
A Skill-Based Motion Planning Framework for Humanoids

Marcelo Kallmann, Yazhou Huang and Robert Backman
(In Proceedings of ICRA 2010)

Abstract— This paper presents a multi-skill motion planner
which is able to sequentially synchronize parameterized motion
skills in order to achieve humanoid motions exhibiting complex
whole-body coordination. The proposed approach integrates
sampling-based motion planning in continuous parametric
spaces with discrete search over skill choices, selecting the
search strategy according to the functional type of each skill
being coordinated. As a result, the planner is able to sequence
arbitrary motion skills (such as reaching, balance adjustment,
stepping, etc) in order to achieve complex motions needed for
solving humanoid reaching tasks in realistic environments. The
proposed framework is applied to the HOAP-3 humanoid robot
and several results are presented.

I. INTRODUCTION

Despite several successes in the motion planning domain,
achieving whole-body coordinated humanoid motions for
solving manipulation tasks remains a challenge. The problem
is in particular difficult because most of humanoid tasks
require coordination of different types of motion skills, which
have to be addressed in an integrated fashion. This paper
proposes a generic framework for addressing this problem.

The proposed framework is applied to the particular prob-
lem of coordinating stepping and reaching for the HOAP-
3 humanoid platform. The robot has a relatively small
reachable space for the arms and therefore coordination with
stepping is critical even for reaching simple targets. Figure 1
illustrates a situation where the humanoid is not able to reach
the target with a simple arm motion because the target is
outside reachable range, and therefore stepping and body
adjustments are required in order to solve the task.

Fig. 1. Example of a simple reaching task which is only solvable after the
robot performs a few stepping motions and body adjustments.

It is important to notice that the problem of skill coordination
appears frequently in common tasks such as: relocating ob-
jects, opening doors, pushing buttons, etc. Most importantly

The authors are with the School of Engineering of the Uni-
versity of California, Merced, N. Lake Road, Merced CA 95343.
{mkallmann,yhuang,rbackman}@ucmerced.edu

this class of problems addresses a broad range of real-life
tasks and represents a large proportion of people’s daily
activities. Deciding the sequence of skills to employ for such
tasks is not trivial due the large number of possible coordi-
nations and the different capabilities and constraints of each
available skill. However solving the coordination of motion
skills is critical for several reasons: 1) for achieving optimal
movements exploring the full potential of the humanoid
structure, 2) for enabling complex mobile manipulations
in cluttered environments, and 3) for achieving human-like
motions which are better suited for humanoid assistants
interacting and collaborating with people.

Instead of relying on a series of pre-programmed controllers
with reactive behaviors, the proposed framework is designed
to explore and evaluate many possible motion strategies for
each given problem. The planner is capable of exploring
both the parameterization space of individual motion skills
and the possible coordination points for switching between
skills. The planner is based on a generic representation of
motion skills which is able to encapsulate different algorith-
mic strategies for motion control in a common integrated
framework. As a result the planner is able to evaluate
several solutions for the sequencing of stepping and reaching
motions in order to reach for a given target. The presented
framework is inspired by cognitive theories advocating that
humans select learned motor programs (here called motion
skills) each time a task has to be solved [26].

II. RELATED WORK

Traditional motion planning approaches [20, 21, 23] are
based on the systematic search in configuration spaces.
Among the several techniques, sampling-based methods such
as the Probabilistic Roadmaps (PRMs) [14] and Rapidly-
Exploring Random Trees (RRTs) [19, 22] have become
extremely popular for planning in continuous configuration
spaces. These and other methods have been applied to
humanoid structures, however, as whole-body motion plan-
ning for humanoids is inherently a multi-modal problem,
most of the approaches have been developed for particular
modes or skills, for instance: footstep planning for precise
locomotion around obstacles [3, 4, 18], reaching motions for
manipulation [1, 5, 6, 11, 12, 17], etc.

