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Version 0.1, May 28, 2008 
Note: this is a work in progress. Hopefully, it has some value, even in its current form. 
 
Caveat: this list is not meant to be encyclopedic, or the comments all-explaining.  

I apologize in advance to everyone who has gotten left out. However, I think the list is more valuable if it 

isn’t too overly long. I would like to say that these are the “most important” references, but really they 

are the ones that I had time to put in (biased towards things I am familiar with). If you want to find every 

last reference, look at the most recent papers and their references. Or use a good search tool and chase 

forward from the core references. 

The intent is that this document is part of a longer tutorial/review/survey that tries to explain the 

methods listed here, and does some comparison between the approaches. But for now, I’m starting with 

this.  

Citations are of the form [X.NNYY] where X is the section that the citation appears in. 

The way I’ve divided this (the section headings) is: 

A. The “Original” Motion Graph Papers (the trio from 2002) 

B. Precursors to Motion Graphs (things that were Motion-Graph –like pre-2002) 

C. Motion Editing Foundations (things that go into Motion Graphs) 

D. Motion Blending (a foundation for Parametric Graphs) 

E. Graphs for Interactive Control 

F. Continuous (rather than discrete) control in graphs 

G. Everything Else (a grab bag of other motion graph papers that I think are important) 

A notable survey was put together by David Forsyth and some others: 

[0.F++05] Forsyth, D. A.; Arikan, O.; Ikemoto, L.; O'Brien, J. & Ramanan, D. Computational studies of 

human motion: part 1, tracking and motion synthesis Found. Trends. Comput. Graph. Vis., 

2005, 1, 77-254.  

This reference is particularly good at discussion some of the motion graph-like things done 

in the vision community. It has a very extensive (400+ reference) bibliography. 
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Annotated Bibliography 
I have organized this list thematically. Sometimes, a paper might fall into more than one category, so I 

will need to use a cross-reference (I’ll put papers where I think they fit best). 

A. The “Original” Motion Graph Papers 
At SIGGRAPH 2002, three papers came together that (arguably) marked the first real “motion graph” 

techniques in academia. While the core ideas had been kicking around (see Sections B and C), the idea 

of automatically assembling a graph and using this graph to synthesize motions that meet specific goals 

came together at this time. It is interesting that 3 groups came up with a very similar core idea at the 

same time independently. Some of this was that the area was ripe (with the fresh availability of data, 

etc.).  

While these three papers all had the same core ideas (opportunistically build a graph from a collection 

of motion data, search the graph to construct motions that meet goals), the details were very different. 

And the notations used in each were quite different. A comparison of these approaches will be given in 

the Tutorial (when that gets written). 

 [A.KGP02] Kovar, L.; Gleicher, M. & Pighin, F. Motion Graphs. ACM Transactions on Graphics, 2002, 21, 

473-482. (Proceedings SIGGRAPH 2002).  

Lucas Kovar’s thesis (and later papers) provide more details on some aspects of this work. 

 [A.AF02] Arikan, O. & Forsyth, D. A. Synthesizing Constrained Motions from Examples. ACM 

Transactions on Graphics, 2002, 21, 483-490.  (Proceedings SIGGRAPH 2002) 

See also [H.AFO03] which extends this work.  

[A.L+02] Lee, J.; Chai, J.; Reitsma, P.; Hodgins, J. & Pollard, N. Interactive control of avatars animated 

with human motion data. ACM Transactions on Graphics, 2002, 21, 491-500. (Proceedings 

SIGGRAPH 2002) 

This paper had the most diverse set of example applications. The graph was “diven” by 

search (to follow a path, like in [A.KGP02]), user interaction, and computer vision. 

Some places where the projects differed: 

 Transition scheme: [KGP02] used blending, [AF02] used cuts and filtered the discontinuities, and 

[L+02] used cuts and displaced the endpoints to get continuity. 

 Method for getting sparsity in the graph: [KGP02] found local minima of the cost function, 

[L+02] clustered poses and applied heuristics, and [AF02] clustered edges. 

 Search scheme: [KGP02] used branch and bound, [AF02] used a probabalitic search of 

hierarchicy of simplified graphs, and [L+02] used greedy selection. 

There were other papers at SIGGRAPH ’02 that assembled motions to make new motions (and at least 

[B.LWS02] had a graph involved), but did not share the core ideas.  
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B. Precursors to Motion Graphs 
Before us academics “invented” motion graphs, they were actually used in practice, particularly in the 

gaming industry. At the most basic level, computer games have almost always strung short movements 

together to make the continuously controllable characters that games need. The idea of encoding which 

movements could connect to which other movements (a motion graph) was in common practice – 

although the more common term was Move Tree (even though the graph usually was not a tree). What 

the 2002 (and later) academic motion graphs added was the idea of automatically (and 

opportunistically) building these graphs and using search methods to use them. 

Unfortunately, there is little literature on what people were doing to create Move Trees from motion 

capture data in practice pre-2002. Generally, it involved careful planning to create motions that fit 

together, and a lot of manual effort to build the graphs themselves. There were several Game Developer 

Magazine articles about planning, but in general, there is little to document what is going on. A lot of the 

work was done by motion capture studios using proprietary tools. Some references that I am aware of: 

[B.Men99] Menache, A. Understanding Motion Capture for Computer Animation and Video Games. 

Morgan Kaufmann, 1999.  

While some of this book is quite dated (referring to archaic hardware and considerations 

from old motion capture systems), its discussion of the planning process, and what really 

matters in motion capture data is still valuable.  

[B.Kines98] Kines, M. Planning and Directing Motion Capture for Games. Game Developer Magazine, 

1998. Also in GDC ’98 proceedings, and in Gamasutra (online) at 

http://www.gamasutra.com/features/20000119/kines_01.htm.  

[B.MBC01] Mizuguchi, M.; Buchanan, J. & Calvert, T. Data driven motion transitions for interactive 

games Eurographics 2001 Short Presentations, 2001. 

This is the commonly cited academic reference for the game industry practice. 

Before “The Motion Graph Papers,” several researchers had explored methods that assembled long 

motions from shorter segments, usually trying to create statistical models of possible motions.  

[B.MTH00] Molina Tanco, L. & Hilton, A. Realistic synthesis of novel human movements from a database 

of motion capture examples. In Proc. IEEE Workshop on Human Motion, 2000. 

An early motion graph variant. Build an HMM on clusters of motion capture data, but 

retained the connection back to the original motions so that playback preserved the original 

poses.  

 [B.BH00] Brand, M. & Hertzmann, A. Style machines Proceedings of ACM SIGGRAPH 2000, 2000, 183-

192. 
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Build a Hidden Markov Model (which is a motion graph) from a collection of motion 

captured data. The density of this paper (it places a lot into the “black box” of the HMM) has 

made it less commonly referred to than subsequent papers, although many ideas seem to 

appear.  

[B.GJH01] Galata, A.; Johnson, N. & Hogg, D. Learning Variable Length Markov Models of Behaviour. 

Computer Vision and Image Understanding: CVIU, 2001, 81, 398-413.  

One of many computer vision papers that build a Hidden Markov Model for human 

movement. This one drew the attention of early motion graph projects, possibly because 

they had 3D mocap data as an example. See [0.F++05] for a more extensive list. 

[B.LWS02] Li, Y.; Wang, T. & Shum, H. Motion texture: a two-level statistical model for character 

motion synthesis ACM Tranactions on Graphics, 2002, 21, 465-472. (Proceedings SIGGRAPH 

2002)  

While this paper appeared in the same session as the ones in Section A, it had a 

considerably different flavor because rather than being a kinematic model (that copied the 

frames), it produced a linear dynamic model  that generated new movements (based on the 

statistics of the database). The switched-linear dynamic system is a kind of motion graph, 

but it doesn’t resemble the other projects as much. 

C. Motion Editing Foundations 
Tools for working with motion capture data are the basis for motion graphs. Like Motion Graphs, the 

basic ideas were in practice before academics discovered them. Supposedly, a lot of the ideas of early 

motion editing research (presented in the mid- to late- 90s and afterwards) were part of the Symbolics 

animation system.  

While there are quite a few papers on motion editing, I feel these early ones are particularly relevant. 

[C.BW95] Bruderlin, A. & Williams, L. Motion signal processing Proceedings of ACM SIGGRAPH 1995, 

1995, 97-104. 

[C.WP95] Witkin, A. P. & Popovid, Z. Motion Warping. Proceedings of SIGGRAPH 95, 1995, 105-108. 

These papers really introduced (to the research community) the idea of thinking about 

editing motion capture data without having a model of what the various motion signals 

mean. I believe that many of the methods (particularly the blending and displacement or 

warping techniques) were in common practice – they just hadn’t been shown to the 

research community. 

[C.R++96] Rose, C.; Guenter, B.; Bodenheimer, B. & Cohen, M. F. Efficient generation of motion 

transitions using spacetime constraints. Proceedings SIGGRAPH '96, 1996, 147-154. 
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This paper was the first (and still one of the only) papers in trying to develop better methods 

for creating transitions. Interestingly, while transitions are an essential piece of any Motion 

Graph method, there has been little research in developing more sophisticated transition 

techniques since this paper. In fact, almost nothing uses techniques as sophisticated as what 

was presented in this paper. [G.Z+05] is one thing that considers transitions more recently. 

[C.RCB98] Rose, C.; Cohen, M. & Bodenheimer, B. Verbs and adverbs: multidimensional motion 

interpolation. IEEE Computer Graphics and Application, 1998, 18, 32-40. 

This is the first academic example of using motion blending to do serious motion synthesis. 

They dealt with a high dimensional space (emotions, speed, …). In a sense, there is even a 

graph (since everything was looped).  All of the connections were built manually (which is 

what will distinguish the later work), but this was a seminal early system. (Although, I think 

similar ideas had been in use in games, albeit with a mathematically simpler formulation). 

[C.Gle98] Gleicher, M. Retargeting Motion to New Characters. Proceedings of ACM SIGGRAPH 98, 

1998, 33-42. 

I think that this paper inspired a lot of people to start thinking about motion capture, since 

its one of the first that really talked about preservation of quality. Maybe I’m biased since I 

wrote it and overstate its importance. On the other hand, the techniques I was trying to use 

didn’t scale, and have been replaced in later work. 

[C.LS99] Lee, J. & Shin, S. Y. A Hierarchical Approach to Interactive Motion Editing for Human-Like 

Figures. Proceedings of ACM SIGGRAPH 99, 1999, 39-48. 

This paper is important because it was the first to show a really practical approach for 

motion editing, which is important since it’s a backbone of motion graphs.  

[C.Gle01] Gleicher, M. Motion Path Editing. Proceedings 2001 ACM Symposium on Interactive 3D 

Graphics, 2001. 

An alternative to motion graphs – edit motions rather than synthesize new ones. This was 

the thing that started our motion graph project, and I still think it’s a valuable addition to 

the techniques – a first attempt to combine them was [F.SKG05]. 

D. Motion Blending 
Motion blending is an important tool for creating new motions, but is usually distinct from the 

concatenation approaches that are the basis of Motion Graphs. I describe a few significant papers here, 

because they may provide a future for Motion Graph techniques (see the hybrid techniques in Section 

F). Motion blending simply does a pose-wise blending of each parameter (after appropriate alignments). 

[C.RCB98] (as well as the things in the gaming world that used similar ideas) showed how powerful 

motion blending could be. However, these systems required manual construction of the blends (to find 
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the corresponding motions and the correspondences between motions). Methods from research have 

automated this process, and allowed for more complex blends. 

[D.KG03] Kovar, L. & Gleicher, M. Flexible Automatic Motion Blending with Registration Curves. 

Proceedings of the Symposium on Computer Animation, 2003. 

This paper automatically found timing, coordinate frame, and constraint correspondences 

between two motions, and used these correspondences to make complex blends between 

dissimilar motions. It really showed that blending can be a very general tool. 

[D.KG04] Kovar, L. & Gleicher, M. Automated extraction and parameterization of motions in large 

data sets. ACM Transactions on Graphics, 2004, 23, 559-568.  (Proceedings SIGGRAPH 2004) 

This paper searched a database for similar motions (where similar was roughly defined by 

“blendable”), and created blend-spaces of those motions.  

[D.SH06] Safonova, A. & Hodgins, J. K. Analyzing the physical correctness of interpolated human 

motion. Proceedings of the Symposium on Computer Animation, 2005, 171-180. 

It is quite remarkable that something as simple as motion blending works at all. This paper 

tries to explain why it works so well, as well as giving some ideas as when it doesn’t work, 

and suggesting some things to do about those cases. This paper only considers the trivial 

case of aligned blending (not the case where time warping or other alignment methods such 

as [D.KG03] have been applied). 

