
A Motion Planning Framework for Skill
Coordination and Learning

Marcelo Kallmann and Xiaoxi Jiang

To appear in Motion Planning for Humanoid Robots
Harada, Kensuke; Yoshida, Eiichi; Yokoi, Kazuhito (Eds.), Springer, 2010

Abstract Coordinated whole-body motions are key for achieving the full
potential of humanoids performing tasks in human environments and in coop-
eration with humans. We present a multi-skill motion planning and learning
framework which is able to address several complex whole-body coordinations
and as well detection and imitation of motion constraints. The framework is
composed of three main parts: first, a minimal set of basic motion skills is de-
fined in order to achieve basic stepping, balance and reaching capabilities. A
multi-skill motion planner is then developed for coordinating motion skills in
order to solve generic mobile manipulation tasks. Finally, learning strategies
are presented for improving skill execution and for learning constraints from
imitation. The framework is able to coordinate basic skills in order to solve
complex whole-body humanoid tasks and also integrates learning mechanisms
for achieving humanlike performances in realistic environments.

1 Introduction

Despite several successes in the motion planning domain, achieving whole-
body coordinated humanoid motions for solving manipulation tasks remains
a challenge. The problem is in particular difficult because most typical hu-
manoid tasks require coordination of different types of motions or skills and

Marcelo Kallmann
University of California, Merced; 5200 N. Lake Road, Merced CA 95343
e-mail: mkallmann@ucmerced.edu

Xiaoxi Jiang
University of California, Merced; 5200 N. Lake Road, Merced CA 95343
e-mail: janexip@gmail.com

1

2 Authors Suppressed Due to Excessive Length

therefore cannot be solved by a single planning strategy. One additional chal-
lenge is to achieve interactive performances: planning motions from scratch
is often computationally intensive and therefore learning has to be addressed
in an integrated fashion.

Consider for example the coordination of stepping and grasping. While step-
ping is mainly concerned with balance maintenance for mobility, reaching
and grasping skills control the motion of the arms and hands assuming the
humanoid to be in a well balanced standing position. Figure 1 illustrates
a typical scenario where complex body positioning is required in order to
support common book relocations in a shelf. It is possible to note that com-
plex torso motions are both used for providing balance and for enlarging the
reachable space of the arms. When body motion is not enough, stepping is
also employed.

Fig. 1 Even in simple manipulation tasks complex leg-arm coordinations can be
observed.

We address the whole-body motion generation problem for reaching tasks
as a planning problem. We target object reaching tasks such as the ones
illustrated in Figure 1. The goal is to plan the coordination of stepping,
balance and reaching motion skills in order to reach given target locations
with end-effectors.

Figure 2-left illustrates a situation where the fully articulated humanoid char-
acter is not able to grasp the book using its arm because the book is not within
reachable range. This problem is even more critical in humanoid robots as
they usually have less degrees of freedom (DOFs) and with less range of
motion, therefore requiring more complex coordinations. Depending on the
motion skills available, humanoids can solve given tasks in different ways, for
instance: by performing some steps until the object becomes reachable, by ad-
justing the body posture (without stepping) until the target is reachable (for
example by bending the knees and the torso while keeping in balance), etc.
In the proposed framework, a motion planner is employed for searching for
a solution and for evaluating the best solution whenever several possibilities
exist.

It is important to notice that the problem of skill coordination appears fre-
quently in common tasks such as for relocating objects, opening doors, in-
teracting with machines and appliances, etc. Most importantly this class of

A Motion Planning Framework for Skill Coordination and Learning 3

Fig. 2 Left: example of a common grasping task which cannot be solved with
a simple arm reaching motion even by a fully articulated humanoid model. Right:
in most humanoid robots a balanced torso motion will be needed for enlarging the
reachable workspace of the arms. Whole-body coordination is in particular important
for less articulated arms as for example in the shown Fujitsu’s HOAP-3 humanoid
model which has only 5 degrees of freedom in each arm. In such cases body positioning
has a critical role in successfully reaching target locations.

problems addresses a broad range of real-life tasks and represents a large pro-
portion of people’s daily activities. Deciding the sequence of skills to employ
for such tasks is not trivial due the large number of possible coordinations
and the different capabilities and constraints of each available skill.

Solving the coordination of motion skills is critical for several reasons: 1) for
achieving optimal movements exploring the full potential of the humanoid
structure, 2) for enabling complex mobile manipulations in cluttered envi-
ronments, and 3) for achieving human-like motions for humanoid assistants
interacting and collaborating with people, as for instance: for assistance with
physical therapy [49], for performance of collaborative work [6], and for as-
sistance in space exploration [16].

We are in particular interested in developing techniques capable of solving
the motion generation problem similarly to how humans do, i.e., achieving
humanlike performances. Therefore learning is a critical component which
has to be addressed. Each time a task is planned and solved it should be an-
alyzed and stored for improving the performance in subsequent similar tasks.
In this way motions which have been learned should be quickly executed in
subsequent tasks which are similar with the learned ones, similarly to how
humans perform tasks. Although achieving generic and robust learning tech-
niques remains a challenge, the proposed framework integrates learning in
different ways: for improving skill execution, for learning constraints from
imitation and as well for learning higher-level motion skills.

4 Authors Suppressed Due to Excessive Length

1.1 Related Work

Traditional motion planning approaches [43, 44, 46] are fundamentally based
on systematic search in configuration spaces. Among the several techniques,
sampling-based methods such as Probabilistic Roadmaps (PRMs) [35] and
Rapidly-Exploring Random Trees (RRTs) [41, 45] have become extremely
popular for planning in continuous configuration spaces. These and other
methods have been applied to humanoid structures, however, as whole-body
motion planning for humanoids is inherently a multi-modal problem, most
of the approaches have been developed for particular modes or skills, for
instance: footstep planning for precise locomotion around obstacles [11, 12,
40], arm reaching motions for manipulation [4, 15, 17, 30, 31, 39], etc.

When planning is limited to a discrete selection among possible actions or
predefined motion patterns, discrete planners based on A* and its several
variations [37, 38, 47] are well suited for finding the best sequence of actions
to be taken. No single planning approach is best in all cases. For instance,
while discrete planning is well suited for sequencing stepping motions, arm
reaching is better addressed by searching in the continuous configuration
space of the arm.

The issue of producing whole-body motions from combination of skills has
also been addressed without an explicit motion planner, for example includ-
ing balance maintenance, energy minimization and friction [59], and also
using dynamic controllers designed for animating characters in physics-based
simulations [19, 28].

1.1.1 Multi-Modal Planning

Multi-modal planning has recently emerged for solving humanoid problems
and typically it addresses both discrete and continuous search strategies in
an integrated fashion. Multi-modal planning has been in particular developed
for achieving locomotion and climbing in difficult terrains [8, 25, 26, 34] but
also to sequentially coordinate walking and pushing [27]. Reactive approaches
have also been employed for coordinating specific problems such as walking
while carrying a large object [18].

We have also addressed the whole-body motion planning problem in previ-
ous work. A whole-body reaching skill was developed including coupled spine
rotations and knee bending [33], and two main aspects of the coordination
problem have also been proposed: 1) the sequencing of movement primitives
for climbing around obstacles [34], and 2) the synchronization of concur-
rent primitives for simultaneous locomotion and object manipulation [60].
The sequencing problem was solved by a discrete search over multi-modal

A Motion Planning Framework for Skill Coordination and Learning 5

connections identified by a RRT on the parametric space of each primitive
controller. The concurrency problem was solved by including the locomotion
time parameterization as one additional (monotone) variable in the planning
search space.

The multi-skill framework described here is an evolution of these previous
works and aims at achieving a generic framework able to coordinate generic
motion skills and as well to incorporate learning.