When planning is limited to a discrete selection among pos-
sible actions or predefined motion patterns, discrete planners
based on A* and its several variations [15, 16, 24] are well
suited for finding the best sequence of actions to be taken.
No single planning method is best in all cases. For instance,

while discrete planning is well suited for sequencing stepping
motions, arm reaching is best addressed by searching the
continuous configuration space of the arm.

Multi-modal planning has recently emerged for humanoids
and has been in particular developed for achieving locomo-
tion and climbing in difficult terrains [2, 8, 9, 13] and also
to sequentially coordinate walking and pushing [10]. With a
focus on locomotion, extensions to the basic PRM method
for handling multi-modal problems have also been proposed
[7]. However, less attention has been given for the specific
purpose of coordinating locomotion with reaching motions,
which is the main topic addressed in our present work.

The multi-skill framework proposed in this paper addresses
the problem of coordinating stepping and reaching motions
as a multi-modal planning problem. In doing so the presented
algorithm proposes a novel hybrid mechanism for solving
multi-modal problems, integrating two types of search: 1)
sampling of motion variations for concatenation of mobility
skills and 2) bidirectional systematic exploration of manipu-
lation skills for precisely reaching given targets. The overall
approach is therefore able to explore the concatenation
of locomotion skills until the target manipulation can be
rapidly solved with a bidirectional search. The presented
results demonstrate the suitability of the approach for solving
several complex humanoid reaching tasks.

III. MOTION SKILLS

The presented framework considers that each available mo-
tion skill is able to produce specialized motions efficiently
according to its own parameterization scheme.

Let C be the d-dimensional configuration space of the
humanoid being controlled and Cfree the subspace repre-
senting the valid configurations. Configurations in Cfree are
collision-free, in balance and respect articulation constraints.

One of the purposes of using motion skills is their specialized
ability to control the humanoid in a particular mode. The
discrete set M is used to represent humanoid modes by
specifying the state of each end-effector. Four letters are
used: f for free (or unconstrained), m for when the end-
effector is being used for object manipulation, s for when it
is being used to support the humanoid, and o for when the
end-effector can be optionally used as a support. Optional
supports are in particular detected when a foot is correctly
placed on the floor but without supporting any weight,
meaning that the foot can be used or not as support by a
subsequent skill.

Assuming that the humanoid structure in consideration has
four end-effectors (two feet and two hands), a mode is then
represented as a four-letter string, such as: “ssff” for a
standing rest pose, or “ssmf” for a standing pose with one
hand grasping an object, etc.

X is the state space of the planning problem, which is defined
as the Cartesian product X = C × R+, where R+ is used

to represent time. Therefore x = (q, t) ∈ X denotes a
configuration q at time t. The function m(x) ∈M is used to
compute the mode of the humanoid at state x in the current
environment.

S represents the skill base of the humanoid and is the finite
set of all available motion skills. S(x) ⊂ S represents the
subset of skills which can be instantiated at x, i.e., which are
applicable to take control over the humanoid in state x and
mode m(x). Each skill is essentially a controller specialized
to operate in a particular set of modes and is responsible
for checking the feasibility of instantiation, for example: a
foot placement skill will only be instantiated if there is an
unconstrained foot to be controlled, etc.

A skill σx ∈ S(x) is a function of the type σx : Pσ ×
[0, 1] → X , where Pσ is its parametric control space, and
[0, 1] is the normalized time parameterization of the produced
motion, such that ∀p ∈ Pσ , σx(p, 0) = x, and σx(p, 1) is
the final pose produced by the skill. Therefore, once a skill
is instantiated it can then be evaluated in [0, 1] in order to
obtain the states traversed by the produced motion. Note that
if there is a p ∈ Pσ such that σx(p, 1) = y, then σx can be
used to create a motion between states x and y, and the
notation σx(y, t) may be used instead of σx(p, t).

Skills are also classified according to their main purpose.
Currently two types of skills are considered: mobility skills
and manipulation skills. The type informs how each skill
is supposed to be controlled by the multi-skill planner.
While manipulation skills are responsible for controlling end-
effectors in order to reach targets which are in reachable
range, mobility skills are responsible for updating the posi-
tion of the humanoid until the target becomes reachable.

