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Abstract. While interactive virtual humans are becoming widely used in edu-
cation, training and therapeutic applications, building animations which are both
realistic and parameterized in respect to a given scenario remains a complex and
time–consuming task. In order to improve this situation, we propose a frame-
work based on the direct demonstration and parameterization of motions. The
presented approach addresses three important aspects of the problem in an inte-
grated fashion: (1) our framework relies on an interactive real-time motion cap-
ture interface that empowers non–skilled animators with the ability to model re-
alistic upper-body actions and gestures by direct demonstration; (2) our interface
also accounts for the interactive definition of clustered example motions, in order
to well represent the variations of interest for a given motion being modeled; and
(3) we also present an inverse blending optimization technique which solves the
problem of precisely parameterizing a cluster of example motions in respect to
arbitrary spatial constraints. The optimization is efficiently solved on-line, allow-
ing autonomous virtual humans to precisely perform learned actions and gestures
in respect to arbitrarily given targets. Our proposed framework has been imple-
mented in an immersive multi-tile stereo visualization system, achieving a pow-
erful and intuitive interface for programming generic parameterized motions by
demonstration.

Keywords: Learning by demonstration, motion blending, virtual humans, virtual
reality.

1 Introduction

A central goal in the area of autonomous virtual humans is to achieve virtual assistants
that can effectively interact, learn, train, and assist people in a variety of tasks. We fo-
cus on the particular problem of modeling motions for interactive training applications
requiring complex gestures and actions to be reproduced realistically and with precise
parameterizations in respect to spatial constraints in the environment.

Modeling and parameterization of realistic motions is clearly an important problem
in a wide range of applications involving virtual humans. One approach for achiev-
ing precise parameterizations is to rely on algorithmically synthesized actions and ges-
tures [13, 19], however it remains difficult to achieve realistic full-body results and a
specific computational model is needed for every action to be simulated.

Another important limitation of algorithmic approaches in many training applica-
tions is that the motions to be reproduced may only be known by experts in the subject
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area of the training. Such cases are clearly better handled by motion modeling solutions
based on motion capture.

Several systems based on motion captured (or hand-crafted) animations have been
developed and are able to achieve highly realistic results [8, 28]. However the process
of building the set of needed motions for each given scenario is often time–consuming,
and it remains difficult to precisely parameterize pre-defined animations in respect to
spatial constraints.

We propose in this paper an interactive motion modeling framework for address-
ing these many difficulties in an integrated fashion. Our framework is designed to be
used in two distinct phases: in the modeling phase the user demonstrates to the virtual
human how to perform parameterized motions, such that in the training phase the vir-
tual human is then able to reproduce the motions in interactive training sessions with
apprentice users learning the training subject.

Our system targets the situation where, in the modeling phase, experts in the train-
ing subject are able to model the needed actions and gestures by direct demonstration,
without the need of having previous experience with the system. In the training phase,
the stored example motions are then re-used by the virtual human to train apprentice
users. Our framework in particular enables the virtual human to reproduce motions in
respect to arbitrary target locations in the environment. Figure 1 presents one typical
scenario modeled by our system.

(a) (b)

Fig. 1. (a) In this scenario, during the modeling phase, the user demonstrates several examples
of pointing motions in order to demonstrate operations with a stereo system and a telephone.
(b) During the training phase, the user requests the virtual human to precisely perform the same
pointing motions for arbitrary targets, here specified by the apex of the yellow cone which is
controlled via a WiiMote controller. The training phase is used here to test if the example motions
are sufficiently covering the volume of interest in the scenario. The user can interactively switch
between the two phases until all required motions are correctly defined. Note that the simulated
images in this figure appear fuzzy since they are being projected for stereo visualization.

Our motion-based interactive framework allows the design of new types of interac-
tion techniques, which can be developed according to the training scenario at hand. For
example, the apprentice may request the virtual human to perform actions at different
locations and under different conditions, feedback can be provided based on on-line
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comparisons between the motions from the expert and the apprentice, etc. Such scenar-
ios are clearly applicable to a variety of training applications, for example, sports train-
ing, rehabilitation of motor-impaired patients, training of medical procedures, demon-
stration of generic procedures, delivery of instructions, etc.