1.1.2 Learning for Motion Planning

Learning has been included in motion planning in a variety of different ways,
for example: to select the best planning technique to be applied in a given
situation [51], to concentrate sampling toward difficult regions of the con-
figuration space [9], etc. These methods are mainly tailored for improving
planning in difficult problems, and not for achieving humanlike performances
in humanoid tasks. In contrast, learning reactive behaviors has been exten-
sively addressed in the literature. For instance, reinforcement learning has
been recently applied for learning motion transitions [50] and for mapping
state-goal spaces for controlling walking with collision avoidance [64].

While no works have specifically focused on the development of a learning-
capable motion planner framework based on motion skills, the concepts of
motion modeling and motion knowledge are known strategies [42, 48], and
the idea of learning complex motions from primitive skills [1] is supported by
evidence obtained in several cognitive studies [20, 63].

Learning from demonstrations has also been addressed by imitation frame-
works [7, 58] and its importance is supported by research on mirror neurons:
neurons that enable humans and other primates to imitate actions [14, 21].
Imitation techniques are therefore especially relevant for controlling and pro-
gramming tasks for humanoid agents [5, 53, 54, 56, 62], and represent a nat-
ural approach to human-computer interaction by analogy to the way humans
naturally interact with each other. As a consequence, research on humanoid
imitation from human motion is currently very popular [13, 23, 62]. An imita-
tion framework based on motion capture is explored here as a way to acquire
motion constraints to be associated with objects.

6 Authors Suppressed Due to Excessive Length

1.2 Framework Overview

The presented framework has been mainly designed based on graphical sim-
ulations of virtual humanoids and only taking into account kinematic and
static balance tests. We believe that such an environment is suitable for
planning as long as the motions have low energy, which is mostly the case in
usual reaching and relocation tasks. As an example, we have also successfully
applied results of our motion planning framework to control the HOAP-3
humanoid robot (as demonstrated in Figure 12).

Besides applications to humanoid robotics, we also believe that motion plan-
ning will soon provide important autonomy capabilities for interactive vir-
tual humans, which can impact a number of applications in Virtual Reality,
Education, Training and also Entertainment. A recent tutorial on motion
planning for virtual humans well illustrates the potential of motion planning
to virtual characters [55].

Figure 3 depicts the architecture of the proposed framework. Each box in
the figure represents a main module of the architecture. These modules are
described in the following paragraphs.

Task Memory Base
- Previously executed skills
- Learned constraints
- etc

Task

Skill Base
- Reaching
- Stepping
- etc

Learning

Planning

Multi-Skill
Planner

Task
Analysis

Environment

Solution

Learning
Learning New Motion Skills
Improving Skill Execution

Learning Constraints from Imitation

Fig. 3 Framework main modules.

• Skill Base: motion skills are organized in a skill base where each skill follows
a unified representation and parameterization interface. Skills are designed
to generically encapsulate different approaches for motion synthesis and
to provide a unified control interface to the motion planner.

• Multi-Skill Planner: this module implements the planner which will search
for coordinations between the available motion skills in order to achieve so-

A Motion Planning Framework for Skill Coordination and Learning 7

lutions for given tasks. The output solution will be described as a sequence
of instantiated skills needed to accomplish the task at hand.

• Task Analysis: once a solution is found for a given task, the solution is
analyzed and classified in respect to the environment and task at hand,
and as well in respect to previous solutions. The analysis will inform the
learning module.

• Learning: this module includes several learning mechanisms supported by
the framework. Learning may improve the knowledge of skills in the skill
base, may form new skills by interpolation of similar solutions, and may
also add learned features to the task memory base which will be used when
planning similar future tasks.

• Task Memory Base: this module stores all relevant features learned from
previously planned solutions. Two main aspects are addressed here: 1)
learning attractor points for improving the planning of arm reaching mo-
tions in new but similar environments, and 2) for learning motion con-
straints automatically from motion demonstrations. Constraints are typi-
cally associated to objects and will inform if an object is supposed to move
in a constrained way.

The reminder of this text is organized as follows: motion skills are described
in the next section and the Multi-Skill Planner is described in Section 3. The
task analysis, learning and the task memory base are presented in Section 4.
Section 5 concludes this chapter.

2 Motion Skills

Motion skills are expected to produce specialized motions efficiently according
to their own parameterization and one of the purposes of employing motion
skills is their specialized ability to control the humanoid in a particular mode.

The discrete set M is used to represent all possible humanoid modes. A
mode is represented by specifying the state of each end-effector. Three letters
are used: f for free (or unconstrained), s for when the end-effector is being
used to support the humanoid, and m for when it is being used for object
manipulation. Therefore, assuming that four end-effectors are considered (two
feet and two hands), a mode can be represented as a four-letter string, such
as: “ssff” for a standing rest pose, or “ssmf” for a standing pose with one
hand grasping an object.

Let C be the d-dimensional configuration space of the humanoid being con-
trolled and Cfree the subspace representing the valid configurations. Config-

8 Authors Suppressed Due to Excessive Length

urations in Cfree are collision-free, in balance and respect articulation con-
straints.

Consider now that set X denotes the state space of the planning problem,
which is defined as the Cartesian product X = C × R+, where R+ is used to
represent time. Therefore x = (q, t) ∈ X denotes a configuration q at time t.
A function m(x) ∈M is also defined for retrieving the mode of the humanoid
at state x.

The set S is defined to represent the skill base of the humanoid and is the
finite set of all available motion skills. S(x) ⊂ S represents the subset of skills
which can be instantiated at x, i.e., which are applicable to take control over
the humanoid in state x. Each skill is essentially a controller specialized
to operate in a particular set of modes and is responsible for checking the
feasibility of instantiation, for example: a foot placement skill will only be
instantiated if there is an unconstrained foot to be controlled, etc.

A skill σx ∈ S(x) is a function of the type σx : Pσ×[0, 1]→ X , where Pσ is its
parametric control space, and [0, 1] is the normalized time parameterization
of the produced motion, such that ∀p ∈ Pσ, σx(p, 0) = x. Therefore, once a
skill is instantiated it can be evaluated in [0, 1] in order to obtain the states
traversed by the produced motion.

A skill is said to be explorative if it allows the re-instantiation at intermediate
poses. Only explorative skills will allow the use of a sampling-based planning
strategy to systematically expand a search tree in their parametric space.
Skills which are not explorative will be only allowed to be concatenated and
their parameterizations will only be traversed in a forward monotone fashion,
allowing the encapsulation of algorithms based on forward simulations.

Finally, given an initial state xi and a final set of goal states Xg, the goal of
the multi-skill planner is to produce a sequence of n skills together with their
application parameters, such that, after the application of all the skills, the
humanoid will have moved from xi to a state xg ∈ Xg and only traversing
states with configurations in Cfree.

In this work the specific case of coordinating body motions for object reaching
is considered to demonstrate the framework. In this case, the goal of the
humanoid is to reach with the hand a pre-defined hand target suitable for
grasping the given object. Therefore the final set of goal states Xg represents
all body postures with a hand precisely reaching the hand target.

Each skill defines its own parameterization. For instance a balance skill could
be parameterized with a single real value for dynamically adjusting balance in
one main direction, following the approach of kinematic synergies proposed
by Hauser et al. [24]. As the main focus here is to address whole-body kine-
matic reaching problems, skills allowing the precise placement of joints are
developed and they are parameterized by the target locations to be reached.

A Motion Planning Framework for Skill Coordination and Learning 9

Three basic skills were developed and constitute the minimal set of skills for
solving a variety of problems: a reaching skill, a stepping skill, and a body
balance skill. These skills were implemented using an analytical Inverse Kine-
matics (IK) formulation [32] for arms and legs (see Figure 4). The analytical
formulation provides a fast closed form solution for the control of end-effectors
and is key for allowing the motion planner to quickly evaluate the motion
generated by skills during the planning. The main limitation of the analytical
formulation is that it cannot be applied for generic linkages and therefore the
results presented here focus on controlling anthropomorphic limbs.