Given an initial state xi and a final set of goal states Xg ,
the goal of the multi-skill planner is to produce a sequence
of n skills, together with their application parameters such
that, after the sequential application of all the skills, the
humanoid will have moved from xi to a state xg ∈ Xg and
only traversing states with configurations in Cfree. Note that
in this way the search space considered by the multi-skill
planner is restricted to the parametric spaces of the available
skills.

In this paper, the specific case of coordinating body motions
for object grasping is used to demonstrate the framework.
The goal is to precisely reach given targets with the hand
and therefore the final set of goal states Xg represents all
body postures with the hand precisely reaching the given
target placement. The motion skills developed for solving
these reaching tasks are described below.

A. Reaching Skill

The reaching skill σreach is a manipulation skill parameter-
ized by the target location to be reached by a hand or foot
and was developed with analytical IK formulations for the
arms and legs of the HOAP-3 robot.

Given a parameter p, σreach produces a motion from the
current posture to a final pose with the hand or foot exactly
reaching the target position encoded in p. The legs of the
HOAP-3 platform have 6 degrees of freedom (DOFs) and
therefore the analytical solution can precisely compute joint
angles for placing the feet in given 6 DOFs targets (position
and orientation). The arms only have 5 DOFs and so the
IK formulation only ensures that the target position is met,
leaving the end-effector with the best orientation possible.

Whenever the skill is instantiated in a given body posture,
the reaching skill will first determine with the IK a final
arm posture reaching the given location p. The motion
between the initial posture and the final posture is produced
by interpolating the current hand position to the target in
workspace. Each intermediate pose is therefore also com-
puted by IK. In this way a reaching motion with the hand
describing a rectilinear trajectory in workspace is obtained
(see Figure 2). The time parameterization is mapped to a
spline curve in order to obtain a bell-shaped velocity profile.
These characteristics encode observations of how realistic
arm motions are performed by humans [25].

The use of an analytical IK formulation is important due its
fast computation, as the motion planner will sample several
variations of each motion skill. The fact that the analytical
formulation only affects the arm (or leg) does not pose a
problem since other skills (as the balance skill introduced
next) will affect the other parts of the body. Note also that
the IK formulation observes joint range limits and the planner
will test for motion feasibility each time a skill is used.

Fig. 2. The motion obtained by the reaching skill produces a straight-line
trajectory of the end-effector in workspace.

B. Stepping Skill

The stepping skill σstep is a mobility skill that moves each
leg individually and is implemented using the same IK
formulation as in σreach. The main difference is that σstep is
parameterized by a target position and orientation on the floor
to be reached by the foot. Contacts between the feet and the
environment are constantly monitored for determining the
support mode and balance validity. In this paper only the
ground is considered to be a valid surface for support.

Given the current mode m(x), σstep can only be instantiated
for a leg which is unconstrained, and two versions exist:
σlstep controls the left leg and σrstep controls the right leg.

Also note that in order to produce valid motions between the
current foot position to a new placement, σstep generates an
arc-shaped trajectory in the vertical plane such that the foot
will not slide on the ground between the two placements.
Figure 3 illustrates the generated motion.

Fig. 3. Lateral view of a leg motion produced by the stepping skill.

C. Balance Skill

The balance skill σbal is another mobility skill but which
has as main purpose to vary the support mode in order
to allow different stepping skills to be instantiated. It is
parameterized by a displacement (in position and orientation)
to be achieved by the root joint of the robot. The desired
motion is achieved by moving the joint angles of the legs
towards new configurations which will lead to the desired
root joint displacement. The analytical IK formulation is
again used to determine the joint angle variations of the legs
while exactly maintaining the feet placements.