The work presented in this paper addresses the main computational challenges in-
volved in building such interactive systems. Our proposed framework is based on three
main computational modules:

– First, a real-time motion capture interface is developed for allowing users to in-
teractively model motions by direct demonstration. In order to be effective for a
variety of situations, our solution includes calibration and mapping from a reduced
set of tracking sensors.

– During the motion modeling phase, motions can be recorded and re-played on-line,
allowing users to effectively model generic actions and gestures in an intuitive way.
The modeling interface also allows the definition of clusters of example motions,
in order to represent spatial variations of a same motion. These variations are used
during the training phase in order to precisely parameterize the motions in respect
to arbitrarily given spatial targets.

– Finally, given a cluster of example motions built by the user during the model-
ing phase, we present an optimization technique for computing motions on-line
precisely respecting arbitrarily given spatial constraints. Our technique is called in-
verse blending and the solution motions are obtained by blending operations with
the example motions in a given cluster, therefore the solutions remain humanlike
and similar to the example motions. This technique is critical for achieving precise
parameterizations of realistic actions and gestures, without the need of any pre–
computation. Examples are presented with the modeling of pointing and pouring
motions, which are precisely parameterized in respect to arbitrarily given target
locations.

Our interactive motion modeling framework has been implemented in an immer-
sive multi-tile power wall stereo visualization system (shown in Figure 1). The ability
to perform simulations in a large visualization system is important for achieving immer-
sive full-scale interactions, in analogy to the way humans naturally interact with each
other. As a result our obtained system represents a powerful and intuitive approach for
programming generic parameterized motions by demonstration.

The reminder of this paper is organized as follows: after discussing related work in
the next section, we present our motion capture interface in Section 3 and our modeling
interface in Section 4. We then present our inverse blending optimization technique in
Section 5. Finally, Section 6 discusses our results and Section 7 concludes this paper.

2 Related Work

Our approach of direct demonstration of motions is strongly related to several imitation-
based learning methods previously proposed for different applications in robotics [2,26]
and computer graphics [5,6]. The work of Cooper et al. [5] in particular also employs a
full-body motion capture interface for building a database of motions, however with the
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focus on building motion databases with good coverage for motion controllers, and not
on achieving an immersive and interactive system to teach motions to virtual humans.

Although several existing systems address different aspects related to our work, we
are actually not aware of other systems with all the same characteristics as ours. We
therefore proceed with our related work analysis in respect to the different computa-
tional solutions employed in our overall system.

Several methods have been proposed in the literature for addressing the problem of
motion reconstruction from a reduced marker set. A popular approach is to employ sta-
tistical models [31] and machine learning [4] for extracting from a motion database the
motion closest to the input signal. The performance of these methods however greatly
depends on the used databases and they are usually not suitable for real-time appli-
cations. Algorithmic approaches based on simulation or optimization have also been
proposed [11, 24] but are computationally expensive and are not suitable for achieving
humanlike motions.

Algorithmic approaches based on Inverse Kinematics (IK) can run in real-time and
may be suitable for motion reconstruction if enough markers are provided to well limit
the overall posture space of possible solutions. Inverse Kinematics has also been em-
ployed to optimize full–body postures for tracking the input stream from a reduced
marker set [7, 20]. However the convergence time for iterative Jacobian-based solvers
over the full–body of a character may require several iterations and can introduce lag in
a real-time interface.

Our interactive interface focuses on achieving a fast solution for reconstructing hu-
manlike motions by employing an analytical IK solver [12] applied only to the arms
of the character. We then rely on simple mappings from additional markers in order to
fully reconstruct upper-body motions very efficiently in real-time. As our present work
focuses on modeling upper-body actions, we do not address in this work tracking of
legs or reconstruction of locomotion.

One of the main purposes of our system is to model actions and gestures to be
used in training applications. Previous work on gesture synthesis has mainly focused on
sequencing pre-defined animations [8, 27, 28], or by algorithmic synthesis, such as by
employing IK solvers towards specified trajectories [13,19]. By modeling gestures with
our motion blending techniques we are able to achieve the benefits of both approaches,
i. e., realistic animations which can be also parameterized with spatial targets.

The topic of character animation based on motion capture has been extensively
studied in the literature for several applications [1,14–16,25]. Although the majority of
works focus on the locomotion problem, motion blending (or motion interpolation) has
also been well addressed in previous works for modeling gestures and actions.