2.1 Reaching Skill

Fig. 4 The figure illustrates the ana-
lytical IK applied to 7-DOF arms and 7-
DOF legs and the orbit circles containing
the possible positions for the elbows and
knees [32].

The IK-based reaching skill σreach is
parameterized by the target location
to be reached. Given a parameter p,
σreach produces a motion from the
current humanoid posture to a final
pose with the hand exactly at the tar-
get position and orientation encoded
in p.

The reaching skill first uses the ana-
lytical IK to determine the final arm
posture reaching location p. The de-
termination of the final posture in-
cludes a fast search algorithm for de-
termining the most suitable swivel an-
gle along the orbit circle of the arm
[32]. Once the final posture is deter-
mined, the motion between the cur-
rent posture instantiated by the skill
and the final posture is produced by
interpolating, from the initial posture
to the final posture, the following pa-
rameters: 1) the hand position, 2) the hand orientation and 3) the orbit an-
gle. For each intermediate interpolated position and orbit angle, IK is again
employed for computing the intermediate arm pose. Interpolation of the ori-
entation is performed with quaternion spherical interpolation.

As a result, a realistic reaching motion with the hand describing a rectilinear
trajectory in workspace is obtained (see Figure 5). The time parameterization
is mapped to a spline curve in order to obtain a bell-shaped velocity profile.
These characteristics encode observations of how realistic arm motions are

10 Authors Suppressed Due to Excessive Length

performed by humans [57]. Anatomically-plausible joint parameterizations
based on the swing-twist decomposition [22] and range limits based on spher-
ical ellipses [3] are also included in order to represent human-like articulation
limits.

This same skill has also been implemented for the HOAP-3 humanoid, the
main difference is that the arms and legs of the robot have 5 and 6 DOFs
respectively instead of 7 DOFs. The leg IK can therefore be exactly solved
but without choice of the orbit angle. The arm IK however cannot be solved
for arbitrary 6-DOFs targets and our current implementation assumes a pre-
defined constrained target orientation to be solved.

Fig. 5 The motion obtained by the reaching skill produces a straight-line trajectory
of the end-effector in workspace.

2.2 Stepping Skill

The stepping skill σstep controls one leg of the humanoid to perform the
motion of one step towards another foot placement on the floor. Given a
parameter p, σstep produces a motion from the current humanoid posture to
a final pose where the foot in control will exactly reach the target position
and orientation encoded in p, where p is constrained to be a position where
the foot aligns with the floor in a suitable manner to support the humanoid
with that foot placement.

The motion generation follows the same interpolation strategies used in the
reaching skill, however following a trajectory with a bell-like shape on the
vertical plane, in order to achieve the one-leg step motion. Also, the stepping
skill can only be instantiated when the leg being controlled is free to move.
Therefore a step can only occur when the humanoid is in single support mode.
Balance tests are computed by checking if the projection of the center of mass

A Motion Planning Framework for Skill Coordination and Learning 11

on the floor lies inside the support polygon. Only static balance is considered
in the scope of this work.

2.3 Balance Skill

The balance skill σbal allows switching between support modes by adjusting
the position of the body while maintaining feet placements. Its parameteriza-
tion encodes the new target position and orientation for the root joint of the
skeleton. Given a target location, the skill will then produce a motion that
makes the root joint from the current location to the new desired location,
while maintaining the same feet placements with IK.

The motion is computed as follows: first the new configurations of the legs
maintaining the feet placements in respect to the target location of the root
joint are computed with IK. The motion is then defined by interpolation be-
tween the initial configurations and final configurations, which are interpo-
lated in workspace in order to ensure that the feet placements are maintained.

One interesting effect obtained for the 7-DOF legs solution with the orbit
angle search mechanism of the analytical IK [32] is the automatic opening of
the legs (for avoiding ankle joint limits) when the root joint is lowered. This
however does not apply to the HOAP-3 legs, which have one less DOF.

The balance skill provides the capability of transitioning between different
leg support modes. The support mode is constantly monitored during the
application of motion skills as it will influence the mode of the humanoid,
and therefore also the set of applicable motion skills, i.e. the skills which can
be instantiated at a given humanoid configuration.

Figure 6 shows two example motions obtained with σbal. The top sequence
changes the humanoid mode from both-feet support “ssff” to single feet sup-
port “fsff”. The bottom sequence changes the mode from “sfff” to “fsff”. The
balance motion skill can therefore be used to free one leg from supporting
the humanoid so that a stepping skill can be applied to the free leg in order
to place the (now free) foot in a new placement.

2.4 Other Skills and Extensions

The presented skills are enough for coordinating generic stepping and reach-
ing motions. These skills also provide enough flexibility for planning whole-
body coordinations for reaching tasks.

12 Authors Suppressed Due to Excessive Length

Fig. 6 Example of motions obtained with the balance skill. Top sequence: from
standing pose to single foot support. Bottom sequence: transitioning the support
mode from one foot to the other. The vertical line shows the projection of the center
of mass to the floor. The intersection with the support polygon (also shown) reveals
the support mode of the humanoid.

Note that if distant targets are given to the motion planner a long sequence
of stepping and balance skills will be computed in order for the humanoid
to achieve walking. The produced sequence would however not be specialized
for walking. For achieving distant targets, a specialized walking skill could
be included in the framework for providing optimized gait patterns for fast
locomotion. Such a walking would be specifically implemented for the con-
sidered humanoid platform and would typically guarantee dynamic balance
during the walking. The presented skills would then only be invoked when
precise movement in constrained locations is needed.

Note also that the IK-based computations performed in the basic skills are
specific to anthropomorphic limbs and cannot be easily extended to generic
humanoid platforms. Generic Jacobian-based IK approaches [2, 10, 36] could
be employed but would impose more expensive computations as they are it-
erative methods which require inversion of a Jacobian at every iteration. An
alternate solution would be to employ fast cyclic coordinate descent itera-
tions [65] for determining target poses and then generate the motions with
interpolation in joint angle space.

A Motion Planning Framework for Skill Coordination and Learning 13

3 Multi-Skill Planning

The main procedure of the multi-skill planner repeatedly invokes a skill ex-
pansion routine that will select and expand skills. The procedure stops when
a solution motion is found, or if too much time has elapsed without success, in
which case failure is reported. The pseudo-code for the main skill expansion
routine is presented in Algorithm 1.

The multi-skill planner integrates in a single framework two types of search
strategies depending on the skill type. If a skill σ is not explorative, k2 samples
from the parametric space of the skill are used to obtain k2 motions entirely
generated by σ without modifications. These motions are then included in
a global discrete search tree T for continued expansion. As the examples
illustrated in this work focus on arm manipulation, all mobility skills are set
to be non-explorative. Therefore skills σstep and σbal are only expanded by
concatenation of sequences entirely generated by the skills.

Skill σreach is however set to be explorative and whenever a goal target is in
reachable range, a bidirectional RRT exploration search tree is expanded by
sampling intermediate configurations in the parametric space of σreach. One
tree is rooted at the current state of the humanoid’s arm, and the second tree
is rooted at the goal arm state, which is computed by the skill. The bidirec-
tional exploration determines if a motion in Cfree between both states can
be achieved and is set to explore only until k1 nodes are achieved in the bidi-
rectional search trees. If this limit is reached without finding a solution, the
tree exploration is suspended and its source state re-inserted in the expansion
front queue Q, allowing the expansion to possibly continue in the future. In
this way, different sequencings of mobility and manipulation explorations are
able to compete in search for the best compromise solution.