The balance skill provides the key capability of transitioning
between different leg support modes. The support mode is
constantly monitored during the application of motion skills
as it will influence the set of applicable motion skills, i.e. the
skills which can be instantiated at a given humanoid config-
uration. The balance skill will in particular be responsible
to free one leg from supporting the humanoid, allowing it
to take a step towards a new placement. Figure 4 illustrates
two different motions generated by the balance skill.

D. Sampling Skill Variations

Skills also determine bounds for their parameters in order
to allow meaningful sampling of motions produced by in-
stantiated skills. Figure 5 illustrates few variations obtained
when sampling the parametric spaces of the skills considered
in this work. The multi-skill planner will use this sampling
functionality in order to search for concatenations between
skills, and in the case of manipulation skills, to also search
for intermediate motions around obstacles when collisions
with obstacles are detected.

IV. MULTI-SKILL PLANNER

The multi-skill planner (MSP) maintains a search tree T of
visited states and a priority queue Q with the nodes in the
current expansion front. When MSP starts, T and Q are
initialized with the current state of the humanoid. Queue

Fig. 4. Example of motions obtained with the balance skill. Top sequence:
from standing pose (mode “ssff”) to single foot support (mode “osff”).
Bottom sequence: transitioning the support mode from “soff” to “osff”.
The vertical line shows the projection of the center of mass to the floor.
The intersection with the support polygon (also shown) reveals the support
mode of the humanoid.

Fig. 5. Examples of the final postures obtained when sampling motions
produced by σreach (left), σlstep (center), and σbal (right).

Q is prioritized by a cost associated with each enqueued
state and the initial state receives cost 0. Then, given a goal
position pg and orientation qg , the skill expansion procedure
is repetitively called until the humanoid reaches a state in Xg ,
i.e. a state where one of its hand is exactly reaching target
(pg, qg). If a given maximum elapsed time passes without
success, the expansion stops and MSP reports failure.

The skill expansion routine is detailed in Algorithm 1. It
basically selects skills and performs the search expansion
strategy according to each skill type. At each call, the
procedure removes the lowest cost (higher priority) state x
from Q and selects all skills which are applicable (line 2),
i.e. which can be instantiated at state x. For each applicable
skill, the corresponding expansion method is then selected
and applied. Note that skills will only be applicable if the
controlled end-effector is free or optionally free (letters f
or o in the mode encoding). Therefore, for each new state
x being processed, the center of mass of the humanoid and
its support polygon are computed in order to determine the
mode description m(x) ∈M . In the scope of this paper, only

static balance tests based on the location of the projected
center of mass onto the support polygon are computed.

Manipulation skills are only considered by the planner if the
goal location is reachable by the skill from the current state.
This test is performed in lines 5 and 6. When a manipulation
skill is selected for expansion, a candidate goal state xg
reaching the goal has been already determined (line 5) and
a bidirectional RRT-like exploration starts between x and
xg in order to determine if a valid motion joining the two
states can be found, in which case the algorithm successfully
terminates. If the two states can be connected by a single
application of the manipulation skill, the bidirectional search
will trivially find such solution.

Algorithm 1 Skill expansion of the multi-skill planner.
Expand Skill (Q, T , pg , qg)

1. x← Q.remove lowest cost ()
2. S(x)← applicable skills (S)
3. for (each σx in S(x)) do
4. if (σx type is manipulation) then
5. xg ← σx((pg, qg), 1)
6. if (xg 6= null) then
7. for (k1 times) do
8. Expand Bidirectional Search (x, xg , σx)
9. if (connection found) then

10. return SOLUTION FOUND
11. end if
12. end for
13. attach the expanded bidirectional trees to x
14. n← total number of nodes in the trees
15. Q.insert (x, fcost(x, pg, n))
16. end if
17. else if (σx respects its mobility sequence) then
18. for (k2 times) do
19. p← sample (Pσ)
20. if (motion generated by σx(p) is valid) then
21. x′ ← σx(p, 1)
22. T .append child (x, x′, σx, p)
23. Q.insert (x′,fcost(x′, pg, 0))
24. end if
25. end for
26. end if
27. end for
28. return NOT YET FOUND

Skill σreach is the only considered manipulation skill and
two versions of it are available in S: one for the right hand
and another one for the left hand. In this way the planner
will naturally select the most suitable hand to reach the goal.
The bidirectional search for the manipulation skill is then
expanded up to k1 times (lines 7-12).