E. Graphs for Interactive Control 
The use of Motion Graphs has its roots in interactive applications (see Section B) where hand-

constructed “Move Trees” have been used for quite some time. The first “Motion Graph” projects (and 

much of the research that followed) were predominantly off-line synthesis methods. That is, the entire 

set of goals is given at the beginning and the entire motion is produced. Such methods can be efficient 

(for example, even in 2002, [A.KGP02] could produce motions faster than real time – to create a 15 

second animation would take less than 15 seconds). However, they are inappropriate for interactive 

settings where the future goals are not known, and instant response to control is required.  

For interactive applications, we usually want local control: given the current situation, what is the right 

thing to do now. This is important for creating characters that respond to use input, and useful for 

making characters that efficiently move towards goals. 

Part of the problem with most Motion Graph methods (particularly the 2002 ones) is that the graph is 

built opportunistically, so that finding good choices on it requires search. This is a key difference 

between the automatically constructed graphs of the academic research, and the manually constructed 

ones used in practice. Some techniques provide structured graphs automatically. These structured 

graphs are built such that the graph structure is simple and there are always plenty of choices. 
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[E.G+03] Gleicher, M.; Shin, H. J.; Kovar, L. & Jepsen, A. Snap Together Motion: Assembling Run-Time 

Animation. Proceedings of the Symposium on Interactive 3D Graphics, 2003. 

This system automates the construction of graphs that have the same kind of structure that 

the hand-made graphs used in games have. It automatically (or semi-automatically) finds 

hub nodes for which a large number of options (in and out edges) are available. The graphs 

are useful for interactive control, and their structure also makes them conducive to simple 

search methods (such as using a greedy selection) to drive characters towards goals (see 

[F.SKG05]). 

[E.TLP07] Treuille, A.; Lee, Y. & Popovid, Z. Near-optimal character animation with continuous control. 

ACM Trans. Graph., 2007, 26, 7. (Proceedings SIGGRAPH 2007) 

This paper uses a very simple motion graph (one specifically built with each node being a 

single step of locomotion, and all steps connectable by blends). However, it generates a 

sophisticated controller for steering the character towards a goal by figuring out what the 

optimal choice of the next step should be. It can make “optimal” choices by effectively 

looking infinitely far into the future (by assuming it will also make optimal choices on future 

steps). Note that the continuous in the title refers to continuity of the state space: like most 

other motion graph approaches this system makes discrete choices (the next graph arc to 

follow) at discrete times (the choice points). See section F for continuous approaches. 

Rather than building graphs with special structure, many attempts to use Motion Graphs instead keep 

the unstructured graph and use some mechanism to process it such that efficient, local decision making 

can be done. Some examples of such an approach include: 

[E.LL04] Lee, J. & Lee, K. H. Precomputing avatar behavior from human motion data. SCA '04: 

Proceedings of the Symposium on Computer Animation, 2004, 79-87. 

Use reinforcement-learning inspired searches to expand a number of search trees from 

given states so that they can cache the correct path on the motion graph to take in any 

situation. 

[E.LK06] Lau, M. & Kuffner, J. J. Precomputed Search Trees: Planning for Interactive Goal-Driven 

Animation. Proceedings of the Symposium on Computer Animation, 2006, 299-308. 

This work similarly pre-computes searches and caches the best choice for different 

situations. It is used for doing efficient motion synthesis by coupling with a higher-level 

planner, but it could also be used for interactive control. 

[E.MP07] McCann, J. & Pollard, N. Responsive characters from motion fragments ACM Trans. Graph., 

2007, 26, 6. (Proceedings SIGGRAPH 2007) 

The basic idea is to build a table of what the right choice of motion to play next is given the 

current configuration. In addition to using the control inputs to determine what the next 
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motion to play is, it tries to predict future control inputs so that it can make even more 

informed choices. This method is (the first that I know of) capable of making tradeoffs of 

motion quality in order to achieve responsiveness – an issue that will certainly be 

considered more in the future. 

F. Continuous Motion Graphs 
All of the motion graph techniques described above make discrete choices: at each node in the graph, a 

decision from a small set (the outgoing edges) must be chosen. This limits the degree of precision in 

control: goals might be “in-between” the available choices. This means that a large number of choices 

(i.e. a big database) might be required to be able to get anywhere near goals, and also brings up the 

possibility of searches returning roundabout paths that get closer to the goals by taking indirect routes.  

Hybrid techniques mix the discrete graph methods with some other mechanism that can provide a 

continuous range of choices.  

One category of hybrid techniques is to use a discrete motion graph to create a rough motion that gets 

close to its goals, and then use motion editing to adjust these motions such that they precisely meet the 

goals. Surprisingly, this simple approach has not been considered too much in the literature. One 

example that I am aware of: 

[F.SKG05] Sung, M.; Kovar, L. & Gleicher, M. Fast and accurate goal-directed motion synthesis for 

crowds Proceedings of the Symposium on Computer Animation, 2005. 

Uses a Probabilistic Roadmap (PRM) planner to get a rough path, then uses a Snap-Together 

Motion Graph [E.G+03] to greedily follow the path, and then adjusts the path using motion 

editing to precisely meet the goals. 

Another category of hybrid techniques uses motion blending techniques to provide the continuously 

controllable choices and graph-based methods to connect the blended segments together. This is what 

is done in games that do motion blending, however the graphs (and blend) structures are typically built 

by hand. The Verbs and Adverbs system [C.RCB98] is an example of this (with a simple, hand-made 

graph structure). Special case hybrid “blending graphs” have been used for locomotion (some of the 

locomotion papers from KAIST are of this form). 

A few recent papers have considered general approaches that automatically construct hybrid (i.e. with 

blending) graphs for situations more general than just locomotion. 

[F.SO06] Shin, H. J. & Oh, H. S. Fat graphs: constructing an interactive character with continuous 

controls. Proceedings of the Symposium on Computer Animation, 2006, 291-298. 

This paper extends Snap-Together Motion [E.G+03] such that the edges between nodes are 

blended to be continuously controllable. (in this notation, nodes are choice points and edges 

are motions). All motions that come into (or out of) a node share a common pose. 
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[F.HG07] Heck, R. & Gleicher, M. Parametric Motion Graphs. Proceedings of the Symposium on 

Interactive 3D Graphics, 2007. 

This paper builds a graph where the nodes are motion blends, and the edges are transitions 

between the entire spaces of possible motions created by the blends.  

The above two papers have been used for interactive control. In [HG07] we experimented with greedily 

driving characters towards goals, but this only works for goals of limited complexity. The following paper 

considers mixing blending and off-line motion graph search. 

[F.SH07]  Safonova, A. & Hodgins, J. K. Construction and optimal search of interpolated motion 

graphs. ACM Transactions on Graphics, 2007, 26, 106. 

This creates a parametric (continuous control) motion graph by blending together all pairs of 

motions that can be blended using simple blending (as opposed to [F.HG07] that used the 

complex alignment procedure of [D.KG04], or [F.HG07] and [F.SO06] that both consider 

multi-way blends). However, it does use (very sophisticated) searching techniques to search 

these very large graphs to motions that precisely meet complex sets of goals.  

Technically, this is still a discrete motion graph: the motion blends are sampled to provide a 

discrete set of motions. However, the intent of the work is to provide a searchable 

parametric graph, and the results impressively meet the goals, even though the 

implementation of the continuous part of the discrete/continuous optimization is done in a 

brute-force manner. 

H. Everything Else 
Since I don’t have time to organize the rest of this, here’s a grab-bag of assorted motion graph papers 

that I feel are significant. This is a sub-sampling of the papers out there. Just because something is 

missing doesn’t mean it isn’t significant. 

[H.AFO03] Arikan, O.; Forsyth, D. A. & O'Brien, J. F. Motion Synthesis From Annotations. ACM 

Transactions on Graphics, 2003, 22, 402-408. (Proceedings SIGGRAPH 2003) 

Adds to the original motion graph papers (especially [A.AF02]) by automatically figuring out 

labels that can be used to constrain the motion. Also provides a dynamic programming 

approach to searching for motions that seems less ad hoc than the original. 

[H.Z+05] Zordan, V. B.; Majkowska, A.; Chiu, B. & Fast, M. Dynamic response for motion capture 

animation. ACM Transactions on Graphics, 2005, 24, 697-701. (Proceedings SIGGRAPH 2005) 

This paper considers how to get “on and off” a motion graph. It significant because it 

provides methods of generating movement with a motion graph, using physical simulation 

(for example to have a character get hit), and then re-connecting with the motion graph. It is 

really the only thing since [C.R++96] to consider more complex transitions. 



Motion Graph Annotated Bibliography  Page 10 of 10 

 

[H.IAF07] Ikemoto, L.; Arikan, O. & Forsyth, D. Quick transitions with cached multi-way blends. I3D '07: 

Proceedings of the 2007 symposium on Interactive 3D graphics and games, ACM, 2007, 145-

151. 

Provides a scheme for creating more blends for motion graphs by mixing in other motions 

over longer periods of time. Has some interesting ideas on how to evaluate the quality of 

transitions, and uses this to perform a generate and test approach. 

[H.RP07] Reitsma, P. S. A. & Pollard, N. S. Evaluating motion graphs for character animation. ACM 

Transactions on Graphics, 2007, 26, 18. 

Considers how good a motion graph is for locomotion by thoroughly evaluating the set of 

places that the discrete choices can get you to. One outcome is an interesting variant of a 

motion graph that embeds all the choices into an environment allowing for easy locomotion 

planning. This paper extends an earlier conference paper. 

[H.WB08] Wang, J. & Bodenheimer, B. Synthesis and evaluation of linear motion transitions. ACM 

Transactions on Graphics, 2008, 27, 1-15. 

This paper thoroughly considers the perceptual issues in the simple blending schemes used 

in many (most?) motion graph systems. While they focus on a specific portion of the design 

space, their careful consideration of the perceptual issues is interesting even if one 

considers using better choices for various parts of the algorithms. 
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Manipulation Planning for Virtual Humans 
Summary of Representative Papers 
Marcelo Kallmann 
 
Several representative papers are discussed in each part of the course notes and I 
summarize here a selection of these papers, in order to provide a short document offering 
a quick roadmap of the relevant literature. 
 
Once again, the reader should be warned that several other important publications are 
available and the proposed papers here are in no way the only relevant ones, and I 
apologize in advance for all eventual important omission. 
 
 
1. Motion Interpolation Methods Relevant to Manipulation Planning 
 

[Rose et al 2001] C. Rose III, P-P. Sloan, and M. Cohen, "Artist-Directed 
Inverse-Kinematics Using Radial Basis Function Interpolation", Computer 
graphics Forum, 20(3), 2001, 239-250. 

In this paper Rose and colleagues propose to extend the “verbs-and-adverbs” interpolation 
method based on Radial Basis Functions with additional techniques specifically designed 
for applying motion interpolation to control end-effectors, in particular the hand of a 
character. The presented techniques are therefore relevant to the development of data-
based motion planning algorithms. 
 

[Kovar and Gleicher 2004] L. Kovar and M. Gleicher, "Automated Extraction and 
Parameterization of Motions in Large Data Sets", ACM Trans. on Graphics 
(Proc. of SIGGRAPH 2004).  

[Safonova and Hodgins 2007] A. Safonova and J. Hodgins, "Construction and 
Optimal Search of Interpolated Motion Graphs", ACM Trans. on Graphics (Proc. 
of SIGGRAPH 2007).  

[Heck and Gleicher 2007] R. Heck and M. Gleicher, "Parametric Motion 
Graphs", Proc. of Interactive 3D Graphics and Games (I3D 2007). 

The three papers above well represent methods designed to reuse motion capture data in 
order to enable motion interpolation and parameterization. Although these methods are not 
in particular proposed for manipulation planning or for controlling arms, motion planners 
could be developed to operate in the created parametric spaces. 

 

2. Inverse Kinematics 
 

[Maciejewski and Klein 1985] A. Maciejewski and C. Klein, "Obstacle Avoidance for 
Kinematically Redundant Manipulators in Dynamically Varying Environments," Intl. 
Journal of Robotics Research, 4(3), 1985, 109–117. 

[Baerlocher 2001] P. Baerlocher, "Inverse Kinematics Techniques for the Interactive 
Posture Control of Articulated Figures", PhD Thesis 2383, Swiss Federal Institute of 
Technology (EPFL), 2001. 

 
Inverse Kinematics is the tool-of-choice for controlling open Kinematic chains for instance 
for manipulation planning. The work of Maciejewski and Klein provide important extensions 
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to the Jacobian-based IK formulation in order to integrate collision avoidance. The work of 
Baerlocher proposes extensions for handling several prioritized humanlike tasks in an 
unified framework and is also a comprehensive document on the topic (it is actually a PhD 
thesis). 
 