3.1 Algorithm Details

The Expand Skill procedure basically selects skills and performs the search
strategy suitable for each skill. It maintains a tree T storing all states tra-
versed so far and a priority queue Q containing the states in the current
expansion front. At each call, the procedure starts by removing the lowest
cost (higher priority) state from Q and selecting all skills which are applica-
ble (line 2), i.e. which can be instantiated at the current state x. For each
applicable skill, the corresponding expansion method is selected and applied.

The priority queue Q store values according to a cost metric fcost which can
include different characteristics for guiding the search. The used cost function
mainly encodes the following terms:

14 Authors Suppressed Due to Excessive Length

fcost(x, pg, n) = dc(xi, x) + wgdg(x, pg) + wen.

Term dc(xi, x) encodes the usual cost-to-come and is computed as the sum
of the costs in all the edges in the T branch from the root node to the
current node x. Edge costs represent the length of the motions represented
in each edge. Term dg(x, pg) encodes the cost-to-go heuristic, and is set as
the distance between the goal point and the mid-point between the shoulder
joints of the humanoid at state x. This cost is weighted by wg and makes
states closer to the goal to be expanded first. Finally, term weighted by we
penalizes states which have already been expanded (by n expansions) in a
bidirectional manipulation search. This term does not affect states reached
by mobility skills which will always have n = 0.

Algorithm 1 Skill expansion of the multi-skill planner.
Expand Skill (Q, T , pg, qg)

1. x← Q.remove lowest cost ()
2. S(x)← applicable skills (S)
3. for (each σx in S(x)) do
4. if (σx type is manipulation and pg in range) then
5. xg ← σx(p, 1)
6. if (xg successfully generated by σx) then
7. grow bidirectional search (x, xg, k1, σx)
8. if (connection found) then
9. return SOLUTION FOUND

10. else
11. attach the expanded bidirectional trees to x
12. n← total number of nodes in the trees
13. Q.insert (x, fcost(x, pg, n))
14. end if
15. end if
16. else
17. // σx is of mobility type
18. for (k2 times) do
19. p← sample (Pσ)
20. if (motion generated by σx(p) is valid) then
21. x′ ← σx(p, 1)
22. T .append child (x, x′, σx, p)
23. Q.insert (x′,fcost(x′, pg, 0))
24. end if
25. end for
26. end if
27. end for
28. return NOT YET FOUND

Note also that the planner will request many sample motions from the avail-
able skills in order to progress with the search for a solution. Figure 7 illus-
trates some of the obtained motion samples from each of the skills.

A Motion Planning Framework for Skill Coordination and Learning 15

Fig. 7 Example of end postures from sampled motions. Motions are sampled from
each of the considered skills: reaching (left), stepping (center), and balance (right).
The HOAP-3 versions of the skills are used in this example.

In summary, the overall algorithm is able to integrate discrete skill expansion
of mobility skills with configuration space exploration of manipulation skills
in a single framework. The approach is able to naturally solve the trade-off
between performing difficult manipulations or re-adjusting the body place-
ment with mobility skills.

3.2 Results and Discussion

Figure 8 shows the coordination obtained by the algorithm for solving a
given reaching problem. The first image (a) shows that the goal is not in
the reachable range of the arm. The next two images (b,c) show the initial
and final postures produced by the balance skill from the initial standing
posture to a (non-explorative) sampled body posture favoring approximation
to the hand target. The reaching skill is then recruited and instantiated at
this posture and a bidirectional exploration tree is expanded (image d) for
connecting the current posture to a posture reaching the target. The solution
arm motion found by the reaching skill successfully avoids collisions with the
table and reaches the goal, as depicted in the bottom sequence (d-f).

Further examples are illustrated in Figures 9, 10, 11 and 12. In all examples,
the obtained solutions represent valid collision-free motions.

Note that the RRT exploration trees are implemented only using the generic
interface for controlling motion skills. Therefore every expansion toward a
sampled landmark implies a re-instantiation and application of the skill such
that each expansion motion is produced by the skill itself.

16 Authors Suppressed Due to Excessive Length

(a) (b) (c)

(d) (e) (f)

Fig. 8 Example of an obtained sequencing of stepping, balance and reaching skills.
The lower left image (d) shows the generated exploration tree which was able to find
the collision-free motion produced by the reaching skill.

Fig. 9 Example of a solution coordinating mobility and manipulation skills in order
to reach for a low target.

In its current version the algorithm is limited to sequencing motion skills.
A possible extension is to allow a skill to be activated in parallel with the
previous skill, for instance to allow reaching to start while stepping or balance
is still being executed. These concurrent executions can also be computed as
a post-optimization phase in order to reduce the time required to plan the
motions. In most of the presented examples, the computation time taken by

A Motion Planning Framework for Skill Coordination and Learning 17

Fig. 10 In this example, a large k1 value was used allowing many expansions in
the bidirectional searches and leading to a relatively complex reaching motion being
found. By using smaller values for k1, more mobility skills would be recruited favor-
ing reaching solutions needing fewer bidirectional expansions to reach the goal. The
colored trajectories illustrate the locations traversed by the joints controlled by each
skill instantiated in T .

Fig. 11 Example of a solution computed for the HOAP-3 model which requires
several steps among obstacles until the target can be reached.

the planner was in the range of 10 to 40 seconds. Solutions of longer duration,
as the one shown in Figure 11, require several minutes of computation.

In the case of applying planned motions to the HOAP-3 humanoid platform
(Figure 12) we also rely on a reactive controller running in the robot with the
purpose to correct the main torso orientation in order to maximaze balance
stability in response to readings from the feet pressure sensors. The several
presented results demonstrate the capabilities of the multi-skill planning al-
gorithm.

18 Authors Suppressed Due to Excessive Length

Fig. 12 Example of applying a planned motion to the HOAP-3 humanoid. The
target location to reach is specified by markers tracked with motion capture cameras
(first two images). The first three snapshots (top row) show the few steps planned
for approaching the target, and the final three snapshots (bottom row) show the arm
motion for finally reaching the target.

4 Learning

Learning is essential for improving motion planning. In our framework (Fig-
ure 3) learning starts by analyzing executed tasks in order to extract useful
information for improving individual skills and as well for improving the over-
all planning process. Learned information may be directly sent to individual
skills or may be stored in the task memory database, which will be accessible
to each skill and as well to the multi skill planner.

We describe now our first experiments in designing such learning algorithms
with an overview of the learning strategies employed in our Attractor-Guided
Planning (AGP) approach for reaching tasks [29]. It includes a simple task
analysis module for selecting previous tasks to be reused with attractor points
which guide the planning of similar subsequent reaching motions.

The task analysis metric and the extraction of attractor points are discussed
in the next sections and provide a good example of features which can be
learned specifically for improving the exploration search of a reaching skill.

Finally, we also present an approach for extracting motion constraints from
motion capture examples. Constraints will for instance inform that a certain
object should be relocated only with specific types of motions. As a result,
an imitation-based approach for learning motion constraints is achieved.

A Motion Planning Framework for Skill Coordination and Learning 19

4.1 A Similarity Metric for Reaching Tasks

A similarity metric is needed for identifying previously planned reaching tasks
which are similar to a new task to be solved. Consider the case of comparing
the query task T with a previous task T ′ from the task memory database.
Task T ′ is considered reusable only when its local environment and solution
motion will share similar characteristics. The main question is what infor-
mation should be taken into account. One possible approach is to define a
metric only based on the distances between the initial and goal configurations
of the tasks. Such a naive metric works well with dynamic queries in a static
environment, where all the obstacles are not moving. When it comes to a
dynamic environment, the change of obstacle positions may largely affect the
structure of a solution path, as illustrated in Figure 13. This motivates us to
include obstacle positions in the task comparison metric.