Algorithm 2 details the process: each bidirectional search is
initialized with one tree rooted at the current state x and the
second tree rooted at the goal state xg . At each iteration, the
algorithm tries to grow the trees in the direction of random

Fig. 6. The left-most image shows the edges expanded for finding the first solution for reaching the target among obstacles on top of the table. The
second image illustrates the expansion of several solutions. The five right-most images, from left to right, show poses of the first solution found (left view).

landmarks xrand by a motion of length δ. The iterations will
eventually produce a collision-free path by concatenation of
the landmarks, or in case k1 iterations pass without success,
the process stops.

Parameter k1 controls the tradeoff between insisting in trying
to reach the target from the current body placement, or
suspending the search to let new manipulation instantiations
to try reach the target from different body placements. When
the k1 iterations pass, the bidirectional search is suspended
and attached to the current state x, which is re-inserted in
Q with an updated cost encoding the time invested so far in
that expansion. Note that if x is removed again from Q in
a later expansion, the attached bidirectional search will be
again executed for a maximum of k1 additional expansions.
In this way different instantiations of σreach compete with
each other in order to find the overall minimum-cost solution
for the task (see Figure 8).

Algorithm 2 Bidirectional expansion of manipulation skills
Expand Bidirectional Search (x, xg , σx)

1. if no bidirectional trees attached to x, attach empty ones
2. ta ← attached tree rooted at x
3. tb ← attached tree rooted at xg
4. xrand ← σx(sample(Pσ) , 1)
5. xa ← closest configuration to xrand in ta
6. xb ← closest configuration to xrand in tb
7. if (motion generated by σxa(xb) is valid) then
8. return CONNECTION FOUND
9. else

10. try to expand (ta, xa, xrand, δ)
11. try to expand (tb, xb, xrand, δ)
12. return NOT YET FOUND
13. end if

Mobility skills are selected for expansion in line 17 of
Algorithm 1. In order to ensure that the planner concatenates
a meaningful sequence of mobility skills, each mobility skill
provides a mobility sequence to be respected. Skill σlstep
requires the grand-parent and the parent nodes of the current
state x to have been generated by skills σrstep and σbal
respectively. This avoids the planner to spend time with non-
useful stepping sequences such as: σlstep, σbal and σlstep.
Similarly, skill σrstep constraints the two previously applied
skills to be σlstep and σbal. Finally skill σbal simply does not
allow repetition, i. e. it restricts that the previous skill cannot
be as well a σbal skill. Constraining sequences with per-skill

specifications has greatly improved the overall performance
of the planner.

M. Kallmann

1

xi

xg∈ Xg

x’g∈ Xg

Fig. 8. The concatenation of mobility skills (continuous blue edges) will
lead to several states which can initiate expansions of manipulation skills.
Here the dashed red edges and the dotted green edges represent bidirectional
expansions trying to reach the goal from different states. Each bidirectional
expansion grows for up to k1 times.

Selected mobility skills are expanded at most k2 times (line
18 of Algorithm 1). Each expansion selects a target state by
sampling a control parameter p from the parametric control
space of the skill. Each time p is sampled, the generated
motion between σx(p, 0) and σx(p, 1) is tested for validity
(line 20). If the motion is valid, a new valid state x′ =
σx(p, 1) has been reached and x′ is then added to T and Q.

The motion validity tests (Algorithm 1 line 20 and Algo-
rithm 2 line 7) will evaluate the motion in several intermedi-
ate states by recursive bisection until a given precision is
reached. At each evaluated state, joint limits compliance,
collision detection and balance tests are performed. The
continuous validity problem is therefore solved discretely and
the motion is determined valid only if all intermediate states
are valid.