Different methods have been proposed related to motion blending, for example, hi-
erarchical filtering [3], parameterization using Fourier coefficients [29], stochastic sam-
pling [30], and interpolation based on radial basis functions (RBFs) [22]. The problem
of end-effector control with motion blending has also been addressed before [23, 32],
and more generically, spatial properties are also addressed by the geostatistical interpo-
lation scheme [18].

Another approach used for addressing spatial constraints is to generate and add
pseudo motion examples [14,23], which however increases the needed computation and
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storage. The scaled Gaussian process latent variable model [9] optimizes interpolation
kernels specifically for maintaining constraints described by latent spaces.

The main limitation of these methods is that alone they are not able to precisely
meet given spatial constraints. For instance, the active learning methodology [5] relies
on Inverse Kinematics solvers in addition to blending, however risking to penalize the
obtained realism.

Our proposed method for motion parameterization is based on the optimization of
blending weights until best meeting generic spatial constraints defining the target pa-
rameterization. Our approach is simple and intuitive, and yet has not been addressed in
previous work. Our method can be seen as a post-processing step for optimizing a given
set of blending weights, which can be initially computed by any motion blending tech-
nique. Only error metrics for the spatial constraints to enforce are necessary in order
to optimize the blending weights using a given motion interpolation scheme. We show
in this paper that our optimization framework is able to well parameterize pointing and
pouring actions on-line and without the need of any pre–computation.

3 Motion Capture Interface

A variety of commercially available solutions are able to map full–body motions to a
virtual character in real-time, however the available options are usually expensive and
often require the user to wear cumbersome tracking devices.

For instance, retro-reflective motion capture systems require the user to wear a full–
body suit with a number of markers carefully placed; systems based on magnetic sen-
sors rely on 15 to 20 magnetic sensors connected with cables; and exo-skeleton systems
are heavy and often restrictive.

As shown in Figure 2 (a), our real-time upper-body motion capture solution is based
on tracking four key limbs of the user: the two hands, the head, and the lower or mid
joint of the spine. We track both the position and orientation of each of these parts in
global coordinates. The user wears simple straps with markers on each of the consid-
ered body parts and we rely on a 10-camera Vicon system for performing the real-time
tracking. Although we rely on an instrumented room with cameras, our solution can be
ported to any other system able to track these four parts. We also rely on a data glove
for capturing finger motions in real-time.

Before starting an interactive session, a calibration process is necessary in order to
map the user’s body to the skeleton of the virtual human in the scene. We choose not to
adapt the dimensions of the virtual human in order to maintain a consistent database of
motions which can be shared by different users.

The calibration consists of measuring scaling factors, and requires the user and the
virtual agent to stand in a T–pose posture. Let ei denote the positions of the hands and
the head of the user in global coordinates, i = {1, 2, 3}. Let p be the global position of a
point on the user spine at the same height as the shoulder. This point is computed from
the spine and hand markers at T–pose. Similarly, let evi and pv be the same points but
computed in respect to the virtual human skeleton. Scaling factors si are then computed
with:

si =
‖evi − pv‖
‖ei − p‖

. (1)
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(a) (b)

Fig. 2. The figure shows (a) the camera-based motion interface and (b) our gesture vest interface
based on inertial sensors [10].

The scaling factors are obtained during the T-pose calibration and then applied dur-
ing the modeling phase of the system in order to have the end-effector positions of the
user and the virtual human matching. Each time new readings are processed, each scal-
ing factor si multiplies the translation component of its corresponding body part being
tracked, after transforming it to local coordinates in respect to the root joint.

The following additional operations are then performed on-line in order to complete
the motion mapping:

– First, the global position of the virtual human is updated according to the tracked
spine location of the user. In our current version, we focus only on capturing upper–
body actions and gestures without any locomotion, and so no attention is given for
tracking or solving leg motions.

– The spine of the virtual human is bent considering the amount of rotation between
the tracked spine orientation and the head orientation. This rotation is subdivided
by the number of joints being used to represent the spine of the virtual human, and
distributed among these joints, similarly to the approach described by Monheit et
al. [17]. The rotation of the head joint is directly mapped from the head markers,
which are actually placed attached to the polarized glasses used for stereo visual-
ization (see Figure 2 (a)).