B

v1

task 1

v2task 2
init

goal

A

B

v1

task 1
init goal

A

A

B

v1

task 1

v2

task 2
init

goal

A

(a) (b) (c)

v1

v1

v3

v3
query task

v2

Fig. 13 A planning environment with moving obstacles A and B. Task 1 and task
2 are previously solved (image a and b), and the query task is selecting an example
from the database. v1, v2 and v3 denote the local coordinates of obstacle A with
respect to the three initial configurations. Note that obstacle B is out of the local
coordinate system range, thus is not included in the comparison metric. Although
the initial and goal configurations of task 1 are closer, the query task chooses task 2
as example because v2 is closer to v3.

When considering obstacles, one important factor is how much influence an
obstacle has on the solution path. In Figure 13, obstacle B shows a great
change of position from task 2 to the query task (images b,c), but since this
change has limited impact on the solution path, this obstacle should not
influence the comparison. Our comparison technique represents obstacles in
local coordinates in respect to the initial and goal configurations.

For each task, two coordinate systems are built with origins respectively
located at the initial and goal configurations. Obstacles that are too far away
from an origin are not included in the respective coordinate system. The
comparison metric accumulates the distance between each obstacle o from

20 Authors Suppressed Due to Excessive Length

the query task and o′ from the example task that is closest to o, computed
in their local coordinates. The metric is described as follows:

dist(T, T ′) = h1 ∗ dist(cinit, c′init) + h1 ∗ dist(cgoal, c′goal)

+h2 ∗
∑
o′ mino dist(o, o′).

The weights of the motion query distance and the obstacle distance are tuned
by heuristics h1 and h2.

4.2 Learning Reaching Strategies

Once a previous similar task is identified from the task memory base, the
stored motion is used to guide the planning of the new task at hand. Attractor
points extracted from the previous motion are used. Since the focus here is
on reaching tasks, we fit the path of the humanoid wrist approximately into
a sequence of piecewise linear segments, and then define attractors to be the
points where two segments connect. Given a set of 3D points denoting the
path of the wrist joint in workspace, we employ a variation of a line tracking
algorithm [61], which was further experimented and modified by Nguyen and
colleagues [52].

The modified line tracking algorithm starts by constructing a window con-
taining the first two points, and fits a line to them. Then it adds the next
point to the current line model, and recomputes the new line parameters.
If the new parameters satisfy the line condition up to a threshold, the win-
dow incrementally moves forward to include the next point. Otherwise, the
new included data point is detected as an attractor point, and the window
computation restarts from this attractor.

After a list of attractors is detected, a validation procedure is used to ensure
that the attractor list defines a valid collision-free path. If a collision is de-
tected between two consecutive attractors, the middle point on the original
path is inserted in the attractor list and the process iterates until all of the
straight segments are free of collisions. The goal is to detect valid attractors
even in difficult regions. If the sequence of valid attractors is applied to guide
the exact same task again, the solution path will be trivially solved without
any search outside the guided path.

Once a set of attractors is decided to be reused, the sampling strategy in
the motion planner is biased toward regions around the attractors. Taking
advantage of the attractors is beneficial for two main reasons: first, it highly
preserves the structure of a successful solution path. Second, whenever a new
obstacle location collides with part of the solution path, a large portion of

A Motion Planning Framework for Skill Coordination and Learning 21

the path is still reusable. Note that since only similar tasks are used by the
query, the environment does not differ much.

During the planning, dynamic Gaussian distributions are placed around each
attractor point in the configuration space. The distributions are used as a
replacement to the random sampling procedure of the exploration trees in the
planner. The scale of the Gaussian distribution is initialized as zero, which
means samples start as exactly the attractor point, guiding the search directly
toward the current attractor. When samples are not able anymore to attract
the exploration tree due variations in the new task, the scale of the Gaussian
distribution is increased. In the limit the bias will gradually disappear and
the sampling will return to a random sampling. When samples get very close
to the attractor, the Gaussian centered on the next attractor point is then
used. The process repeats for the whole list of attractors until a solution is
found or the task is considered not solvable.

The same procedure can be applied to single or bidirectional search trees, in
which case opposite attractor orders are taken in each tree (see Figure 14).
Several experiments were conducted and they demonstrate a significant im-
provement in computation speed for dynamic environments which maintain
some structure between queries [29].

Fig. 14 Attractors (gray spheres) are extracted from a path (red line) computed by
a bidirectional RRT tree expansion (green and blue branches). The attractors specif-
ically represent postures which are trying to avoid collisions, as shown in the second
and third images. The Attractor-Guided Planning results in less tree expansions and
in a smoother solution path (last image) [29].

22 Authors Suppressed Due to Excessive Length

4.3 Learning Constraints from Imitation

Different kinds of motion constraints are important in object manipulation,
for example: changes in orientation should not be allowed when relocating a
cup of water. Moreover, the pattern of a movement is also meaningful, for
example, whether the hand of the character is moving along a straight line
on top a surface or just moving unconstrained in space.

Note that it is assumed here that an object being manipulated (or relocated)
has a fixed attachment to the hand of the humanoid, and therefore finger
manipulations are not considered, meaning that the hand and the object can
be considered to be one single end-effector being controlled.

Motion constraints of objects or tasks have to be somehow programmed in
the humanoid. We explore the approach of learning constraints from direct
demonstrations, i.e. from imitation. The idea is that users can demonstrate
how tasks should be performed and the observed motions are then analyzed
and learned. We consider that a demonstrated motion is captured and rep-
resented as the trajectory of the user’s hand. The demonstrated trajectory
can then be analyzed and classified. A classification of the considered types
of motion constraints is given below:

• Stationary: when both the position and the orientation of the end-effector
remains the same. This happens for instance when holding still an object
(like a photograph camera) while the body may be moving. Note that
constraints are detected in global coordinates.

• Translation-only: when only the orientation of the end-effector remains
the same. This will result in a motion only composed of translations (for
example to relocate a cup of water).

• Rotation-only: when only the translation of the end-effector remains the
same. This constraint happens when no translations are present.

• Patterned-rotation: this constraint refers to cases where the end-effector is
rotating around an axis or a point. This constraint appears in particular
rotational manipulations (like when opening a door).

• Patterned-translation: for the cases where the end-effector is translating
in a plane or along a straight line. This constraint appears in particular
translational manipulations (like painting a straight line).

The first three types of constraints are basic constraints. The stationary con-
straint has to be detected first. The translation-only constraint can exist
at the same time with a patterned-translation constraint, but not with a
patterned-rotation constraint. Similarly, rotation-only constraints can exist
at the same time with patterned-rotation constraints, but not with patterned-

A Motion Planning Framework for Skill Coordination and Learning 23

translation constraints. Based on these observations, Figure 15 shows a deci-
sion tree for detecting constraints based on a series of tests.

End-Effector Trajectory

Stationary

Translation-Only

Patterned-Translation Rotation-Only

Patterned-Rotation Patterned-Rotation

Patterned-Translation

Output Result

Output Result

Output Result

Output Result

Y NY

Y

Y

N

N

NY/N

Y/N

Y/NY/N

Fig. 15 Decision stages for detecting constraints. Letters Y or N denote whether the
constraints can be detected or not.

A constraint detection algorithm can then be devised for analyzing the
demonstrated motion. Given a specific time interval [t1, tn], the demonstrated
motion m of the end-effector is denoted as a sequence of captured frames
(f1, f2, ..., fk, fk+1, ..., fn). Each frame fk contains geometric information (po-
sition and orientation) about the end effector at that time step, i.e., the
position and orientation of the end-effector with respect to the global coordi-
nate system. Instantaneous constraints are first detected between each pair
of frames. Then, the sequence of instantaneous constraints will be merged so
that motion m is segmented by constraint type.

4.3.1 Detection of Instantaneous Constraints

An instantaneous constraint Ck is detected between time k and k+1. Given a
pair of frames fk and fk+1, the definition of Ck depends on the 3D transforma-

24 Authors Suppressed Due to Excessive Length

tion from time k to time k+1, which is represented here by the displacement
matrix Dk. Therefore if xk denotes the demonstrated hand position at time
k, then xk+1 = Dkxk.