[Tolani et al 2000] D. Tolani, A. Goswami, and N. Badler, "Real-Time Inverse 
Kinematics Techniques for Anthropomorphic Limbs", Graphical Models and Image 
Processing, 62(5), 2000, 353-388. 

[Kallmann 2008] M. Kallmann, "Analytical Inverse Kinematics with Body Posture 
Control", Computer Animation and Virtual Worlds, 19(2), May 2008, 79-91. 

The work of Tolani and colleagues introduces specific analytical solutions for humanlike 
arms and legs. As the analytical solution is extremely fast (requires only a fixed number of 
mathematical operations) it is therefore very useful for controlling arms and correcting 
constraints, in particular if IK has to be called from sampling routines of planners. The work 
in [Kallmann 2008] provides extensions for dealing with collision avoidance and joint limits 
avoidance, which turns out to be valuable for determining useful variations of the swivel 
angle. 
 
 
3. Main Motion Planning Methods for Manipulation 
 

[Koga et al 1994] Y. Koga, K. Kondo, J. Kuffner, and J.-C. Latombe, "Planning 
motions with intentions", In Proc. of SIGGRAPH 1994, 395-408.  

[Kuffner and Latombe 2000] J. Kuffner and J.-C. Latombe, "Interactive 
Manipulation Planning for Animated Characters", In Pacific Graphics 2000 
(short paper).  

[Kallmann 2005] M. Kallmann, "Scalable Solutions for Interactive Virtual 
Humans that can Manipulate Objects", AIIDE 2005. 

The work of Koga and colleagues represents the first application of a motion planner to an 
animated character. This work also presents excellent videos of cooperative arms 
manipulating objects and as well IK extensions for producing humanlike arm postures. 
Later on, Kuffner and Latombe present the first application of RRTs to virtual characters, 
and in [Kallmann 2005] options for integrating RRTs with the analytical IK are explored. 
 

[Kallmann et al 2003] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann, 
"Planning Collision-Free Reaching Motions for Interactive Object Manipulation 
and Grasping", Proceedings of Eurographics 2003, 313-322. 

[Yamane et al 2004] K. Yamane, J. Kuffner, and J. Hodgins, "Synthesizing 
Animations of Human Manipulation Tasks." ACM Trans. on Graphics (Proc. of 
SIGGRAPH 2004), 2004.  

The two papers above present important extensions to the basic application of motion 
planners to virtual humans. In [Kallmann et al 2003] several techniques are presented for 
achieving full-body manipulations and in particular several heuristics for producing 
meaningful manipulation poses during sampling. Later on Yamane and colleagues 
propose an IK method which produces humanlike postures by relying on a posture 
database built with motion capture, greatly improving the realism of planned full-body 
motions for manipulations. Several excellent examples are produced by these works. 
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4. Coordination Planning for Humanoid Structures 
 

[Kuffner et al 2001] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, 
"Footstep planning among obstacles for biped robots", In Proc. of IEEE/RSJ Int'l 
Conf. on Intelligent Robots and Systems (IROS 2001). 

[Kallmann et al 2004] M. Kallmann, R. Bargmann and M. Mataric´, "Planning the 
Sequencing of Movement Primitives", in Proc. of the Int'l Conference on 
Simulation of Adaptive Behavior (SAB), 2004, 193-200. 

A coordination planning approach specifically addressing footstep placements for 
humanoid locomotion is proposed in [Kuffner et al 2001]. The method is based on a 
discrete search determining the best sequencing of pre-computed leg motions in order to 
plan locomotion sequences among obstacles. In [Kallmann et al 2004] this approach is re-
formulated as a multi-mode RRT problem for generic primitive motion controllers, without 
the need of pre-computed motions.  
 

[Kalisiak and van de Panne 2001] M. Kalisiak and M. van de Panne, "A Grasp-
Based Motion Planning Algorithm for Character Animation", The Journal of 
Visualization and Computer Animation 12(3), 2001, 117-129. 

[Bretl 2006] T. Bretl, "Motion Planning of Multi-Limbed Robots Subject to 
Equilibrium Constraints: The Free-Climbing Robot Problem", Int'l Jounal of 
Robotics Research 25(4), 2006, 317-342. 

Coordination planning for climbing is equivalent to planning coordinated motions for 
manipulating the environment. A climbing planner for a 2D character has been proposed 
by [Kalisiak and van de Panne 2001] and algorithms for real robots that can climb are 
proposed in [Bretl 2006]. 
 

[Hauser et al 2007] K. Hauser, V. Ng-Thowhing, and H. Gonzalez-Baños, "Multi-
Modal Motion Planning for a Humanoid Robot Manipulation Task", In Proc. of 
the Int'l Symposium on Robotics Research (ISRR) 2007. 

A good example of a body coordination planner for manipulation tasks is given by Hauser 
and colleagues for the coordination of pushing objects with locomotion. The work is 
applied to Honda’s ASIMO.  
 

[Shapiro et al 2007] A. Shapiro, M. Kallmann, and P. Faloutsos, "Interactive 
Motion Correction and Object Manipulation", ACM SIGGRAPH Symposium on 
Interactive 3D graphics and Games (I3D), 2007. 

The work proposed by Shapiro et al show how realistic results can be obtained by 
combining a sampling-based planner with motion captured locomotion sequences. 
 
 
5. Learning for Motion Planning 
 

[Leven and Hutchinson 2000] P. Leven and S. Hutchinson, “Toward Real-Time 
Path Planning in Changing Environments”, Proc. of the fourth International 
Workshop on the Algorithmic Foundations of Robotics (WAFR), March 2000, 
pp. 363-376. 

[Kallmann and Mataric' 2004] M. Kallmann and M. Mataric´, "Motion Planning 
Using Dynamic Roadmaps", In Proc. of ICRA 2004, 4399-4404. 
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[Burns and Brock 2005] B. Burns and O. Brock, "Sampling-Based Motion 
Planning Using Predictive Models", In Proc. of ICRA, 2005.  

[Jiang and Kallmann 2007] X. Jiang and M. Kallmann, "Learning Humanoid 
Reaching Tasks in Dynamic Environments", In Proc. of IROS, 2007. 

 

These four papers present different approaches for integrating learning with motion 
planning. The first two are based on the notion of addressing dynamic environments with 
dynamic roadmaps. The approach proposed in [Burns and Brock 2005] learns a model of 
the environment for improving sampling in difficult regions of the search space, and in 
[Jiang and Kallmann 2007] features are learned from previously planned motions and 
reused to help solving new tasks in environments and tasks with few variations. 
 
Final Remarks 
 
I hope that this compilation of papers give a good picture of the several methods available 
for each of the categories listed above, and that these notes will inspire exciting new 
developments in this area ! 
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Abstract

In this paper we present a novel method for creating realistic, con-
trollable motion. Given a corpus of motion capture data, we au-
tomatically construct a directed graph called a motion graph that
encapsulates connections among the database. The motion graph
consists both of pieces of original motion and automatically gener-
ated transitions. Motion can be generated simply by building walks
on the graph. We present a general framework for extracting par-
ticular graph walks that meet a user’s specifications. We then show
how this framework can be applied to the specific problem of gen-
erating different styles of locomotion along arbitrary paths.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: motion synthesis, motion capture, animation with con-
straints

1 Introduction

Realistic human motion is an important part of media like video
games and movies. More lifelike characters make for more immer-
sive environments and more believable special effects. At the same
time, realistic animation of human motion is a challenging task, as
people have proven to be adept at discerning the subtleties of human
movement and identifying inaccuracies.

One common solution to this problem is motion capture. However,
while motion capture is a reliable way of acquiring realistic human
motion, by itself it is a technique for reproducing motion. Motion
capture data has proven to be difficult to modify, and editing tech-
niques are reliable only for small changes to a motion. This limits
the utility of motion capture — if the data on hand isn’t sufficiently

∗e-mail:{kovar,gleicher}@cs.wisc.edu
†e-mail:pighin@ict.usc.edu

similar to what is desired, then often there is little that can be done
other than acquire more data, a time-consuming and expensive pro-
cess. This in particular is a problem for applications that require
motion to be synthesized dynamically, such as interactive environ-
ments.

Our goal is to retain the realism of motion capture while also giving
a user the ability to control and direct a character. For example, we
would like to be able to ask a character to walk around a room
without worrying about having a piece of motion data that contains
the correct number of steps and travels in the right directions. We
also need to be able to direct characters who can perform multiple
actions, rather than those who are only capable of walking around.

This paper presents a method for synthesizing streams of motions
based on a corpus of captured movement while preserving the qual-
ity of the original data. Given a set of motion capture data, we com-
pile a structure called a motion graph that encodes how the captured
clips may be re-assembled in different ways. The motion graph is a
directed graph wherein edges contain either pieces of original mo-
tion data or automatically generated transitions. The nodes then
serve as choice points where these small bits of motion join seam-
lessly. Because our methods automatically detect and create transi-
tions between motions, users needn’t capture motions specifically
designed to connect to one another. If desired, the user can tune the
high-level structure of the motion graph to produce desired degrees
of connectivity among different parts.

Motion graphs transform the motion synthesis problem into one of
selecting sequences of nodes, or graph walks. By drawing upon
algorithms from graph theory and AI planning, we can extract graph
walks that satisfy certain properties, thereby giving us control over
the synthesized motions.

To demonstrate the potential of our approach, we introduce a sim-
ple example. We were donated 78.5 seconds of motion capture, or
about 2400 frames of animation, of a performer randomly walking
around with both sharp and smooth turns. Since the motion was
donated, we did not carefully plan out each movement, as the liter-
ature suggests is critical to successful application of motion capture
data [Washburn 2001]. From this data we constructed a motion
graph and used an algorithm described later in this paper to extract
motions that travelled along paths sketched on the ground. Charac-
teristic movements of the original data like sharp turns were auto-
matically used when appropriate, as seen in Figure 1.

It is possible to place additional constraints on the desired motion.
For example, we noticed that part of the motion had the character
sneaking around. By labelling these frames as special, we were able
to specify that at certain points along the path the character must
only use sneaking movements, and at other parts of the motion it
must use normal walking motions, as is also shown in Figure 1.

1
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Figure 1: The top images show original motion capture data; two are walking motions and one is a sneaking motion. The black curves show the paths travelled by the character.
The bottom images show new motion generated by a motion graph built out of these examples plus their mirror images. Images 1 and 2 show the result of having the motion graph fit
walking motion to the smooth yellow paths. The black curve is the actual position of the center of mass on each frame. Image 3 shows motion formed by having the character switch
from walking to sneaking halfway down the path.

The remainder of this paper is organized as follows. In Section 2
we describe related work. In Section 3 we describe how a motion
graph is constructed from a database of motion capture. In Section 4
we set forth a general framework for extracting motion from the
motion graph that meets user specifications. Section 5 discusses the
specific problem of generating movements along a path and how
it is handled in our framework. We conclude in Section 6 with a
discussion of the scalability of our approach to large data sets and
potential future work.

2 Related Work

Much previous work with motion capture has revolved around
editing individual clips of motion. Motion warping [Witkin and
Popović 1995] can be used to smoothly add small changes to a mo-
tion. Retargeting [Gleicher 1998; Lee and Shin 1999] maps the
motion of a performer to a character of different proportions while
retaining important constraints like footplants. Various signal pro-
cessing operations [Bruderlin and Williams 1995] can be applied
to motion data. Our work is different from these efforts in that it
involves creating continuous streams of motion, rather than modi-
fying specific clips.

One strategy for motion synthesis is to perform multi-target blends
among a set of examples, yielding a continuous space of parame-
terized motion. Wiley and Hahn [1997] used linear interpolation
to create parameterizations of walking at various inclinations and
reaching to various locations. Rose et al. [1998] used radial ba-
sis functions to blend among clips representing the same motion
performed in different styles. These works have a focus comple-
mentary to ours: while they are mainly concerned with generating
parameterizations of individual clips, we are concerned with con-
structing controllable sequences of clips.

Another popular approach to motion synthesis is to construct statis-
tical models. Pullen and Bregler [2000] used kernel-based proba-
bility distributions to synthesize new motion based on the statistical

properties of example motion. Coherency was added to the model
by explicitly accounting for correlations between parameters. Bow-
den [2000], Galata et al. [2001], and Brand and Hertzmann [2000]
all processed motion capture data by constructing abstract “states”
which each represent entire sets of poses. Transition probabilities
between states were used to drive motion synthesis. Since these
statistical models synthesize motion based on abstractions of data
rather than actual data, they risk losing important detail. In our
work we have tighter guarantees on the quality of generated mo-
tion. Moreover, these systems did not focus on the satisfaction of
high-level constraints.