– The arm posture reconstruction is performed using a fast analytical IK solver con-
sidering arm-body collision avoidance by automatic variation of the arm swivel
angle [12]. The swivel angle is set to start at a low default value such that the el-
bows remain low, as is the case in usual arm motions. In some cases when the
arm is extended, due tracking and calibration imprecisions, the IK may report that
an end-effector cannot reach its target position, in which case we take the closest
possible solution. The motion of the fingers is directly mapped from a data-glove.
As shown in Figure 2 (a), four markers attached at the extremities of two crossed
sticks (fixed on the data-glove) are used for tracking the 6 degrees of freedom hand
targets.

Although a precise reconstruction cannot be guaranteed, the mapping is extremely
fast and results in very fluid interactions always running well above 30 frames per sec-
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ond. Achieving a fluid and lag-free interface has showed to be extremely important
for the effective use of the system. The proposed use of a reduced marker set allows
the accommodation of systems with fewer (or lower–cost) cameras and also allows the
system to be ported to other tracking solutions.

We have in particular also experimented with an alternate motion capture solution
based on our portable and easy–to–wear gesture vest prototype system [10]. This device
is composed of 5 inertial sensors placed on the arms, head and spine of the user. The
device produces very accurate motions, is portable and wireless, and is in particular well
suited for capturing one-arm gestures. Figure 2 (b) illustrates one interactive modeling
section using this equipment. This system is also integrated with a data glove in order
to capture hand shapes.

The main drawback of this solution is that alone it cannot track information in global
coordinates in respect to our visualization system, making it difficult to be used in our
applications related to specification of spatial constraints. When the system is integrated
with a global tracking device then it becomes perfectly suitable for our applications.
Note that in Figure 2 (b) the user is wearing a hat being tracked by the camera system
in order to provide global positioning information.

Depending on the application, and on the availability of additional trackers, our
gesture vest solution represents a suitable alternative for achieving a small, portable
and low–cost solution. The system can be in particular effective for large-scale training
scenarios with many users, since the sensors scale well and do not suffer from occlusion
limitations.

4 Interactive Motion Modeling Interface

The ability to run our system in integration with a large immersive display is of main im-
portance in our interactive interface. It allows the user to interact with full-scale virtual
environments with immersive stereo vision perception, achieving realistic and accurate
reproduction of conditions during both the modeling and training phases.

In order to allow full operation of the system by a single user, our current solution
for the motion modeling phase focuses on tracking single-arm actions and gestures
performed by the right arm. In this way the user only wears a data glove on the right
hand, and the left hand holds a WiiMote controller which provides control over all the
system functionality, achieving a simple and effective interactive user interface.

By clicking buttons on the WiiMote controller, the user can change the camera view
between several modes, can control the recording and replay of motions, initiate the
definition of clustered example motions, add or delete motions from each cluster, etc.

The definition of clusters of example motions is an important concept of our system.
The definition of a cluster is necessary for specifying each parameterized action or
gesture. When the user selects to start a new cluster, every recorded motion becomes
associated with the cluster. Motions in a cluster will be blended during the training
phase and therefore they have to consistently represent variations of a same type of
motion. For instance, a pointing cluster will contain several pointings of the same type
but each pointing to a different location in the environment.
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One important information to be associated to each motion in a cluster is its param-
eterization frame. For example, this frame will be the stroke frame of a gesture or the
final frame of a one-way pointing motion. The parameterization frame identifies which
frame of the motion is to be parameterized in respect to new target locations during the
training phase. We currently let the user specify this frame by pressing a button of the
WiiMote controller at the right moment with the left hand, while the motion is being
demonstrated with the right arm. The frame location can be then adjusted forward and
backwards interactively if needed. This solution is acceptable in several cases but we
recognize it may divert the attention of the user from well performing the motion being
demonstrated. We therefore also let the user to interactively select this frame after the
motion is performed. We also allow the user to trim the initial and final frames of each
recorded example motion.

Clusters of motions can be edited, stored and reloaded as needed. Whenever the
user wishes to test a modeled cluster, the system can be switched to training phase and
the WiiMote controller is then used to specify targets to be solved by inverse blending.
In this way the virtual human is able to perform a new motion precisely reaching given
targets and well preserving the quality of the original demonstrated motions. The Wi-
iMote controller also has a haptic feedback which is used during the training phase to
tell the user when asked targets are colliding with the environment.

The interconnection of the several modules of our system is further illustrated in
Figure 3. In the next section we describe our inverse blending optimization technique
used during the training phase.