If the motion is stationary from time k to k+ 1, then Dk will be the identity
transformation and (Dk − I4)xk = 0. Since the solutions to this equation
include all the observed points on the end-effector, the elements in matrix
(Dk-I4) will contain very small values. Note that the translational values
encoded in the homogeneous matrices have to be scaled to a compatible unit
in respect to the rotational values, which are inside [-1,1].

The squared sum of all the elements in matrix (Dk-I4) is then computed
and called to be the stationary value of constraint Ck. This value denotes
how much movement the end-effector has performed during this time step. If
this value is smaller than a stationary threshold τs, then the end-effector is
considered stationary from time k to time k + 1.

Rotational movements can be similarly detected. First, as the end-effector
can only perform rigid transformations, Dk can be re-written as:

Dk =
[
Rk tk
03 1

]
Where Rk and tk are the rotational and translational components of Dk. The
matrix (Dk-I4) can then be written as:

Dk − I4 =
[
Rk − I3 tk

03 0

]
The squared sum of all the elements in matrix (Rk -I3) is then called the
rotational value of Ck. If it is smaller than a rotational threshold τr, then
the movement will be identified as translation-only, i. e. with no rotation
involved.

Similarly, for a rotation-only movement during one time step, the constraint
can be detected by comparing the squared sum of vector tk (the translational
value) with a translational threshold τt.

In summary, the first three types of constraints are detected as follows:

• For an instantaneous constraint Ck, if its stationary value minus the
squared sum of all the elements in (Dk-I4) is smaller than threshold τs,
then the end-effector is stationary between time k and k + 1.

• For an instantaneous constraint Ck, if its rotational value minus the
squared sum of all the elements in (Rk-I3) is smaller than threshold τr,
then the end-effector is not rotating between time k and k + 1.

• For an instantaneous constraint Ck, if its translational value minus the
squared sum of all the elements in tk is smaller than threshold τt, then the
end-effector is not translating between time k and k + 1.

A Motion Planning Framework for Skill Coordination and Learning 25

To detect the other two constraints (patterned-rotation and patterned-
translation), successive transformations have to be merged and tested if they
have similar patterns.

4.3.2 Merging Transformations

Transformation Rk denotes the rotational component of the transformation
between time k and k+ 1. The rotation axis dk = (r21-r12, r02-r20, r10 - r01)
can then be determined for each frame where rij denotes the elements of ma-
trix Rk. Given a sequence of frames (f1, f2, ..., fk, ..., fn), the rotational axes
(d1,d2, ...,dk,dk+1, ...,dn) can be then computed. If they can be approximately
fitted by a straight line L, then the motion is a rotation around the line L,
and the transformations between time 1 and n can be merged together.

Similarly, if all the translational vectors can be approximately fitted to a
straight line, then the end-effector will be translating along the line. Two
new thresholds τrfit and τtfit are needed for deciding the rotational and
translational fitting limits. The fitting algorithm employed is the same as the
one used to detect attractors for the AGP planner (Section 4.2). Note that
the same procedures can also be applied to detect translations in a plane.

Since real motion capture data is being analyzed, the existence of noise or
performance imprecisions will create outliers, i.e., one or more frames that
divide the motion into two parts, which should have the same constraint. To
handle outliers, a frame buffer is used to store aberrant frames with a different
motion pattern than in previous frames. A new motion will be created only
when the number of aberrant frames in the frame buffer reaches a limit. Two
limits are needed:

• Rotation buffer size: this threshold decides if a patterned rotation has
ended and it is denoted as τrbuf . When the number of inconsistent frames
in a patterned rotation is greater than τrbuf , a new motion constraint will
be created.

• Translation buffer size: this threshold decides if a patterned translation has
ended and it is denoted as τtbuf . When the number of inconsistent frames
in a patterned translation is greater than τtbuf , a new motion constraint
will be then created.

After a set of constraints are detected, they need to go through a final filter in
order to ensure that the motion does not contain unnecessary segments. Two
constraints are then merged together if they belong to the same constraint
category and are close enough to each other.

26 Authors Suppressed Due to Excessive Length

4.3.3 Computing the Thresholds

A number of threshold parameters for detecting and merging constraints
have been used: τs, τr, τt, τrfit, τtfit, τrbuf , τtbuf . In order to perform a robust
computation of the constraints, these values will be determined from template
motions which can be provided for calibrating the constraint detection. Three
types of calibration motions are needed: a stationary motion m1, a rotation-
only motion m2 around an axis (and without translation), and a translation-
only motion m3 (without rotation) along a straight line.

From motion m1 it is possible to determine the stationary threshold τs.
First all stationary values for the frames of the motion are computed:
Vs = (σ1, σ2, ..., σk, σk+1, ..., σn). Due to the presence of noise and impre-
cisions from the human operator during the motion capture process it is not
correct to simply take the highest σ value and assign it as the stationary
threshold. There might be outliers in Vs as for instance a subtle shake of the
hand could lead to a very high σ value.

In order to reduce the overestimation of the stationary threshold, outliers
have to be detected and rejected. First, the median number σm from set Vs
is computed. Then for each σk ∈ Vs, the squared distance distk = (σk−σm)2

is computed. Let the smallest squared distance be distmin. A σk is detected
to be an outlier if distk > h ∗ dmin, where h is a heuristic weight which is
greater than 1. After the outliers are removed from the set of the stationary
values, the stationary threshold τs is set to be the highest stationary value
from the filtered Vs set.

The rotational threshold and the translational threshold are similarly com-
puted. Since motion m2 is a rotation-only motion without translation, most
of its instantaneous constraints should be lower than the translational thresh-
old τt. First, the translation vectors (t1, t2, ..., tk, tk+1, ..., tn−1) are computed
from each of the frames. After removing the outliers, τt is assigned the highest
translational value. The rotational threshold τr can then be obtained from
motion m3 in the same way.

The line fitting thresholds τrfit and τtfit can also be obtained from m2 and
m3. Since motion m2 is a rotation around a specific axis, all detected instan-
taneous rotational axes can be fitted to an approximate straight line. After
removing outliers, τrfit is set as the largest distance between the instanta-
neous rotational axes and the fitted line. The computation of τtfit is similarly
performed from motion m3. Finally, the maximum number of continuous out-
liers can then be assigned to τrbuf and τlbuf .

A Motion Planning Framework for Skill Coordination and Learning 27

4.3.4 Reusing Detected Constraints in New Tasks

Object manipulation tasks are often complicated and will typically be com-
posed of multiple motion constraints. For example, a water pouring task
will typically include a translation without rotation followed by a rotation
without translation. The described constraint segmentation procedures will
divide the motion into a sequence of constrained sub-motions according to
their constraint types. The connections between these sub-motions can then
be represented by constrained attractors which will guide the execution of
similar tasks, for example for pouring water in similar environments or to
different target locations.

The attractor-guided planning described in Section 4.2 is then employed with
the extension that configurations will always be sampled respecting the con-
straints associated with attractors. In this way constrained attractors will be
able to guide the planning of future tasks which will respect constraints to
be imitated. Even in a changing environment the constraints of the original
motion will still be maintained.

4.4 Results and Discussion

A FASTRAK magnetic motion capture system was used for capturing exam-
ple hand motions with constraints. Although a high frame rate is not neces-
sary, the system is able to capture motions at 60Hz. First, template motions
were processed in order to determine the needed thresholds and then several
motion constraints could be successfully detected.

Figure 16 illustrates segmentation results of demonstrations containing dif-
ferent types of motions: 1) two translations, 2) translation and rotation, 3)
translation, rotation and again translation, and 4) translation and random
movements.