We generate motion by piecing together example motions from a
database. Numerous other researchers have pursued similar strate-
gies. Perlin [1995] and Perlin and Goldberg [1996] used a rule-
based system and simple blends to attach procedurally generated
motion into coherent streams. Faloutsos et al. [2001] used sup-
port vector machines to create motion sequences as compositions
of actions generated from a set of physically based controllers.
Since our system involves motion capture data, rather than proce-
dural or physically based motion, we require different approaches
to identifying and generating transitions. Also, these systems were
mainly concerned with appropriately generating individual transi-
tions, whereas we address the problem of generating entire motions
(with many transitions) that meet user-specified criteria. Lamouret
and van de Panne [1996] developed a system that used a database
to extract motion meeting high-level constraints. However, their
system was applied to a simple agent with five degrees of freedom,
whereas we generate motion for a far more sophisticated charac-
ter. Molina-Tanco and Hilton [2000] used a state-based statistical
model similar to those mentioned in the previous paragraph to re-
arrange segments of original motion data. These segments were
attached using linear interpolation. The user could create motion
by selecting keyframe poses, which were connected with a high-
probability sequence of states. Our work considers more general
and sophisticated sets of constraints.

Work similar to ours has been done in the gaming industry to meet
the requirements of online motion generation. Many companies use
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move trees [Mizuguchi et al. 2001], which (like motion graphs) are
graph structures representing connections in a database of motion.
However, move trees are created manually — short motion clips are
collected in carefully scripted capture sessions and blends are cre-
ated by hand using interactive tools. Motion graphs are constructed
automatically. Also, move trees are typically geared for rudimen-
tary motion planning (“I want to turn left, so I should follow this
transition”), as opposed to more complicated objectives.

The generation of transitions is an important part of our approach.
Early work in this area was done by Perlin [1995], who presented a
simple method for smoothly interpolating between two clips to cre-
ate a blend. Lee [2000] defined orientation filters that allowed these
blending operations to be performed on rotational data in a more
principled fashion. Rose et al. [1996] presented a more complex
method for creating transitions that preserved kinematic constraints
and basic dynamic properties.

Our main application of motion graphs is to control a character’s
locomotion. This problem is important enough to have received
a great deal of prior attention. Because a character’s path isn’t
generally known in advance, synthesis is required. Procedural and
physically based synthesis methods have been developed for a few
activities such as walking [Multon et al. 1999; Sun and Metaxas
2001] and running [Hodgins et al. 1995; Bruderlin and Calvert
1996]. While techniques such as these can generate flexible motion
paths, the current range of movement styles is limited. Also, these
methods do not produce the quality of motion attainable by hand
animation or motion capture. While Gleicher [2001] presented a
method for editing the path traversed in a clip of motion capture,
it did not address the need for continuous streams of motion, nor
could it choose which clip is correct to fit a path (e.g. that a turning
motion is better when we have a curved path).

Our basic approach — detecting transitions, constructing a graph,
and using graph search techniques to find sequences satisfying user
demands — has been applied previously to other problems. Schödl
et al. [2000] developed a similar method for synthesizing seamless
streams of video from example footage and driving these streams
according to high-level user input.

Since writing this paper, we have learned of similar work done
concurrently by a number of research groups. Arikan and
Forsythe [2002] constructed from a motion database a hierarchi-
cal graph similar to ours and used a randomized search algorithm
to extract motion that meets user constraints. Lee et al. [2002] also
constructed a graph and generated motion via three user interfaces:
a list of choices, a sketch-based interface similar to what we use
for path fitting (Section 5), and a live video feed. Pullen and Bre-
gler [2002] keyframed a subset of a character’s degrees of freedom
and matched small segments of this keyframed animation with the
lower frequency bands of motion data. This resulted in sequences
of short clips forming complete motions. Li et al [2002] generated
a two-level statistical model of motion. At the lower level were lin-
ear dynamic systems representing characteristic movements called
“textons”, and the higher level contained transition probabilities
among textons. This model was used both to generate new motion
based on user keyframes and to edit existing motion.

3 Motion Graph Construction

In this section, we define the motion graph structure and the proce-
dure for constructing it from a database of clips.

A clip of motion is defined as a regular sampling of the charac-
ter’s parameters, which consist of the position of the root joint
and quaternions representing the orientations of each joint. We

Figure 2: Consider a motion graph built from two initial clips. (top) We can trivially
insert a node to divide an initial clip into two smaller clips. (bottom) We can also insert
a transition joining either two different initial clips or different parts of the same initial
clip.

also allow clips (or, more generally, sets of frames) to be anno-
tated with other information, such as descriptive labels (“walking,”
“karate”) and constraint information (left heel must be planted on
these frames).

A motion graph is a directed graph where all edges correspond to
clips of motion. Nodes serve as choice points connecting these
clips, i.e., each outgoing edge is potentially the successor to any
incoming edge. A trivial motion graph can be created by placing
all the initial clips from the database as arcs in the graph. This cre-
ates a disconnected graph with 2n nodes, one at the beginning and
end of each clip. Similarly, an initial clip can be broken into two
clips by inserting a node, since the later part of the motion is a valid
successor to the earlier part (see Figure 2).

A more interesting graph requires greater connectivity. For a node
to have multiple outgoing edges, there must be multiple clips that
can follow the clip(s) leading into the node. Since it is unlikely that
two pieces of original data are sufficiently similar, we need to create
clips expressly for this purpose. Transitions are clips designed such
that they can seamlessly connect two segments of original data. By
introducing nodes within the initial clips and inserting transition
clips between otherwise disconnected nodes, we can create a well-
connected structure with a wide range of possible graph walks (see
Figure 2).

Unfortunately, creating transitions is a hard animation problem.
Imagine, for example, creating a transition between a run and a
backflip. In real life this would require several seconds for an ath-
lete to perform, and the transition motion looks little like the mo-
tions it connects. Hence the problem of automatically creating such
a transition is arguably as difficult as that of creating realistic mo-
tion in the first place. On the other hand, if two motions are “close”
to each other then simple blending techniques can reliably gener-
ate a transition. In light of this, our strategy is to identify portions
of the initial clips that are sufficiently similar that straightforward
blending is almost certain to produce valid transitions.

The remainder of this section is divided into three parts. First we
describe our algorithm for detecting a set of candidate transition
points. In the following two sections we discuss how we select
among these candidate transitions and how blends are created at
the chosen transition points. Finally, we explain how to prune the
graph to eliminate problematic edges.
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3.1 Detecting Candidate Transitions

As in our system, motion capture data is typically represented as
vectors of parameters specifying the root position and joint rota-
tions of a skeleton on each frame. One might attempt to locate
transition points by computing some vector norm to measure the
difference between poses at each pair of frames. However, such
a simple approach is ill-advised, as it fails to address a number of
important issues:

1. Simple vector norms fail to account for the meanings of the
parameters. Specifically, in the joint angle representation
some parameters have a much greater overall effect on the
character than others (e.g., hip orientation vs. wrist orienta-
tion). Moreover, there is no meaningful way to assign fixed
weights to these parameters, as the effect of a joint rotation on
the shape of the body depends on the current configuration of
the body.

2. A motion is defined only up to a rigid 2D coordinate trans-
formation. That is, the motion is fundamentally unchanged if
we translate it along the floor plane or rotate it about the ver-
tical axis. Hence comparing two motions requires identifying
compatible coordinate systems.

3. Smooth blends require more information than can be obtained
at individual frames. A seamless transition must account not
only for differences in body posture, but also in joint veloci-
ties, accelerations, and possibly higher-order derivatives.

Our similarity metric incorporates each of these considerations. To
motivate it, we note that the skeleton is only a means to an end.
In a typical animation, a polygonal mesh is deformed according to
the skeleton’s pose. This mesh is all that is seen, and hence it is a
natural focus when considering how close two frames of animation
are to each other. For this reason we measure the distance between
two frames of animation in terms of a point cloud driven by the
skeleton. Ideally this point cloud is a downsampling of the mesh
defining the character.

To calculate the distance D(
�

i, � j) between two frames
�

i and
� j, we consider the point clouds formed over two windows of
frames of user-defined length k, one bordered at the beginning by�

i and the other bordered at the end by � j. That is, each point
cloud is the composition of smaller point clouds representing the
pose at each frame in the window. The use of windows of frames
effectively incorporates derivative information into the metric, and
is similar to the approach in [Schödl et al. 2000]. The size of the
windows are the same as the length of the transitions, so D(

�
i, � j)

is affected by every pair of frames that form the transition. We use
a value of k corresponding to a window of about a third of a second
in length, as in [Mizuguchi et al. 2001]

The distance between
�

i and � j may be calculated by computing
a weighted sum of squared distances between corresponding points
pi and p′

i in the two point clouds. To address the problem of find-
ing coordinate systems for these point clouds (item 2 in the above
list), we calculate the minimal weighted sum of squared distances
given that an arbitrary rigid 2D transformation may be applied to
the second point cloud:

min
θ ,x0,z0

∑
i

wi‖pi −Tθ ,x0,z0
p′

i‖
2 (1)

where the linear transformation Tθ ,x0,z0
rotates a point p about the

y (vertical) axis by θ degrees and then translates it by (x0,z0). The

Figure 3: An example error function for two motions. The entry at (i, j) contains
the error for making a transition from the ith frame of the first motion to the jth frame of
the second. White values correspond to lower errors and black values to higher errors.
The colored dots represent local minima.

index is over the number of points in each point cloud. The weights
wi may be chosen both to assign more importance to certain joints
(e.g., those with constraints) and to taper off towards the end of the
window.

This optimization has a closed-form solution:

θ = arctan
∑i wi(xiz

′
i − x′izi)−

1
∑i wi

(xz′− x′z)

∑i wi(xix
′
i + ziz

′
i)−

1
∑i wi

(xx′ + zz′)
(2)

x0 =
1

∑i wi
(x− x′ cos(θ )− z′ sinθ ) (3)

z0 =
1

∑i wi
(z + x′ sin(θ )− z′ cosθ ) (4)

where x = ∑i wixi and the other barred terms are defined similarly.

We compute the distance as defined above for every pair of frames
in the database, forming a sampled 2D error function. Figure 3
shows a typical result. To make our transition model more com-
pact, we find all the local minima of this error function, thereby ex-
tracting the “sweet spots” at which transitions are locally the most
opportune. This tactic was also used in [Schödl et al. 2000]. These
local minima are our candidate transition points.

3.2 Selecting Transition Points

A local minimum in the distance function does not necessarily im-
ply a high-quality transition; it only implies a transition better than
its neighbors. We are specifically interested in local minima with
small error values. The simplest approach is to only accept local
minima below an empirically determined threshold. This can be
done without user intervention. However, often users will want to
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set the threshold themselves to pick an acceptable tradeoff between
having good transitions (low threshold) and having high connectiv-
ity (high threshold).

Different kinds of motions have different fidelity requirements. For
example, walking motions have very exacting requirements on the
transitions — people have seen others walk nearly every day since
birth and consequently have a keen sense of what a walk should
look like. On the other hand, most people are less familiar with bal-
let motions and would be less likely to detect inaccuracies in such
motion. As a result, we allow a user to apply different thresholds
to different pairs of motions; transitions among ballet motions may
have a higher acceptance threshold than transitions among walking
motions.

3.3 Creating Transitions

If D(
�

i, � j) meets the threshold requirements, we create a tran-
sition by blending frames

�
i to

�
i+k−1 with frames � j−k+1 to

� j, inclusive. The first step is to apply the appropriate aligning
2D transformation to motion � . Then on frame p of the transition
(0 ≤ p < k) we linearly interpolate the root positions and perform
spherical linear interpolation on joint rotations:

Rp = α(p)R �
i+p

+[1−α(p)]R �
j−k+1+p

(5)

qi
p = slerp(qi�

i+p
, qi�

j−k+1+p
, α(p)) (6)

where Rp is the root position on the pth transition frame and qi
p is

the rotation of the ith joint on the pth transition frame.

To maintain continuity we choose the blend weights α(p) accord-
ing to the conditions that α(p) = 1 for p ≤−1, α(p) = 0 for p ≥ k,
and that α(p) has C1 continuity everywhere. This requires

α(p) = 2(
p+1

k
)3 −3(

p+1
k

)2 +1, −1 < p < k (7)

Other transition schemes, such as [Rose et al. 1996], may be used
in place of this one.

The use of linear blends means that constraints in the original mo-
tion may be violated. For example, one of the character’s feet may
slide when it ought to be planted. This can be corrected by using
constraint annotations in the original motions. We treat constraints
as binary signals: on a given frame a particular constraint either ex-
ists or it does not. Blending these signals in analogy to equations 5
and 6 amounts to using the constraints from

�
in the first half of

the transition and the constraints from � in the second half. In this
manner each transition is automatically annotated with constraint
information, and these constraints may later be enforced as a post-
processing step when motion is extracted form the graph. We will
discuss constraint enforcement in more detail in the next section.