User Input

Vicon Interface

Gesture VEST Interface Motion Modeling phase

Training phase
Virtual 

Agent Motion

Database of 
motions

Fig. 3. Overview of the main parts of the system. The arrows illustrate the data flow during the
modeling and training phases.

5 Inverse Blending

The first step for applying the inverse blending optimization is to model each spatial
constraint of interest with an error metric function f , which measures how well each
constraint is being satisfied at the given parameterization frame. Although the examples
presented in this work only use positional constraints for end-effectors, generic types of
spatial constraints C can also be taken into account.
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Constraints can also have an arbitrary number of degrees-of-freedom (DOF), for
example, pointing to a distant location imposes a 2–DOF positional constraint enforcing
that the pointing line through the finger reaches a desired target, while precisely pin-
pointing a button on a dial pad needs a 3–DOF positional constraint (the target for
pointing), and an optional rotational constraint for determining a preferred pointing
orientation style (see Figure 4).

The optimization starts by selecting k example motions Mj from the example mo-
tion cluster that best satisfy the constraint function f , j = {1, . . . , k}. For example, in a
typical reaching task, the k motion examples having the hand joint closest to the target
will be selected. For the case of reaching motions, the hand location at the final pose of
the motion is typically used as the parameterization frame. For gestures, the frame of
the gesture stroke point is used.

Our optimization procedure is based on a traditional but efficient motion blending
scheme, where an initial blended motion M is obtained with M(w) =

∑k
j=1 wjMj ,

where w = {w1, . . . , wk} are blending weights initialized from a traditional RBF
interpolation scheme. Any suitable kernel function can be used and we employ the
popular exp−‖e‖

2/σ2
kernel. Since our optimization runs on-line during interaction with

the user, we do not attempt to optimize kernel functions in respect to the constraints [18,
22]. Instead, our blending weights will be optimized independently of the interpolation
kernel.

In order to enforce a given constraint C, our goal is to find the optimal set of blend-
ing weights w, which produces the minimum error e∗, measured by the constraint error
function f :

e∗ = minwj∈[0,1] f

 k∑
j=1

wjMj

 . (2)

This formulation can also account for multiple constraints by combining the error
metric of each constraint in a single weighted summation. Two coefficients are then
introduced for each constraint Ci, i = {1, . . . , n}: a normalization coefficient ni and a
prioritization coefficient ci. The purpose of coefficient ni is to balance the magnitude
of the different error metrics associated to each constraint. Coefficient ci allows the
specification of relative priorities between the constraints.

The result is essentially a multi-objective optimization problem, with the goal being
to minimize an error metric composed of the weighted summation of the individual
error metrics:

e = minwj∈[0,1]

n∑
i=1

(ci ni fi (M(w))) . (3)

Independent of the number of constraints being addressed, when constraints are
fully satisfied, e → 0. Figure 4 shows several results obtained by our optimization
scheme.

Several optimization routines were implemented for solving our inverse blending
problems, including: steepest ascent hill-climbing, the Nelder-Mead method and the
gradient decent method [21]. Performance evaluations were conducted by solving 5000
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Fig. 4. The image shows results obtained with three different motion clusters. (a) Pointing mo-
tions parameterized by a 2–DOF directional constraint results in precise pointing to distant tar-
gets. (b) Pouring motions can be parameterized by a 2–DOF planar constraint specifying the
precise location above the pouring target, and an additional constraint specifying an acceptable
height range, so that liquids can correctly flow down into containers. (c) Precise pinpointing
to given targets requires a 3–DOF positional constraint, with optional rotational constraints for
further controlling the final poses obtained. The shown pinpointing examples show different ori-
entations obtained, which match the x-axis of the tri-axes manipulator.

inverse blending problems for different scenarios: pointing, pouring and grasping. The
Nelder-Mead method [21] has been proved to be the method of choice for our case
where k remains below 15. The method requires a simple implementation and can typ-
ically achieve optimal blending weights within 2 milliseconds of computation time.

With suitable example motions in a given cluster, inverse blending can produce mo-
tions exactly satisfying given spatial constraints and fast enough for real-time applica-
tions. The several examples presented by this paper demonstrate its successful execution
in different scenarios. To evaluate the performance of our method, a reaching task was
designed to measure the errors produced by our method against a single RBF interpo-
lation, with the 16 reaching motions in the database from Mukai and Kuriyama [18]. A
total of 114 reaching goals (each specifying a 3–DOF positional constraint) were placed
evenly on a spherical surface within reach of the character. These goals are highlighted
with small yellow dots in Figure 5. The end locations of the hand trajectory in each
example motion are shown as gray dots.