Costs Every time a new state is inserted in Q (lines 15 and
23) of Algorithm 1, its cost is computed. The cost dictates
which states are to be expanded first and its computation can
take different metrics into consideration. The cost function
used in this work encodes the following terms:

fcost(x, pg, n) = dc(xi, x) + wgdg(x, pg) + wen.

Term dc(xi, x) encodes the usual cost-to-come and is com-
puted as the sum of the costs in all the edges in the T branch
from the root node xi to the current node x. Edge costs
encode the displacement of the motion represented by each
edge. Term dg(x, pg) encodes the cost-to-go heuristic, and is
set as the distance between the goal point and the mid-point
between the shoulder joints of the humanoid at state x. This
cost is weighted by wg and makes states closer to the goal
to be expanded first.

Fig. 7. The sequences show snapshots of two solutions for a reaching task requiring several steps among obstacles on the ground. The top sequence
shows a solution with the right arm reaching the goal. The bottom sequence shows a solution with the left arm. These solutions had similar costs.

The final term is weighted by we and penalizes states
which have already been expanded (by n expansions) in a
bidirectional manipulation search. This term does not affect
states reached by mobility skills which will always have
n = 0 (Algorithm 1 line 23).

V. RESULTS AND DISCUSSION

Figure 6 illustrates a typical solution obtained by MSP for
reaching a target among a few obstacles in a table. In the
example shown by Figure 7 the two versions of σreach are
included in S (one for each hand) and the planner was
able to find solutions using both hands. Figure 9 shows
another solution obtained in a more constrained environment.
In all cases, the obtained solutions represent coordinated,
statically-stable and collision-free motions.

The first two images of Figure 6 show colored edges
representing the expanded nodes of the search. The blue
edges show the root position variation generated with the
application of skill σbal. Red edges represent variations of
the right foot position generated by instantiations of σrstep.
Green edges represent variations of the left foot position
generated by σlstep. The edges in magenta represent the
hand trajectories controlled by σreach. These examples show
that most of the solutions are composed of several body
adjustments until arm reaching is feasible, in the same
fashion depicted by the diagram of Figure 8.

The obtained results show that MSP is able to find suitable
body placements for supporting manipulation tasks and that
several solutions can be explored when the algorithm is
not stopped at the first (minimum-cost) solution. Additional
metrics can also be included in the cost function for taking
into account: low energy consumption, security distance from
obstacles, etc.

One main strength of the proposed approach is the ability
to integrate the discrete expansion of mobility skills with
the systematic and bidirectional expansion of manipulation
skills, allowing both types of search to be concurrently
expanded in order to explore and evaluate different concate-
nations of skills. The amount of expansions performed at
each step can be controlled by parameters k1 and k2, which

will directly control the branching factor of the search. Note
that no mechanisms have been included to detect and prevent
regions in X to be excessively visited. Such mechanisms
could be integrated with the use of hash functions, and would
be necessary in dense expansions.

Another important observation is that MSP is able to generate
crude locomotion patterns. Locomotion patterns could be
further optimized and parameterized, and even re-inserted as
new higher-level skills to become available to the planner.
The possibility of integrating an automated process of learn-
ing of higher-level skills could lead to a powerful knowledge-
base learning approach for motion planning. Alternatively,
hand-crafted skills for producing a walking gait could be
easily integrated in the framework and would quickly bring
the humanoid close to the object to be manipulated.

Note also that the computed solutions are described by a
precise sequence of skills and their instantiation parameters.
This allows motion optimization algorithms to be developed
to operate on the parametric control space of each skill,
instead of operating on the full state space of the humanoid.
In our present work, optimization and smoothing techniques
were not applied to the presented results. However several
well-known techniques from the motion planning field can
be readily integrated for further improving the computed
motions.