Descriptive labels attached to the motions are carried along into
transitions. Specifically, if a transition frame is a blend between a
frame with a set of labels L1 and another frame with a set of labels
L2, then it has the union of these labels L1 ∪L2.

1 2 53 4

7 86

Figure 4: A simple motion graph. The largest strongly connected component is
[1,2,3,6,7,8]. Node 4 is a sink and 5 is a dead end.

3.4 Pruning The Graph

In its current state there are no guarantees that the graph can syn-
thesize motion indefinitely, since there may be nodes (called dead
ends) that are not part of any cycle (see Figure 4). Once such a node
is entered there is a bound on how much additional motion can be
generated. Other nodes (called sinks) may be part of one or more
cycles but nonetheless only be able to reach a small fraction of the
total number of nodes in the graph. While arbitrarily long motion
may still be generated once a sink is entered, this motion is con-
fined to a small part of the database. Finally, some nodes may have
incoming edges such that no outgoing edges contain the same set
of descriptive labels. This is dangerous since logical discontinuities
may be forced into a motion. For example, a character currently in
a “boxing” motion may have no choice but to transition to a “ballet”
motion.

To address these problems, we prune the graph such that, starting
from any edge, it is possible to generate arbitrarily long streams
of motion of the same type such that as much of the database as
possible is used. This is done as follows. Every frame of original
data is associated with a (possibly empty) set of labels. Say there
are n unique sets. For each set, form the subgraph consisting of
all edges whose frames have exactly this set of labels. Compute
the strongly connected components (SCCs) of this subgraph, where
an SCC is a maximal set of nodes such that there is a connecting
graph walk for any ordered pair of nodes (u,v). The SCCs can be
computed in O(V + E) time using an algorithm due to Tarjan. We
eliminate from this subgraph (and hence the original motion graph)
any edge that does not attach two nodes in the largest SCC. Once
this process is completed for all n label sets, any nodes with no
edges are discarded.

A warning is given to the user if the largest SCC for a given set
of labels contains below a threshold number of frames. Also, a
warning is given if for any ordered pair of SCCs there is no way
to transition from the first to the second. In either case, the user
may wish to adjust the transition thresholds (Section 3.2) to give
the graph greater connectivity.

4 Extracting Motion

By this stage we have finished constructing the motion graph. Af-
ter describing exactly how a graph walk can be converted into dis-
playable motion, we will consider the general problem of extracting
motion that satisfies user constraints. Our algorithm involves solv-
ing an optimization problem, and so we conclude this section with
some general recommendations on how to pose the optimization.
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4.1 Converting Graph Walks To Motion

Since every edge on the motion graph is a piece of motion, a graph
walk corresponds to a motion generated by placing these pieces
one after another. The only issue is to place each piece in the cor-
rect location and orientation. In other words, each frame must be
transformed by an appropriate 2D rigid transformation. At the start
of a graph walk this transformation is the identity. Whenever we
exit a transition edge, the current transformation is multiplied by
the transformation that aligned the pieces of motion connected by
the transition (Section 3.1).

As noted in Section 3.3, the use of linear blends to create transitions
can cause artifacts, the most common of which is feet that slide
when they ought to be planted. However, every graph walk is au-
tomatically annotated with constraint information (such as that the
foot must be planted). These constraints are either specified directly
in the original motions or generated as in Section 3.3, depending on
whether the frame is original data or a transition. These constraints
may be satisfied using a variety of methods, such as [Gleicher 1998]
or [Lee and Shin 1999]. In our work we used the method described
in [Kovar et al. 2002].

4.2 Searching For Motion

We are now in a position to consider the problem of finding motion
that satisfies user-specified requirements. It is worth first noting that
only very special graph walks are likely to be useful. For exam-
ple, while a random graph walk will generate a continuous stream
of motion, such an algorithm has little use other than an elaborate
screen saver. As a more detailed example, consider computing an
all-pairs shortest graph walk table for the graph. That is, given a
suitable metric — say, time elapsed or distance travelled — we can
use standard graph algorithms like Floyd-Warshall to find for each
pair of nodes u and v the connecting graph walk that minimizes the
metric. With this in hand we could, for example, generate the mo-
tion that connects one clip to another as quickly as possible. This is
less useful than it might appear at first. First, there are no guaran-
tees that the shortest graph walk is short in an absolute sense. In our
larger test graphs (between a few and several thousand nodes) the
average shortest path between any two nodes was on the order of
two seconds. This is not because the graphs were poorly connected.
Since the transitions were about one-third of a second apiece, this
means there were on average only five or six transitions separat-
ing any two of the thousands of nodes. Second, there is no control
over what happens during the graph walk — we can’t specify what
direction the character travels in or where she ends up.

More generally, the sorts of motions that a user is likely to be in-
terested in probably don’t involve minimizing metrics as simple as
total elapsed time. However, for complicated metrics there is typ-
ically no simple way of finding the globally optimal graph walk.
Hence we focus instead on local search methods that try to find a
satisfactory graph walk within a reasonable amount of time.

We now present our framework for extracting graph walks that con-
form to a user’s specifications. We cast motion extraction as a
search problem and use branch and bound to increase the efficiency
of this search. The user supplies a scalar function g(w,e) that eval-
uates the additional error accrued by appending an edge e to the
existing path w, which may be the empty path /0. The total error
f (w) of the path is defined as follows:

f (w) = f ([e1, . . . ,en]) =
n

∑
i=1

g([e1, . . . ,ei−1],ei) (8)

where w is comprised of the edges e1, . . . ,en. We require g(w,e) to
be nonnegative, which means that we can never decrease the total
error by adding more edges to a graph walk.

In addition to f and g, the user must also supply a halting condi-
tion indicating when no additional edges should be added to a graph
walk. A graph walk satisfying the halting condition is called com-
plete. The start of the graph walk may either be specified by the
user or chosen at random.

Our goal is find a complete graph walk w that minimizes f . To give
the user control over what sorts of motions should be considered in
the search, we allow restrictions on what edges may be appended to
a given walk w. For example, the user may decide that within a par-
ticular window of time a graph walk may only contain “sneaking”
edges.

A naı̈ve solution is to use depth-first search to evaluate f for all
complete graph walks and then select the best one. However, the
number of possible graph walks grows exponentially with the av-
erage size of a complete graph walk. To address this we use a
branch and bound strategy to cull branches of the search that are in-
capable of yielding a minimum. Since g(w,e) by assumption never
decreases, f (w) is a lower bound on f (w+v) for any v, where w+v
is the graph walk composed of v appended to w. Thus we can keep
track of the current best complete graph walk wopt and immediately
halt any branch of the search for which the graph walk’s error ex-
ceeds f (wopt). Also, the user may define a threshold error ε such
that if f (w) < ε , then w is considered to be “good enough” and the
search is halted.

Branch and bound is most successful when we can attain a tight
lower bound early in the search process. For this reason it is worth-
while to have a heuristic for ordering the edges we explore out of
a particular node. One simple heuristic is to order the children
greedily — that is, given a set of unexplored children c1, . . . ,cn,
we search the one that minimizes g(w,ci).

While branch and bound reduces the number of graph walks we
have to test against f , it does not change the fact that the search
process is inherently exponential — it merely lowers the effective
branching factor. For this reason we generate a graph walk incre-
mentally. At each step we use branch and bound to find an optimal
graph walk of n frames. We retain the first m frames of this graph
walk and use the final retained node as a starting point for another
search. This process continues until a complete graph walk is gen-
erated. In our implementation we used values of n from 80 to 120
frames (2 2

3 to 4 seconds) and m from 25 to 30 frames (about one
second).

Sometimes it is useful to have a degree of randomness in the search
process, such as when one is animating a crowd. There are a cou-
ple of easy ways to add randomness to the search process without
sacrificing a good result. The first is to select a start for the search
at random. The second is retain the r best graph walks at the end
of each iteration of the search and randomly pick among the ones
whose error is within some tolerance of the best solution.

4.3 Deciding What To Ask For

Since the motion extracted from the graph is determined by the
function g, it is worth considering what sorts of functions are likely
to produce desirable results. To understand the issues involved, we
consider a simple example. Imagine we want to lay down two clips
on the floor and create a motion that starts at the first clip and ends
at the second. Both clips must end up in the specified position and
orientation. We can formally state this problem as follows: given a
starting node N in the graph and a target edge e, find a graph walk
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Figure 5: The above motion was generated using the search algorithm discussed in
this section. The halting condition was to play a specific clip of two kicking motions.
The error of a complete graph walk (which necessarily ended with the kicking clip) was
determined by how far away this kicking clip was from being in a particular position
and orientation. The character spends approximately seven seconds making minute
adjustments to its orientation in an attempt to better align itself with the final clip.
The highlighted line shows the the path of the target clip in its desired position and
orientation.

that ends with e such that the transformation T applied to e is as
close as possible to a given transformation T′. What one will re-
ceive is a motion like in Figure 5, where the initial clip is a walking
motion and the final clip is a kick. The character turns around in
place several times in an attempt to better line up with the target
clip.

While it’s conceivable that given a larger database we would have
found a better motion, the problem here is with the function we
passed into the search algorithm. First, it gives no guidance as to
what should be done in the middle of the motion; all that matters
is that the final clip be in the right position and orientation. This
means the character is allowed to do whatever is possible in order
to make the final fit, even if the motion is nothing that a real person
would do. Second, the goal is probably more specific than neces-
sary. If it doesn’t matter what kick the character does, then it should
be allowed to choose a kick that doesn’t require such effort to aim.

More generally, there are two lessons we can draw from this ex-
ample. First, g should give some sort of guidance throughout the
entire motion, as arbitrary motion is almost never desirable. Sec-
ond, g should be no more restrictive than necessary, in order to give
the search algorithm more goals to seek. Note the tradeoff here
— guiding the search toward a particular result must be balanced
against unduly preventing it from considering all available options.

5 Path Synthesis

We have cast motion extraction as an optimization problem, and
we have given some reasons why the formulation of this optimiza-
tion can be difficult. To demonstrate that it is nonetheless possible
to come up with optimization criteria that allow us to solve a real
problem, we apply the preceding framework to path synthesis. This
problem is simple to state: given a path P specified by the user, gen-
erate motion such that the character travels along P. In this section
we present our algorithm for path synthesis, present results, and
discuss applications of the technique.

5.1 Implementing Path Synthesis

Given the framework in the previous section, our only tasks are to
define an error function g(w,e) and appropriate halting criteria. The
basic idea is to estimate the actual path P′ travelled by the character
during a graph walk and measure how different it is from P. The
graph walk is complete when P′ is sufficiently long.

A simple way to determine P′ is to project the root onto the floor
at each frame, forming a piecewise linear curve1. Let P(s) be the
point on P whose arc-length distance from the start of P is s. The
ith frame of the graph walk, wi, is at some arc length s(wi) from the
start of P′. We define the corresponding point on P as the point at
the same arc length, P(s(wi)). For the jth frame of e, we calculate
the squared distance between P′(s(e j)) and P(s(e j)). g(w,e) is the
sum of these errors:

g(w,e) =
n

∑
i=1

‖P′(s(ei))−P(s(ei))‖
2 (9)

Note that s(ei) depends on the total arc length of w, which is why
this equation is a function of w as well as e. The halting condition
for path synthesis is when the current total length of P′ meets or
exceeds that of P. Any frames on the graph walk at an arc length
longer than the total length of P are mapped to the last point on P.

The error function g(w,e) was chosen for a number of reasons.
First, it is efficient to compute, which is important in making the
search algorithm practical. Second, the character is given incentive
to make definite progress along the path. If we were to have re-
quired the character to merely be near the path, then it would have
no reason not to alternate between travelling forwards and back-
wards. Finally, this metric allows the character to travel at what-
ever speed is appropriate for what needs to be done. For example,
a sharp turn will not cover distance at the same rate as walking
straight forward. Since both actions are equally important for ac-
curate path synthesis, it is important that one not be given undue
preference over the other.

One potential problem with this metric is that a character who
stands still will never have an incentive to move forward, as it can
accrue zero error by remaining in place. While we have not en-
countered this particular problem in practice, it can be countered
by requiring at least a small amount of forward progress γ on each
frame. More exactly, we can replace in Equation 9 the function
s(ei) with t(ei) = max(t(ei−1)+ s(ei)− s(ei−1),t(ei−1)+ γ).

Typically the user will want all generated motion to be of a single
type, such as walking. This corresponds to confining the search
to the subgraph containing the appropriate set of descriptive labels.
More interestingly, one can require different types of motion on dif-
ferent parts of the path. For example, one might want the character
to walk along the first half of the path and sneak down the rest.
The necessary modifications to accomplish this are simple. We will
consider the case of two different motion types; the generalization
to higher numbers is trivial.