For each reaching target on the surfaces shown in Figure 5, we first used the RBF
interpolation alone to generate a reaching motion and recorded the final hand position
where the character actually reaches. These final positions are used to construct a mesh
grid, which is shown on the upper row of Figure 5. Each triangle on the mesh is colored
in respect to the average errors from its vertices, representing the distance error between
the final hand positions and their corresponding reaching targets. We then use inverse
blending optimization to perform the same tasks, and the mesh constructed is shown
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on the lower row of Figure 5. The reaching motions generated by inverse blending can
precisely reach most of the targets, and the measured errors were practically zero across
most of the mesh. Only at the boundary of the surface that errors start to appear. In this
specific task, the radius of the spherical surface was set to 80cm, and both methods used
eight example motions from the database (k = 8) for computing each reaching task.

Fig. 5. Visualization of errors obtained by RBF interpolation and inverse blending. The upper row
shows the results obtained with RBF interpolation. The blue smooth meshes on the lower row
show the inverse blending results, which can well satisfy the given 3–DOF positional constraints.

It is important to note that the ability of enforcing constraints greatly depends on
the existing variations among the used motion examples being blended. The number
of needed example motions also depend on the size of the target volume space. The
computational time required for finding solutions will also depend on the quality and
number of considered motion examples (the k value). However, as showed in our several
examples, these limitations can be well addressed by appropriately modeling example
motions, and balancing the coverage vs. efficiency trade-off specifically for each action
being modeled.

6 Results and Discussion

Examples demonstrating several aspects of our interactive system are presented in the
video accompanying this paper (available at http://graphics.ucmerced.edu/).

We believe that our system achieves an effective overall design for modeling param-
eterized motions, which are extremely important for several types of applications (see
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Fig. 6. In this example pouring motions are demonstrated and added to a parameterized pouring
action cluster (top sequence). Once completed, the cluster is used to generate new pouring actions
to arbitrary locations (bottom sequence).

Figure 6). Our framework well addresses the modeling of generic gestures and actions
to be executed by interactive virtual humans, and furthermore allows non–skilled ani-
mators to intuitively obtain realistic results. Our proposed motion interface has therefore
the potential to impact many applications.

Our first results open several new opportunities for further development of our in-
terface design. For instance, we intend to quantify the advantages and limitations of
employing an immersive stereo visualization display, and further explore the benefits
of displaying the user’s avatar during the modeling phase, as opposed to simply rely
on an immersive direct motion performance. Direct performance offers better precision
when interacting with the virtual environment, however note that the user is not required
to demonstrate motions exactly meeting constraints, since the inverse blending will be
responsible for that during the training phase.

Several improvements to our current motion capture interface can also be per-
formed. For instance, a two-arm tracking interface can be easily integrated by including
a few voice commands and/or finger gestures for operating the system, in order to free
the left hand from holding the WiiMote controller. The integration of locomotion is also
important, and in the scope of our target applications, we plan to include automatic lo-
comotion and body positioning algorithms for controlling the virtual human instead of
learning lower-body locomotion animations from the user. An independent gaze model
also appears to be necessary.

We also intend to apply our system to concrete training scenarios. Additional con-
straints and parameterizations will be included, for instance related to parameterizing
motion variations according to emotional levels, importance, etc. Our inverse blending
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technique can handle any generic parameterizations as long as suitable motion clusters
can be provided.

7 Conclusions

We have presented in this paper a novel motion modeling framework based on the di-
rect demonstration and parameterization of motions. We have in particular presented
the several algorithmic solutions required for enabling the development of the proposed
design: a fast procedure for motion mapping from a reduced marker set, an intuitive
motion interface for enabling the direct demonstration of parameterized actions and
gestures, and an inverse blending optimization technique able to efficiently achieve re-
alistic and parameterized motions in respect to arbitrarily given targets.

Our proposed framework has been implemented in an immersive multi-tile stereo
visualization system, achieving a powerful and intuitive interface for programming
generic parameterized motions by demonstration. We believe that the overall concept
of our system has the potential to impact many applications.
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