Depending on the complexity of the problem being solved,
the computational time required for finding a solution may
vary from few seconds to several minutes. The solutions
illustrated in Figures 1, 6, 7, and 9 took respectively: 1
second, 49 seconds, 7 minutes, and 3 hours on an Intel Q9450
CPU. In most of these examples parameters k1 = 60 and
k2 = 10 were used. Note that the planner is not designed
to plan long stepping sequences and long solutions imply
excessive search of stepping combinations leading to many
minutes of computation. Instead, the planner is designed to
solve short concatenations of stepping and body adjustments
for the purpose of supporting manipulation tasks. Further-
more, our prototype implementation can still be significantly
improved with the purpose of reducing computation time,
in particular in respect to precomputing skill samples and

Fig. 9. In this example the target is behind the initial pose of the robot and there are few obstacles on the ground constraining the free space. This
environment forces the robot to perform several rotational steps until it is able to reach the goal with the right hand.

employing specific continuous collision detection procedures
based on simplified geometries.

The produced reaching motions have also been successfully
transferred to the HOAP-3 platform for the realtime control
of reaching tasks. Figure 10 shows snapshots of one of our
experiments. In this example, markers tracked by motion
capture cameras are used to record the position of the target
to be reached. The planner then typically takes a few seconds
for computing a solution (of relatively short duration), which
can then be transferred and executed by the robot. Our
realtime controller converts the sequence of joint angles of
the solution motion into encoder values which are sent to the
robot at about 30 Hz.

The presented experiments show that the produced plans
have enough precision for being successfully executed by
the humanoid robot. Several extensions are being carried
out for improving the robustness of the humanoid control.
For instance we are currently integrating reactive controllers
monitoring the robot’s sensors with the specific purpose of
improving balance maintenance and target tracking while
executing computed motions.

The video accompanying this paper presents animations of
some of the obtained results and also demonstrations of
planned motions being applied to the HOAP-3 humanoid.

Fig. 10. Applying a solution motion to the robot.

VI. CONCLUSIONS AND FUTURE WORK

This paper describes a multi-skill motion planning frame-
work able to plan the sequencing of generic motion skills.
The presented results demonstrate that the proposed frame-
work is able to solve multi-modal problems involving mo-
bility and manipulation.

This approach has the potential to lead to optimal whole-
body humanoid performances which are closer to human-like
strategies. Furthermore, the proposed skill-based approach
has the potential to enable a human-like automated way
of learning complex skills from basic ones. The presented
framework has therefore the potential to be useful to a
wide range of humanoid applications related to achieving
intelligent autonomous assistants.

As future work, we are exploring several topics for improve-
ment of the framework: 1) the use of higher-level skills, 2)
skill parameterization properties for improving the planning,
and 3) mechanisms for learning basic coordinations in order
to solve repeated situations fast.

Acknowledgments This work was partially supported by
NSF Award BCS-0821766.

REFERENCES

[1] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour.
An integrated approach to inverse kinematics and path
planning for redundant manipulators. In Proceedings
of the IEEE International Conference on Robotics and
Automation, pages 1874–1879. IEEE, May 2006.

[2] T. Bretl. Motion planning of multi-limbed robots sub-
ject to equilibrium constraints: The free-climbing robot
problem. International Journal of Robotics Research,
25(4):317–342, 2006. ISSN 0278-3649.

[3] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K.
Hodgins, and T. Kanade. Footstep planning for the
honda asimo humanoid. In ICRA, April 2005.

[4] J. Chestnutt, K. Nishiwaki, J. Kuffner, and S. Kagami.
An adaptive action model for legged navigation plan-
ning. In Proceedings of the IEEE/RAS International
Conference on Humanoid Robotics, 2007.

[5] R. Diankov and J. Kuffner. randomized statistical
path planning. In Proceedings of the International
Conference on Robotics and Automation (ICRA), pages
1–6, May 19-23 2008.

[6] E. Drumwright and V. Ng-Thow-Hing. Toward inter-
active reaching in static environments for humanoid

robots. In Proceedings of the IEEE International
Conference on Intelligent Robots and Systems (IROS),
Beijing, China, October 2006.