We divide the original path into two smaller adjoining paths, P1 and
P2, based on where the transition from type T1 to type T2 is to occur.
If the character is currently fitting P2, then the algorithm is identical
to the single-type case. If the character is fitting P1, then we check
to see if we are a threshold distance from the end of P1. If not, we
continue to only consider edges of type T1. Otherwise we allow
the search to try both edges of type T1 and T2; in the latter case we
switch to fitting P2. Note that we only allow this switch to occur
once on any given graph walk, which prevents the resulting motion
from randomly switching between the two actions.

5.2 Results

While the examples shown in Figure 1 suggest that our technique
is viable, it perhaps isn’t surprising that we were able to find accu-
rate fits to the given paths. As shown in the upper portion of the

1In our implementation we defined the path as a spline approximating
this piecewise linear path, although this has little impact on the results.
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figure, the input motion had a fair amount of variation, including
straight-ahead marches, sharp turns, and smooth changes of curva-
ture. However, our algorithm is still useful when the input database
is not as rich. Refer to Figure 6. We started with a single 12.8-
second clip of an actor sneaking along the indicated path. To stretch
this data further, we created a mirror-image motion and then built a
motion graph out of the two. From these we were able to construct
the new motions shown at the bottom of the figure, both of which
are themselves approximately 13 seconds in length.

Figure 7 shows fits to a more complicated path. The first example
uses walking motions and the second uses martial arts motions; the
latter demonstrates that our approach works even on motions that
are not obviously locomotion. For the walking motion, the total
computation time was nearly the same as the length of the generated
animation (58.1 seconds of calculation for 54.9 seconds animation).
The martial arts motion is 87.7 seconds long and required just 15.0
seconds of computation. In general, in our test cases the duration of
a generated motion was either greater than or approximately equal
to the amount of time needed to produce it. Both motion graphs had
approximately 3000 frames (100 seconds) of animation.

Finally, Figure 8 shows paths containing constraints on the allow-
able motion type. In the first section of each path the character is
required to walk, in the second it must sneak, and in the third it
is to perform martial arts moves. Not only does the character fol-
low the path well, but transitions between action types occur quite
close to their specified locations. This example used a database of
approximately 6000 frames (200 seconds).

All examples were computed on a 1.3GHz Athlon. For our largest
graph (about 6000 frames), approximately twenty-five minutes
were needed to compute the locations of all candidate transitions
points. Approximately five minutes of user time were required to
select transition thresholds, and it took less than a minute to calcu-
late blends at these transitions and prune the resulting graph.

5.3 Applications Of Path Synthesis

Directable locomotion is a general enough need that the preceding
algorithm has many applications.

Interactive Control. We can use path synthesis techniques to give
a user interactive control over a character. For example, when the
user hits the left arrow key the character might start travelling east.
To accomplish this, we can use the path fitting algorithm to find the
sequence of edges starting from our current location on the graph
that best allow the character to travel east. The first edge on the
resulting graph walk is the next clip that will be played. This pro-
cess may then be repeated. To make this practical, we can precom-
pute for every node in the graph a sequence of graph walks that
fit straight-line paths in a sampling of directions (0 degrees, 30 de-
grees, . . . ). The first edges on these paths are then stored for later
use; they are the best edges to follow given the direction the char-
acter is supposed to travel in.

High-Level Keyframing. If we want a character to perform certain
actions in a specific sequence and in specific locations, we can draw
a path with subsections requiring the appropriate action types. This
allows us to generate complex animations without the tedium of
manual keyframing. For this reason we term this process “high-
level” keyframing — the user generates an animation based on what
should be happening and where.

Motion Dumping. If an AI algorithm is used to determine that a
character must travel along a certain path or start performing cer-
tain actions, the motion graph may be used to “dump” motion on
top of the algorithm’s result. Hence motion graphs may be used

as a back-end for animating non-player characters in video games
and interactive environments — the paths and action types can be
specified by a high-level process and the motion graph would fill in
the details.

Crowds. While our discussion so far has focused on a single char-
acter, there’s no reason why it couldn’t be applied to several char-
acters in parallel. Motion graphs may be used as a practical tool
for crowd generation. For example, a standard collision-avoidance
algorithm could be used to generate a path for each individual, and
the motion graph could then generate motion that conforms to this
path. Moreover, we can use the techniques described at the end of
Section 4.2 to add randomness to the generated motion.

6 Discussion

In this paper we have presented a framework for generating realis-
tic, controllable motion through a database of motion capture. Our
approach involves automatically constructing a graph that encapsu-
lates connections among different pieces of motion in the database
and then searching this graph for motions that satisfy user con-
straints. We have applied our framework to the problem of path
synthesis.

As we had limited access to data, our largest examples used a
database of several thousand frames of motion. While we believe
this was sufficient to show the potential of our method, a character
with a truly diverse set of actions might require hundreds or thou-
sands of times more data. Hence the scalability of our framework
bears discussion. The principle computational bottleneck in graph
construction is locating candidate transitions (Section 3.1). This re-
quires comparing every pair of the F frames in the database and
therefore involves O(F2) operations. However, this calculation is
trivial to parallelize, and distances between old frames needn’t be
recomputed if additions are made to the database.

It is the exception rather than the rule that two pieces of motion are
sufficiently similar that a transition is possible, and hence motion
graphs tend to be sparse. In our experience the necessary amount
of storage is approximately proportional to the size of the database.

The number of edges leaving a node in general grows with the size
of the graph, meaning the branching factor in our search algorithm
may grow as well. However, we expect that future motion graphs
will be larger mainly because the character will be able to perform
more actions. That is, for example, having increasing amounts of
walking motion isn’t particularly useful once one can direct a char-
acter along nearly any path. Hence the branching factor in a par-
ticular subgraph will remain stationary once that subgraph is suf-
ficiently large. We anticipate that typical graph searches will be
restricted to one or two subgraphs, and so we expect that the search
will remain practical even for larger graphs.

We conclude with a brief discussion of future work. One limita-
tion of our approach is that the transition thresholds must be spec-
ified by hand, since (as discussed in Section 3.2) different kinds of
motions have different fidelity requirements. Setting thresholds in
databases involving many different kinds of motions may be overly
laborious, and so we are investigating methods for automating this
process. A second area of future work is to incorporate parameter-
izable motions [Wiley and Hahn 1997; Rose et al. 1998] into our
system, rather than having every node correspond to a static piece
of motion. This would add flexibility to the search process and po-
tentially allow generated motion to better satisfy user constraints.
Finally, we are interested in applying motion graphs to problems
other than path synthesis.

8



To appear in Proceedings of SIGGRAPH ’02

Figure 6: The leftmost image shows the original motion and its reflection and the following images show motion generated by our path synthesis algorithm. The thick yellow
lines were the paths to be fit and the black line is an approximation of the actual path of the character. Note how we are able to accurately fit nontrivial paths despite the limited
variation in the path of the original motion.

Figure 7: The left image shows a walking motion generated to fit to a path that spells “Hello” in cursive. The right image shows a karate motion fit to the same path. The
total calculation time for the walking motion was 58.1 seconds and the animation itself is 54.9 seconds. The 87.7-second karate motion was computed in just 15.0 seconds. All
computation was done on a 1.3gHz Athlon.

Figure 8: These images are both fits to paths wherein the character is required to walk, then sneak, and finally perform martial arts moves. The desired transition points are
indicated by where the curve changes color. Note that the character both fits the path accurately and switches to the appropriate motion type close to the desired location.
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SCHÖDL, A., SZELISKI, R., SALESIN, D., AND ESSA, I. 2000. Video textures.
In Proceedings of ACM SIGGRAPH 2000, Annual Conference Series, ACM SIG-
GRAPH, 489–498.

SUN, H. C., AND METAXAS, D. N. 2001. Automating gait animation. In Proceedings
of ACM SIGGRAPH 2001, Annual Conference Series, ACM SIGGRAPH, 261–
270.

WASHBURN, D. 2001. The quest for pure motion capture. Game Developer (Decem-
ber).

WILEY, D., AND HAHN, J. 1997. Interpolation synthesis of articulated figure motion.
IEEE Computer Graphics and Application 17, 6, 39–45.
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Abstract

Many virtual environments and games must be populated with syn-
thetic characters to create the desired experience. These characters
must move with sufficient realism, so as not to destroy the visual
quality of the experience, yet be responsive, controllable, and effi-
cient to simulate. In this paper we present an approach to character
motion calledSnap-Together Motionthat addresses the unique de-
mands of virtual environments. Snap-Together Motion (STM) pre-
processes a corpus of motion capture examples into a set of short
clips that can be concatenated to make continuous streams of mo-
tion. The result process is a simple graph structure that facilitates
efficient planning of character motions. A user-guided process se-
lects “common” character poses and the system automatically syn-
thesizes multi-way transitions that connect through these poses. In
this manner well-connected graphs can be constructed to suit a par-
ticular application, allowing for practical interactive control without
the effort of manually specifying all transitions.

Keywords: Motion Synthesis, Virtual Environments, Motion Capture

1 Introduction

Advances in graphics hardware and rendering software have made
it possible to build visually rich virtual worlds, creating possibili-
ties for entertainment and training applications. For many of these
applications, the virtual worlds must be populated with believable
synthetic characters. Creating such characters is challenging. To
fit with the visual richness provided by virtual environments, char-
acters must move in realistic ways. At the same time, in order to
meet interactivity demands they must also be efficiently animated
and controllable by the simulation.

In this paper we introduce a methodology that allows quality mo-
tions to be synthesized in a controllable manner with little run-time
overhead. A corpus of motion capture data is processed into a set
of short clips that can be “snapped together” (concatenated) into
seamless streams of motions at run time. This process is guided
by a human author who identifies (either independently or via help
from our system) character poses that appear frequently in the cor-
pus. Each such pose serves as a jump point at which any motion
that enters can be followed by any motion that leaves, as shown in

∗gleicher@cs.wisc.edu , http://www.cs.wisc.edu/graphics

Figure 1: Schematic of the authoring process. A linear corpus of motion (here a

single walking motion) has a common pose identified through a user-guided process.

Figure 2: Transitions are generated around the common pose, forming a simple

graph.

Figures 1 and 2. The result is a simple graph structure that allows
clips to be connected into longer motions.

All transition generation and cleanup operations are performed au-
tomatically by our system. At run time, a character animation mod-
ule need only play precomputed clips in a valid order as determined
by the graph. User involvement in the graph construction process
allows for the clips to connect in ways that facilitate control. That
is, the animation designer guides the system into building a graph
with a structure that is contrived to be easy to exploit at run time. In
particular, if the designer creates a graph with a high branching fac-
tor, the run-time motion planner will have the flexibility to choose
from several options when a new action must be taken.

Our approach is closely related to previous non-linear animation
methods. In particular, our final graph structures are akin to the
move treescommon in computer games. The key difference is that
our graphs are constructed opportunistically based on a provided
data corpus and some user guidance on how to form a usable graph.
In contrast, traditional move trees use specially contrived motions
and hand-crafted transitions. In a sense, we provide a new approach
for constructing the data structures used by existing approaches to
real-time animation synthesis. The increased automation of our ap-
proach reduces the planning, effort, and skill required to author the
graph structures, and it is possible to author graphs with a degree
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of connectivity that would be extremely tedious to construct using
traditional methods.

Our work involves two main contributions, each of which facilitate
the authoring of character motion for virtual environments. First,
we provide an improved authoring methodology where candidate
transition points are identified automatically. This aids in the cre-
ation of graphs with a small number ofhubnodes containing a large
number of edges. We speed the process of adding clips to the graph
by allowing an author to add entire hubs to a graph at a time, and
we can further simplify construction by automatically suggesting
hubs based on the original motion data.

The second main contribution of our work is to provide methods
for generating multi-way transitions. Our framework allowscut
transitions, which involve simply concatenating two clips together
without further processing. This is done by adjusting the original
motions such that these transitions are seamless, i.e., they areC1

smooth and satisfy the appropriate constraints. The advantages of
such an approach are that it keeps the resulting graph compact and
allows efficient generation of motions at run time. The challenge is
to connect multiple motions in a manner that avoids visual artifacts.

The remainder of this paper is divided into five sections. First, we
clarify in Section 2 the limitations of current tools for constructing
graphs and how we propose to address these limitations. In Sec-
tion 3 we discuss related work. In Section 4 we describe our algo-
rithms and explain how they fit into the overall process of building
a graph. Finally, in Section 5 we present some example results and
then we conclude in Section 6 with a discussion of the advantages
and drawbacks of our approach.

2 Issues with Current Practices

In order to create streams of high-quality motion, current applica-
tions assemble static clips of motion created with traditional anima-
tion techniques such as motion capture or keyframing. The assem-
bly process requires making transitions between motions. These
transitions may be difficult to create, such as a transition between a
running clip and one where the character is lying down, or trivial, if
the end of one clip is identical to the beginning of the next. In prac-
tice, simple techniques such as linear blends are capable of creating
transitions in cases where the motions are similar.