Each segment is shown as a pair of attractors (gray spheres). A segment
represents a motion with a different constraint type than its neighbor seg-
ments. The described constraint detection procedure is capable of detecting
all constraints. Stationary motions are also detected and capture a natural
stop when the performer switches between translations and rotations.

Figure 17 shows the AGP planner being used to solve the constrained manip-
ulation task of relocating a cup without rotating it. The demonstrated motion
includes only translation. After recording the demonstration, an obstacle is
placed inbetween the demonstrated path in order to force the imitation pro-
cedure to find an alternate path. The AGP approach is then able to find

28 Authors Suppressed Due to Excessive Length

Fig. 16 The segmentations of four motions with different types of constraints. The
attractors (denoted by gray spheres) represent a constraint type change and can then
be used to guide the planning of future similar tasks.

a suitable solution maintaining the main characteristic of the demonstrated
motion: the cup is never allowed to rotate during the relocation.

Fig. 17 The top sequence shows a solution path found by a non-constrained RRT
planner. The bottom sequence shows a solution path found by the AGP planner with
attractors constrained to translational motion. The small cube in the environment
represents an obstacle and demonstrates the adaptation of the solution respecting the
constraints. The image also illustrates that, due the much more constrained search
procedure, AGP also favors finding shorter solutions.

5 Conclusion

We have described several pieces of a framework integrating learning with
motion planning in different ways. Several results were also presented. We

A Motion Planning Framework for Skill Coordination and Learning 29

believe that the proposed approach is able to address a wide range of hu-
manoid applications requiring autonomous object manipulations.

The presented framework also naturally accounts for the possibility of includ-
ing new motion skills which could be automatically learned from experiences
and then added in the skill base in order to provide new specialized skills
to be used by the multi-skill motion planner. The possibility of achieving
an automatic open-ended learning structure for accumulating motion skills
and object-related constraints has the potential to empower the multi-skill
planner with the capability to solve generic and increasingly complex tasks.
The proposed framework presents our first steps in this direction.

Acknowledgments: This work has been partially supported by NSF Awards
IIS-0915665 and BCS-0821766.

References

[1] M. A. Arbib. Perceptual structures and distributed motor control. In
V. B. Brooks, editor, Handbook of Physiology, Section 2: The Nervous
System Vol. II, Motor Control, Part 1, pages 1449–1480. American Phys-
iological Society, Bethesda, MD, 1981.

[2] P. Baerlocher. Inverse Kinematics Techniques for the Interactive Posture
Control of Articulated Figures. PhD thesis, Swiss Federal Institute of
Technology, EPFL, 2001. Thesis number 2383.

[3] P. Baerlocher and R. Boulic. Parametrization and range of motion of
the ball-and-socket joint. In Proceedings of the AVATARS conference,
Lausanne, Switzerland, 2000.

[4] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour. An integrated ap-
proach to inverse kinematics and path planning for redundant manipu-
lators. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 1874–1879. IEEE, May 2006.

[5] A. Billard and M. J. Matarić. Learning human arm movements by im-
itation: Evaluation of a biologically inspired connectionist architecture.
Robotics and Autonomous Systems, 37:2-3:145–160, November, 30 2001.

[6] C. Breazeal, A. Brooks, D. Chilongo, J. Gray, G. Hoffman, C. Kidd,
H. Lee, J. Lieberman, and A. Lockerd. Working collaboratively with
humanoid robots. In Proceedings of Humanoids, Los Angeles, CA, 2004.

[7] C. Breazeal, D. Buchsbaum, J. Gray, D. Gatenby, and D. Blumberg.
Learning from and about others: Towards using imitation to bootstrap

30 Authors Suppressed Due to Excessive Length

the social understanding of others by robots. Artificial Life, 11:1–2,
2005.

[8] T. Bretl. Motion planning of multi-limbed robots subject to equilibrium
constraints: The free-climbing robot problem. International Journal of
Robotics Research, 25(4):317–342, 2006. ISSN 0278-3649.

[9] B. Burns and O. Brock. Sampling-based motion planning using predic-
tive models. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 3120– 3125, Marina del Rey,
CA, April 18-22 2005.

[10] S. R. Buss and J.-S. Kim. Selectively damped least squares for inverse
kinematics. Journal of Graphics Tools, 10(3):37–49, 2005.

[11] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hodgins, and
T. Kanade. Footstep planning for the honda asimo humanoid. In Pro-
ceedings of the IEEE International Conference on Robotics and Automa-
tion, April 2005.

[12] J. Chestnutt, K. Nishiwaki, J. Kuffner, and S. Kagami. An adap-
tive action model for legged navigation planning. In Proceedings of
the IEEE-RAS International Conference on Humanoid Robotics (Hu-
manoids), 2007.

[13] B. Dariush, M. Gienger, B. Jian, C. Goerick, and K. Fujimura. whole
body humanoid control from human descriptors. In Proceedings of the
International Conference on Robotics and Automation (ICRA), pages
3677–2684, May 19-23 2008.

[14] J. Decety. Do imagined and executed actions share the same neural
substrate? Cognitive Brain Research, 3:87–93, 1996.

[15] R. Diankov and J. Kuffner. randomized statistical path planning. In
Proceedings of the International Conference on Robotics and Automation
(ICRA), pages 1–6, May 19-23 2008.

[16] M. A. Diftler and R. O. Ambrose. Robonaut, a robotic astronaut as-
sistant. In International Symposium on Artificial Intelligence, Robotics
and Automation in Space (ISAIRAS), Montreal Canada, June, 18 2001.

[17] E. Drumwright and V. Ng-Thow-Hing. Toward interactive reaching in
static environments for humanoid robots. In Proceedings of the IEEE
International Conference on Intelligent Robots and Systems (IROS), Bei-
jing, China, October 2006.

[18] C. Esteves, G. Arechavaleta, J. Pettré, and J.-P. Laumond. Anima-
tion planning for virtual characters cooperation. ACM Transaction on
Graphics, 25(2):319–339, 2006. ISSN 0730-0301.

A Motion Planning Framework for Skill Coordination and Learning 31

[19] P. Faloutsos, M. van de Panne, and D. Terzopoulos. Composable con-
trollers for physics-based character animation. In Proceedings of SIG-
GRAPH, pages 251–260, New York, NY, USA, 2001. ACM Press. ISBN
1-58113-374-X.

[20] S. F. Giszter, F. A. Mussa-Ivaldi, and E. Bizzi. Convergent force fields
organized in the frog’s spinal cord. Journal of Neuroscience, 13(2):467–
491, 1993.

[21] A. Goldman and V. Gallese. Mirror neurons and the simulation theory
of mind-reading. Trends in Cognitive Science, 2(12):493–501, 1998.

[22] S. Grassia. Practical parameterization of rotations using the exponential
map. Journal of Graphics Tools, 3(3):29–48, 1998.

[23] D. B. Grimes, D. R. Rashid, and R. P. N. Rao. Learning nonparametric
models for probabilistic imitation. In Neural Information Processing
Systems (NIPS), pages 521–528.

[24] H. Hauser, G. Neumann, A. J. Ijspeert, and W. Maass. Biologically
inspired kinematic synergies provide a new paradigm for balance con-
trol of humanoid robots. In Proceedings of the IEEE-RAS International
Conference on Humanoid Robotics (Humanoids), 2007.

[25] K. Hauser, T. Bretl, and J. Latombe. Non-gaited humanoid locomotion
planning. In Proceedings of the IEEE-RAS International Conference on
Humanoid Robotics (Humanoids), pages 2641– 2648, December 2005.

[26] K. Hauser, T. Bretl, K. Harada, and J. Latombe. Using motion
primitives in probabilistic sample-based planning for humanoid robots.
In Workshop on Algorithmic Foundations of Robotics (WAFR), pages
2641– 2648, July 2006.

