomotion synthesis. In: SCA ’05: Pro-
ceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation.
pp. 29–38. ACM, New York, NY, USA (2005)

15. Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. In: ACM SIGGRAPH. pp.
1062–1070. ACM, New York, NY, USA (2005)

16. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edi-
tion: The Art of Scientific Computing. Cambridge Univ. Press, New York, NY, USA (2007)

17. Rose, C., Bodenheimer, B., Cohen, M.F.: Verbs and adverbs: Multidimensional motion in-
terpolation. IEEE Computer Graphics and Applications 18, 32–40 (1998)

18. RoseIII, C.F., Sloan, P.P.J., Cohen, M.F.: Artist-directed inverse-kinematics using radial ba-
sis function interpolation. Computer Graphics Forum (Proceedings of Eurographics) 20(3),
239–250 (September 2001)

19. Safonova, A., Hodgins, J.K.: Construction and optimal search of interpolated motion graphs.
In: ACM SIGGRAPH ’07. p. 106. ACM, New York, NY, USA (2007)

20. Sumner, R.W., Zwicker, M., Gotsman, C., Popović, J.: Mesh-based inverse kinematics. ACM
Trans. Graph. 24(3), 488–495 (2005)

21. Treuille, A., Lee, Y., Popović, Z.: Near-optimal character animation with continuous control.
In: SIGGRAPH ’07: ACM SIGGRAPH 2007 papers. p. 7. ACM, New York, NY, USA (2007)

22. Unuma, M., Anjyo, K., Takeuchi, R.: Fourier principles for emotion-based human figure
animation. In: SIGGRAPH ’95. pp. 91–96. ACM, New York, NY, USA (1995)

23. Wiley, D.J., Hahn, J.K.: Interpolation synthesis of articulated figure motion. IEEE Computer
Graphics and Applications 17(6), 39–45 (1997)

24. Yamane, K., Kuffner, J.J., Hodgins, J.K.: Synthesizing animations of human manipulation
tasks. In: ACM SIGGRAPH ’04. pp. 532–539. ACM, New York, NY, USA (2004)