A set of motion clips and transitions between them form a graph
where the edges are pieces of motions and the nodes are choice
points connecting motions. A graph of this type called amove tree
is common in computer games [14, 15]. Move trees are constructed
by pre-planning movements such that the initial clips have similar
beginning and end points. An artist then chooses the exact points
in the clips where transitions are to occur and creates the transition
motions. Most commercial motion editing tools, such as Character
Studio, Softimage XSI, Diva, or Messiah:Animation, provide some
support for applying simple transition methods (e.g., linear blends)
at identified points.

The structure of a graph can have a significant impact on its use-
fulness. In general, the more well-connected a graph is, the more
controllable the animation will be. Ideally, all clips of motions will
connect, allowing any action to take place at any time. In practice,
good transitions between radically different clips are prohibitively
difficult to create. Tradeoffs must therefore be made between the
quality of the transitions and the connectivity of the graphs.

While it may not be possible to have all clips connect directly, well-
constructed graphs nonetheless typically have nodes with many in-
coming and outgoing edges. We call such nodeshubs. Hubs are

desirable because they offer advantages in both flexibility and sim-
plifying the problem of generating motion that meets high-level re-
quirements. For example, a particular hub might contain several
different kinds of punches and kicks, in which case a character
could easily string together a sequence of strikes according to a
high-level reasoning module (e.g., he should throw a punch combi-
nation since the opponent’s guard is down). Similarly, there might
be a “walking” hub that has several outgoing edges which each cor-
respond to taking a step in some direction. Combined with jogging
and running hubs, a planning module could move characters in the
virtual environment simply by specifying a speed and direction.

Graphs containing hubs are difficult to construct. Authors must find
places in the motion corpus where several motions come together
and devise multi-way transitions, a much more difficult problem
than making just two clips join smoothly. Current tools offer lit-
tle support for the creation of hubs. Our framework, in contrast,
explicitly supports the creation of hub nodes. Instead of having to
hand-select a set of clip boundaries that are conducive to quality
transitions, we are able to automatically provide the user with sets
of clips whose starting and ending frames are “close”. Moreover,
given the desired transition locations we automatically modify the
original database so cut transitions are possible. Specifically, at
every transition the clips join seamlessly and any constraints in the
motion (such as that a foot must planted on the ground) are enforced
even if these constraints exist across transition boundaries.

In computer games and other virtual environments, move trees have
demonstrated the utility of synthesizing motion based upon a hand-
crafted graph. The main limitation of this technique is in the diffi-
culty of the authoring process: the necessary manpower limits the
complexity of the graphs and the range of applications that can af-
ford to build them. Our framework provides an alternative to man-
ual authoring that alleviates this problem.

3 Alternate Approaches

The computer animation literature provides a number of ways of
generating motion for synthetic characters. Since virtual environ-
ments require continuous streams of motion, some approaches are
clearly inappropriate. Two obvious examples are keyframing and
motion capture, which only create individual, static clips. Simi-
larly, while motion capture editing [4, 11, 3, 23, 19, 5] and multi-
target motion interpolation [22, 20] allow one to adapt a motion to
new circumstances, these methods are still only capable of produc-
ing individual clips.

Procedural approaches have the advantage, in principle, of being
able to generate flexible motions of arbitrary length. Perhaps the
largest class of such approaches is physically-based motion syn-
thesis. While physically-based methods have been successful for
many natural phenomena, they have failed to scale to the complex-
ities of character motions, with the exception of a few particular
actions such as running [6] and jumping [13]. More ad hoc pro-
cedural methods have succeeded at a larger range of character mo-
tions [17, 18], but they require each new motion to be generated by
hand and often do not produce realistic results.

Some recent approaches to motion synthesis involve constructing
mathematical models based on a set of motion capture data. In
particular, researchers have used hidden markov models [2] and
switched linear dynamic systems [12] to create new motion. Such
methods provide a straightforward way of generating arbitrarily-
long streams of motion, but as yet it is unclear how they can be
adapted to provide the high-level control required for virtual envi-
ronments.
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A number of graph-based approaches to motion synthesis have re-
cently been developed that fully automate the graph construction
process [1, 8, 10]. These methods allow graphs to be constructed
quite quickly at the expense of providing severely limited control
over the graph structure; indeed the generated graphs wereunstruc-
tured.

In contrast to the explicitly designer-structured graphs of the pre-
vious section, unstructured motion graphs have no pre-determined
connections between movements, and can make no guarantees
about how quickly one motion can be reached from another. The
path between two motions might be complex. Therefore, methods
for synthesizing motions from unstructured graphs rely on search.
By looking ahead, the search algorithms make choices that not only
meet current needs, but have paths to future goals.

Unstructured graphs are inappropriate for interactive applications
for several reasons. Interactive systems preclude lookahead and
therefore search algorithms. Another problem is that it is diffi-
cult to know what motions are possible in an unstructured graph,
since the connectivity is complex. For example, if a designer knows
that a certain set of transitions will be required for a character’s
actions, there is no way to ensure that they are contained in the
graph. Third, the control approaches currently used in interactive
applications rely on known structure. For these reasons, we believe
that interactive applications demand designer control over the graph
structure.

Recently the graph-based approach has been extended to manually-
constructed graphs in which the fundamental unit is not a static clip
of motion, but rather a set of carefully-chosen clips that can be inter-
polated [16]. Parameterizing these interpolations appropriately can
given one a finer degree of control over a character; for example,
in the work cited one could specify locomotion in a continuum of
directions and speeds, rather than from a discrete set of choices. At
present it is unclear how readily this approach generalizes to larger,
more expressive sets of motions.

4 Constructing Graphs

We assume the user has a database of motion capture data in a
standard skeletal format. The number of motions in the database
is irrelevant; it might contain many short clips or a single long
clip. Each frame of motion is represented by a vector of parameters
(p,q1, . . . ,qn,o1, . . . ,on), wherep is a three-vector specifying
the position of the root joint in world coordinates,qi is a quaternion
specifying the orientation of theith joint in its parent’s coordinate
system, andoi is a three-vector indicating the offset of theith joint
in its parent’s coordinate system1. We assume that there is some lin-
ear indexing of the corpus, so a particular frame’s vector is denoted
by Fi for framei of the corpus.

We also assume the motions are annotated with relevant constraints
on end-effector positions. In this paper we limit our attention to
footplant constraints, which specify that either the heel or ball of
a particular foot must be planted over some set of frames (hence a
total of four possible constraints may exist on a given frame). These
types of constraints are by far the most common in motion capture
data, and so this restriction is minor.

In our framework each edge in a graph is a clip of motion and each
node is defined by a group of frames at which transitions are to

1Most motion capture processing systems assume perfectly rigid skele-
tons, in which caseoi is not explicitly represented. We use this more gen-
eral skeleton representation since we employ the constraint solver described
in [9], which adds small length changes to bones.
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Figure 3: The top diagram schematically represents an initial database with two

motions; on the left it is represented as two groups of frames and on the right is the

corresponding graph. The middle diagram shows the result of making a match set out

of four frames. This breaks the database into smaller clips and adds a new node to the

graph. The bottom diagram demonstrates the addition of a second match set.

occur. This group of frames is called amatch setand each element
of the match set is amatch frame. If the original database hasn
motions, then the corresponding graph has a trivial structure with
2n nodes andn edges; refer to Figure 3. Each match set naturally
partitions the database into shorter clips, which in turn correspond
to edges in the graph that attach at a common node.

In our system graphs are built one node at a time by choosing match
sets. If desired, an author can simply select the match frames man-
ually. The author may also specify a particular frame and have the
system automatically build a match set out of a group of similar
frames. Finally, the author can have the system create a match set
out of the largest collection of similar frames in the database.

Once the graph designer has finished creating match sets, our sys-
tem automatically adjusts the motions so the corresponding transi-
tions can be executed with simple cuts. This requires choosing a
common posefor the match set, so that each match frame can be
replaced by a rigid transformation of the common pose, and then
transforming the surrounding frames such that this replacement is
seamless. Any motion leading into the pose can then be followed
by any of the motions exiting it, creating a multi-way transition.

The remainder of this section details our method. We first explain
our process for helping a graph designer build match sets, then we
describe our method for adjusting the original motions to generate
seamless cut transitions, and finally we discuss the details of actu-
ally generating motion with the final graph.

4.1 Choosing Match Frames

Our system helps an author create match sets (and therefore nodes
in the graph) by finding collections of frames that are similar to one
another. This is accomplished through a scalar functionD(Fi,Fj)
that defines the distance between two framesFi andFj. We use
the same distance function as in [8], which has the advantage of
automatically choosing a common coordinate system forFi andFj.
That is, since a motion is fundamentally unchanged by a rotation
about the vertical axis and a translation along the floor plane,Fj

needs to be “aligned” withFi before the distance can be computed.
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Figure 4: The distance between two framesFi andFj is calculated as follows.

(1) Small neighborhoods of frames are extracted aboutFi andFj. (2) These sets of

frames are converted into two point clouds. (3) The optimal sum of squared distances

between corresponding points is computed given that each point cloud can be rotated

about the gravity axis and translated in the floor plane.

The distance calculation, motivated in [8], is shown in Figure 4. It
works on clouds of points to avoid scaling issues in angle compu-
tations. First, small neighborhoods of frames are extracted around
both Fi andFj. Two point clouds are then formed by attaching
markers to the skeletons. Finally, the optimal weighted sum of
squared distances is computed given that rigid 2D transformations
may be applied to each point cloud. That is, we calculate

D(Fi,Fj) = min
θ,x0,z0

X

k

wk‖pi,k −Tθ,x0,z0pj,k‖2, (1)

wherepi,k is the kth point in the cloud generated from framei
andTθ,x0,z0 is a linear transformation consisting of a rotation of
θ degrees about they (vertical) axis followed by a translation of
(x0, z0). The weightswi sum to 1 and are chosen to give the most
importance toFi andFj and less importance to frames toward the
edges of the neighborhoods.

This optimization has the following closed-form solution:

θ = arctan

P
i wi(xiz

′
i − x′izi)− (xz′ − x′z)P

i wi(xix′i + ziz′i)− (xx′ + zz′)
(2)

x0 = (x− x′ cos(θ)− z′ sin θ) (3)

z0 = (z + x′ sin(θ)− z′ cos θ), (4)

wherex =
P

i wixi and the other barred terms are defined simi-
larly.

For every pair of frames in the database there are two possible tran-
sitions, one that connects frames precedingFi to frames following
Fj and one that connects frames precedingFj to frames following
Fi. D allows one to assign to each of these transitions a quality esti-
mate and a coordinate transformation that aligns the ending motion
with the starting motion. To speed interaction with our system, the
distances and aligning coordinate transformations are precomputed
for every pair of frames in the database.

Given a particular frameF and a user-defined threshold, we find a
match setS = {F1, . . . ,Fn} as follows. For each motion in the
database, we can form a 1D function by considering the distances
betweenF and every frame of this motion. The local minima of
these functions correspond to locally optimal transition points. We
form a setS′ of the frames corresponding to local minima whose
values are below the threshold. These frames satisfy the similarity
requirement for being match frames, but there is one more con-
dition that must be met. Each match frame is associated with a
displacement map that smoothly introduces the corresponding tran-
sitions into the motion database. As will be discussed more fully
in Section 4.2, to create these displacement maps we require match
frames to be at leastwmin frames apart. So, in order of lowest dis-
tance toF, we add toS the frames fromS′ that are at leastwmin

frames from every existing match frame.

If the graph designer wantsF to serve as a hub node in the graph,
thenS determines the transitions that connect to this hub. By inter-
actively choosing different thresholds the designer can determine
an appropriate tradeoff between the number of edges attached to
the hub and the quality of the resulting motions. The designer may
also want to create a node based on the largest group of similar
frames in the database. This can be found simply by formingS
for every frame in the database and returning the one with the most
elements. Ties are broken based on the lowest average distance be-
tween frames inS and the frame used to generateS.

4.2 Creating Transitions

Once the graph designer has finished creating match sets
S1, . . . , Sn, our system adjusts the original database so the motions
join seamlessly at all transitions points. Since transitions always
occur between frames of a match set, it is sufficient to adjust the
original motions such that the match frames are all identical, i.e.,
the values and velocities of each skeletal parameter are the same. If
there are no constraints on the motions, this is accomplished solely
through adaptation of displacement mapping techniques [23, 3]. If
constraintsare present, then matters are more complicated. Ap-
plying displacement maps will violate constraints, and if we subse-
quently use existing methods [4, 11, 9] to enforce them, the motions
may change such that the match frames are no longer identical. We
consider both of these cases, first treating transition generation in
the absence of constraints and then when constraints exist.