[7] K. Hauser and J. Latombe. Multi-modal motion plan-
ning in non-expansive spaces. In Proceedings of the
8th Workshop on Algorithmic Foundations of Robotics
(WAFR), December 7-9 2008.

[8] K. Hauser, T. Bretl, and J. Latombe. Non-gaited
humanoid locomotion planning. In Humanoids, pages
2641– 2648, December 2005.

[9] K. Hauser, T. Bretl, K. Harada, and J. Latombe. Using
motion primitives in probabilistic sample-based plan-
ning for humanoid robots. In Workshop on Algorithmic
Foundations of Robotics (WAFR), pages 2641– 2648,
July 2006.

[10] K. K. Hauser, V. Ng-Thowhing, Gonzalez-Baos,
H. Mukai, and S. Kuriyama. Multi-modal motion
planning for a humanoid robot manipulation task. In
International Symposium on Robotics Research, 2007.

[11] S. Kagami, J. Kuffner, K. Nishiwaki, M. Inaba, and
H. Inoue. Humanoid arm motion planning using stereo
vision and rrt search. Journal of Robotics and Mecha-
tronics, April 2003.

[12] M. Kallmann. Scalable solutions for interactive virtual
humans that can manipulate objects. In Proceedings
of the Artificial Intelligence and Interactive Digital
Entertainment (AIIDE’05), pages 69–74, Marina del
Rey, CA, June 1-3 2005.

[13] M. Kallmann, R. Bargmann, and M. J. Matarić. Plan-
ning the sequencing of movement primitives. In Pro-
ceedings of the International Conference on Simulation
of Adaptive Behavior (SAB), pages 193–200, Santa
Monica, CA, July 2004.

[14] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Over-
mars. Probabilistic roadmaps for fast path planning in
high-dimensional configuration spaces. IEEE Transac-
tions on Robotics and Automation, 12:566–580, 1996.

[15] S. Koenig. A comparison of fast search methods for
real-time situated agents. In Proceedings of the Inter-
national Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 864–871, 2004.

[16] S. Koenig and M. Likhachev. Real-time adaptive A*.
In AAMAS, pages 281–288, 2006.

[17] Y. Koga, K. Kondo, J. J. Kuffner, and J.-C. Latombe.
Planning motions with intentions. In Proceedings of
SIGGRAPH, pages 395–408. ACM Press, 1994.

[18] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and
H. Inoue. Motion planning for humanoid robots. In
Proceedings of the 11th International Symposium of
Robotics Research (ISRR), November 2003.

[19] J. J. Kuffner and S. M. LaValle. RRT-Connect:
An efficient approach to single-query path planning.
In Proceedings of IEEE International Conference on
Robotics and Automation (ICRA), San Francisco, CA,
April 2000.

[20] J.-C. Latombe. Robot Motion Planning. Kluwer
Academic Publisher, December 1990.

[21] J.-P. P. Laumond. Robot Motion Planning and Control.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1998. ISBN 3540762191.

[22] S. LaValle. Rapidly-exploring random trees: A new
tool for path planning. Technical Report 98-11, Iowa
State University, Computer Science Department, Octo-
ber 1998.

[23] S. M. LaValle. Planning Algorithms. Cambridge
University Press (available on-line), 2006. URL msl.

cs.uiuc.edu/planning/.
[24] M. Likhachev, G. J. Gordon, and S. Thrun. ARA*:

Anytime A* with provable bounds on sub-optimality. In
S. Thrun, L. Saul, and B. Schölkopf, editors, Advances
in Neural Information Processing Systems 16. MIT
Press, Cambridge, MA, 2004.

[25] S. Schaal. Arm and hand movement control. In
M. Arbib, editor, The handbook of brain theory and
neural networks, pages 110–113. The MIT Press, sec-
ond edition, 2002.

[26] R. Schmidt and T. Lee. Motor Control and Learning:
A Behavioral Emphasis. 2005. ISBN 073604258X.