[27] K. Hauser, V. Ng-Thowhing, Gonzalez-Baos, H. T. Mukai, and
S. Kuriyama. Multi-modal motion planning for a humanoid robot manip-
ulation task. In International Symposium on Robotics Research (ISRR),
2007.

[28] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien. Animat-
ing human athletics. In Proceedings of ACM SIGGRAPH, pages 71–78,
New York, NY, USA, 1995. ACM Press. ISBN 0-89791-701-4.

[29] X. Jiang and M. Kallmann. Learning humanoid reaching tasks in dy-
namic environments. In Proceedings of the IEEE International Confer-
ence on Intelligent Robots and Systems (IROS), San Diego CA, 2007.

[30] S. Kagami, J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. In-
oue. Humanoid arm motion planning using stereo vision and rrt search.
Journal of Robotics and Mechatronics, April 2003.

32 Authors Suppressed Due to Excessive Length

[31] M. Kallmann. Scalable solutions for interactive virtual humans that
can manipulate objects. In Proceedings of the Artificial Intelligence and
Interactive Digital Entertainment (AIIDE’05), pages 69–74, Marina del
Rey, CA, June 1-3 2005.

[32] M. Kallmann. Analytical inverse kinematics with body posture control.
Computer Animation and Virtual Worlds, 19(2):79–91, 2008.

[33] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann. Planning collision-
free reaching motions for interactive object manipulation and grasping.
Computer graphics Forum (Proceedings of Eurographics’03), 22(3):313–
322, September 2003.

[34] M. Kallmann, R. Bargmann, and M. J. Matarić. Planning the sequencing
of movement primitives. In Proceedings of the International Conference
on Simulation of Adaptive Behavior (SAB), pages 193–200, Santa Mon-
ica, CA, July 2004.

[35] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilis-
tic roadmaps for fast path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12:566–580,
1996.

[36] C. A. Klein and C.-H. Huang. Review of pseudoinverse control for use
with kinematically redundant manipulators. IEEE Transactions on Sys-
tems, Man, and Cybernetics, SMC-13(3):245–250, March-April 1983.

[37] S. Koenig. A comparison of fast search methods for real-time situated
agents. In Proceedings of the International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), pages 864–871,
2004.

[38] S. Koenig and M. Likhachev. Real-time adaptive a*. In Proceedings of
the International Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS), pages 281–288, 2006.

[39] Y. Koga, K. Kondo, J. J. Kuffner, and J.-C. Latombe. Planning motions
with intentions. In Proceedings of SIGGRAPH, pages 395–408. ACM
Press, 1994. ISBN 0-89791-667-0.

[40] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion
planning for humanoid robots. In Proceedings of the 11th International
Symposium of Robotics Research (ISRR), November 2003.

[41] J. J. Kuffner and S. M. LaValle. RRT-Connect: An efficient approach
to single-query path planning. In Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), San Francisco, CA,
April 2000.

A Motion Planning Framework for Skill Coordination and Learning 33

[42] K. Kurashige, T. Fukuda, and H. Hoshino. Motion planning based on
hierarchical knowledge for a six legged locomotion robot. In Proceedings
of IEEE International Conference on Systems, Man, and Cybernetics,
volume 6, pages 924–929, 1999.

[43] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publisher,
December 1990. ISBN 0-79-239129-2.

[44] J.-P. P. Laumond. Robot Motion Planning and Control. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1998. ISBN 3540762191.

[45] S. LaValle. Rapidly-exploring random trees: A new tool for path plan-
ning. Technical Report 98-11, Iowa State University, Computer Science
Department, October 1998.

[46] S. M. LaValle. Planning Algorithms. Cambridge University Press (avail-
able on-line), 2006. URL msl.cs.uiuc.edu/planning/.

[47] M. Likhachev, G. J. Gordon, and S. Thrun. Ara*: Anytime a* with prov-
able bounds on sub-optimality. In S. Thrun, L. Saul, and B. Schölkopf,
editors, Advances in Neural Information Processing Systems 16. MIT
Press, Cambridge, MA, 2004.

[48] V. Manikonda, P. Krishnaprasad, and J. Hendler. A motion description
language and hybrid architecure for motion planning with nonholonomic
robots. In Proceedings of IEEE International Conference on Robotics
and Automation (ICRA), May 1995.

[49] M. J. Matarić. Socially assistive robotics. IEEE Intelligent Systems,
August 2006.

[50] J. McCann and N. S. Pollard. Responsive characters from motion frag-
ments. ACM Transactions on Graphics (SIGGRAPH 2007), 26(3), Aug.
2007.

[51] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. Amato. A machine
learning approach for feature-sensitive motion planning. In Proceedings
of the Workshop on the Algorithmic Foundations of Robotics, 2004.

[52] V. T. Nguyen, A. Martinelli, N. Tomatis, and R. Siegwart. A comparison
of line extraction algorithms using 2d laser rangefinder for indoor mobile
robotics. In International Conference on Intelligent Robots and Systems
(IROS05), Edmonton, Canada, 2005.

[53] M. N. Nicolescu and M. J. Matarić. Natural methods for robots task
learning: Instructive demonstration, generalization and practice. In
Proceedings of the 2nd International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), Melbourne, Australia, 2003.

[54] A. Olenderski, M. Nicolescu, and S. Louis. Robot learning by demonstra-
tion using forward models of schema-based behaviors. In Proceedings,

34 Authors Suppressed Due to Excessive Length

International Conference on Informatics in Control, Automation and
Robotics, pages 14–17, Barcelona, Spain, September 2005.

[55] J. Pettré, M. Kallmann, M. C. Lin, J. Kuffner, M. Gleicher, C. Esteves,
and J.-P. Laumond. Motion planning and autonomy for virtual humans.
In SIGGRAPH’08 Class Notes, 2008.

[56] A. Ramesh and M. J. Matarić. Learning movement sequences from
demonstration. In Proceedings of the International Conference on De-
velopment and Learning (ICDL), pages 302–306, MIT, Cambridge, MA,
2002.

[57] S. Schaal. Arm and hand movement control. In M. Arbib, editor, The
handbook of brain theory and neural networks, pages 110–113. The MIT
Press, second edition, 2002.

[58] S. Schaal, A. Ijspeert, and A. Billard. Computational approaches to
motor learning by imitation. The Neuroscience of Social Interaction,
1431:199–218, 2003.

[59] L. Sentis and O. Khatib. A whole-body control framework for humanoids
operating in human environments. In Proceedings of the International
Conference on Robotics and Automation (ICRA), pages 2641– 2648, May
15-19 2006.

[60] A. Shapiro, M. Kallmann, and P. Faloutsos. Interactive motion cor-
rection and object manipulation. In ACM SIGGRAPH Symposium on
Interactive 3D graphics and Games (I3D), Seattle, April 30 - May 2
2007.

[61] A. Siadat, A. Kaske, S. Klausmann, M. Dufaut, and R. Husson. An
optimized segmentation method for a 2d laser-scanner applied to mo-
bile robot navigation. In Proceedings of the 3rd IFAC Symposium on
Intelligent Components and Instruments for Control Applications, 1997.

[62] W. Suleiman, E. Yoshida, F. Kanehiro, J.-P. Laumond, and A. Monin.
on human motion imitation by humanoid robot. In Proceedings of the
International Conference on Robotics and Automation (ICRA), pages
2697–2704, May 19-23 2008.

[63] K. A. Thoroughman and R. Shadmehr. Learning of action through
combination of motor primitives. Nature, 407:742–747, 2000.

[64] A. Treuille, Y. Lee, and Z. Popović. Near-optimal character animation
with continuous control. In Proceedings of ACM SIGGRAPH. ACM
Press, 2007.

[65] L. C. T. Wang and C. C. Chen. A combined optimization method
for solving the inverse kinematics problems of mechanical manipulators.
IEEE Transactions on Robotics and Automation, 7(4):489–499, 1991.