4.2.1 Transitions Without Constraints

If constraints aren’t present, then for each match setSi our system
creates an “average” frameFSi with a skeletal pose that is rep-
resentative of the poses in the match frames. This pose is called
thecommon pose. Our system then applies displacement maps that
transform each match frame to have the common pose.

Figure 5 depicts our algorithm. In the original database the match
frames are scattered about in a global reference frame. If we
are to compute an average pose, the match frames must first be
aligned. As discussed in Section 4.1, every pair of match frames
Fj,Fk ∈ Si has a rigid 2D transformation that aligns them for the
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Figure 5: (top) In the original motions, match frames are scattered in the global

coordinate system. (middle) We choose a particular match frame, align the others to it,

and compute an average skeletal posture to serve as the common pose. (bottom) Using

a set of displacement maps, each match frame is altered to have this common pose.

purposes of executing a transition. LetTjk be the transformation
that when applied toFj aligns it withFk. Since each transforma-
tion was computed independently via equations(2)−(4), in general
they will be inconsistent in the sense thatTjkTkl 6= Tjl. We could
attempt to find a set of coordinate transforms thatare consistent
by, for example, adjusting Equation(1) to optimize simultaneously
over several coordinate transforms. However, for more than two
point clouds there is no simple closed form solution and an expen-
sive nonlinear optimization would be necessary. On the other hand,
we observe that if the match frames inSi are sufficiently similar
then the coordinate transformations will beapproximatelyconsis-
tent. Hence we may simply select one particular match frame to
define the coordinate transforms for every other match frame. Say
we selectFjbase . Then we redefine theTpq to be

Tpq := T′pq = TjbasepT
−1
jbaseq

. (5)

These new coordinate transforms guarantee thatTpqTqr = Tpr.
We can now align thekth match frame inSi with Fjbase by apply-
ing the transformationTkjbase .

In practiceFjbase is not chosen arbitrarily. Rather, our system at-
tempts to choose the match frame that is closest to being in the “cen-
ter” of the other frames. This corresponds to choosing the match
frame with the smallest sum of distances to the other match frames.

Once we have chosenFjbase , our system computesFSi by aligning
the match frames into the coordinate system ofFjbase . The root
position, joint offsets, and joint orientations ofFSi are the average
of the corresponding quantities in the match frames. The average
joint orientation is computed as in [16].

We can now form displacement maps that replace eachFk ∈ Si

with T−1
kjbase

FSi (Figure 5). Since each match frame is identical,
motion is guaranteed to be continuous at transitions. This use of
displacement maps is similar to previous work [10, 1] which used
displacement maps to guaranteeC0 continuity at transitions. How-
ever, for motions with very different velocity characteristicsC0

continuity may be insufficient (Figure 6). For this reason we extend
previous efforts by building displacement maps that preserveC1

continuity. For each skeletal parameter we compute the average ve-
locity over all match frames. We then construct displacement maps
such that motions pass through the common pose with these pa-

motion 1

motion 2

C0 transition

motion 1 w/displacement added

motion 2 w/displacement added

C1 transition

Figure 6: C0 transitions can still cause discontinuities if motions have very differ-

ent velocities. For this reason we useC1 smooth displacement maps.

wmin

Figure 7: At each match frame a displacement map is used to smoothly alter the

motion so as to facilitate transitions; this figure depicts a motion with three match

frames and the corresponding displacement maps. On each side the displacement map

extends up to either the next match frame or the motion boundary, whichever comes

first. Displacement maps are required to extend at leastwmin frames on either side,

so match frames must be at leastwmin frames apart.

rameter velocities. Since the motions are represented as discretely
sampled signals, care must be taken in computing derivatives. Be-
cause continuity is most important at a scale greater than a single
frame, we estimate derivatives by calculating finite differences at
each point in a small window and filtering the results.

Each side of a displacement map extends to either the nearest match
frame or a boundary of the motion, whichever comes first (Fig-
ure 7). To ensure that changes do not occur too rapidly, we require
match frames to be spaced at leastwmin frames apart. If there aren
joints in the skeleton, then the displacement map consists of2n+1
splines: one for the root position,n for the joint offsets, andn for
the joint orientations. The ends of each spline have zero value and
derivative and the center is chosen to map the relevant parameter to
the target value and derivative. We construct these splines out of
two Hermite cubic segments; for orientations we construct quater-
nion splines using the method in [7].

4.2.2 Transitions With Constraints

If displacement maps are applied to the original motions, then any
constraints on those motions are likely to be violated. We now con-
sider how to create smooth multi-way transitions while simultane-
ously preserving constraints. We focus on the most common kinds
of constraints, which are footplant constraints. A footplant con-
straint specifies that either the left heel, right heel, left ball, or right
ball must be fixed on the ground. To enforce a footplant constraint,
two things must be done: 1) positions must be chosen for each con-
strained joint and then 2) the motion must be smoothly adjusted so
the constrained joints are in these positions. We use the method
of [9] to enforce footplant constraints. This algorithm has the im-
portant property that one can ensure that a particular frame is not al-
tered by constraining the root, heels, and balls of the feet to remain
in their current positions. We refer to this aslockingthe frame.

As in the previous section, our basic strategy is to construct a rep-
resentative frameFSi for each match setSi and use displacement
maps to make the match frames identical toFSi . We define a con-
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straint to exist inFSi if and only if it exists on a majority of the
match frames2, which means that individual match frames may end
up gaining and/or losing constraints.

Since constraints must be enforced in the final motion,FSi must
satisfy all of its constraints, i.e., the constrained joints must be on
the ground. Assume this is true. As in Section 4.2.1 we can apply
displacement maps such that for all match sets each match frame
is identical to the appropriate common pose. If we then lock each
match frame and apply the constraint enforcement algorithm, our
database of motions will have the desired properties: all constraints
will be enforced and each match set will contain identical frames.

While we could choose the common poses using the same algo-
rithm as in Section 4.2.1, this method fails to take into account
constraint information. This is problematic since by locking each
match frame, we are forcing the motions returned by the constraint
solver to pass through the common poses. For example, say the
left heel isunconstrainedon some match frame that is only a few
frames away from a region where the left heel must be planted. If
the left heel happens to be far from the ground in the common pose,
then the constraint solver will be forced to generate a motion where
the foot leaves the ground with unnatural speed.

Intuitively, we would like to select theFSi such that when we re-
place each match frame with the appropriate common pose and lock
it, the locking has as little effect as possible. That is, if we imag-
ine not doing this locking and enforcing constraints, we would like
the match frames to nonetheless remain unchanged. In light of this
we use the following two-step iterative procedure for determining
a particularFSi . We start out by creating a “working set” that ini-
tially contains copies of the match frames as they appear in the orig-
inal motions. Each iteration estimates the common pose by averag-
ing the working set, and creates a variant of each motion that passes
through this common pose using the same displacement map tech-
nique described in Section 4.2.1. This possibly violates constraints.
Next, we apply the constraint enforcement algorithm to the modi-
fied motions, possibly adjusting the matched frames. After this the
matched frames, which may no longer be identical, are copied back
into the working set. Each iteration begins with the motion from the
original database and evolves the common pose. At the end of the
final iteration we set the common poseFSi to be the average of the
poses in the working set. In our experiments only a small number
of iterations (3-5) were necessary.

TheFSi generated through the above algorithm will not necessarily
satisfy their constraints. We can correct this by choosing positions
for the constraints and applying inverse kinematics. However, con-
straint positions in general can not be found independently for each
FSi . In particular, if two common poses share a constraint and bor-
der a clip that has this constraint on each frame, then the constraint
positions for the common poses must be chosen such that in this
clip they are in the same location. This issue arises in many com-
mon situations, such as if the character stands in place. We describe
a solution to this problem in the Appendix.

4.3 Generating Motion at Run Time

Each transition involves two pieces of information: the clip we’re
transitioning to and the coordinate transformation that aligns it with
the current clip. At run time these coordinate transformations are
the only information that needs to be kept track of. That is, to play
the current clip, we simply adjust the root of every (precomputed)

2We have found that requiring all match frames to have the same con-
straint state, as suggested by [10], forces us to exclude too many good po-
tential matches.

Figure 8: On top are the five frames of a match set generated automatically for a

short sneaking motion. On the bottom is the corresponding common pose.

Figure 9: A schematic of the two-node martial arts graph generated with our sys-

tem. Our algorithm for creating match sets automatically selected left and right “ready”

stances as the hubs of the graph.

frame by the current coordinate transformation, and whenever we
make a transition we update this transformation.

As discussed in previous graph-based approaches to motion syn-
thesis [21, 10, 8], certain nodes of the graph may be dead ends in
the sense that they are not part of any cycle. Once such a node is
entered, there is a limit to how much further animation can be pro-
duced. This is unacceptable for virtual environments, since char-
acters must be animated for arbitrarily long amounts of time. Our
system notifies the graph designer of possible dead ends by finding
the nodes that are not part of the largest strongly connected com-
ponent [10, 8]. The designer may then decide to either add new
transitions or remove these nodes.

5 Results

We have implemented a system based on the methods in Section 4
and applied it to a number of motion datasets. Figure 10 is a screen-
shot of the window seen by the graph designer. In the upper right
is a visualization of the distance function; pixel(i, j) represents
D(Fi,Fj), with darker pixels corresponding to lower distances. On
the far upper right is a slice of the2D distance function showing the
distances between a frame selected by the user and the other frames
in the database. The bottom of the window shows a schematic of the
graph given the current match sets. The horizontal black lines rep-
resent original motions and the vertical lines indicate match frames.
All frames of the same match set are the same color. Clicking on a
segment in this schematic causes the corresponding clip to be dis-
played in the upper left window.
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We created a set of graphs by having the system automatically cre-
ate nodes based on the largest sets of match frames. To test the
system, we started with a single motion of someone sneaking for
thirteen seconds and built a graph with a single node and 7 clips;
see Figure 8. We then moved on to larger data sets, constructing
graphs and driving their input with a video game controller. We
first built a two-node graph out of a dataset containing 900 frames
(30 seconds) of martial arts motions (Figure 9). The common poses
generated automatically by the system corresponded to two “ready”
stances, one with the left foot forward and one with the right foot
forward. We then mapped the clips to buttons on a gamepad, al-
lowing a user to interactively direct the character to punch, kick,
dodge, shuffle-step, and switch stances. We next built a one-node
graph out of 3000 frames (100 seconds) of walking data. This graph
allowed a user to guide a character by specifying the curvature of its
path, where the options ranged from a gentle arc to a sharp about-
face. Finally, we combined these two datasets into a larger graph
that allowed all of the previous operations plus the ability to switch
between walking and fighting modes.

The semi-automatic nature of our system makes it possible to pro-
duce graphs quite quickly. The total amount of time necessary to
build the martial arts graph — from raw data to being able to in-
teractively control a character — was about 12 minutes, and the
walking graph took about 20 minutes. Most of this time was spent
deciding how to map the clips to the gamepad.

6 Discussion

In this paper we have described a framework for synthesizing char-
acter motions in virtual environments by assembling clips built
from a corpus of motion capture data. We meet the visual quality
demands of virtual environments by preserving the fidelity of the
original motions. We meet performance demands by performing
all processing of the motions at authoring time, so at run time clips
can simply be concatenated in appropriate orders. Finally, we meet
controllability and responsiveness demands by allowing the user to
guide the graph building process to ensure that the graph has a us-
able structure. Specifically, we support and encourage the creation
of hub nodes that allow many different actions to be reachable from
a common point.

Our approach automates tedious portions of the graph construction
process and makes it possible to use data more opportunistically.
This can allow graphs to be created from a wide range of data that
was not specifically captured for graph construction, and it can also
enable designers to build graphs of a scope that would otherwise be
too expensive to produce.

The authoring tool described in this paper required several new
techniques to be developed:

1. We automatically identify potential hub nodes, allowing a
graph designer to avoid tedious parts of the construction pro-
cess.

2. We introduceC1 displacement maps as a means of creating
higher quality cut transitions.

3. We provide a method for satisfying constraints as a prepro-
cess, allowing the complexity of constraint satisfaction to be
avoided at run time.

The run-time execution of our approach is intentionally similar to
current (and successful) methods that use manually constructed
graphs. We believe this will make it easier to apply our methods

in practical virtual environments. Moreover, by reducing the ef-
fort required to construct graphs suitable for run-time synthesis, we
hope to make run-time animation accessible to a broader array of
applications.
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Appendix

TheFSi generated through the iterative algorithm of Section 4.2.2
will in general not satisfy their constraints unless these constraints
are explicitly enforced. This amounts to identifying positions for
each constraint and then performing inverse kinematics to ensure
the relevant joints reach these positions. This process is compli-
cated by the fact that the choice of constraint positions can not be
made independently for eachFSi . Consider the case whereF ∈ Si

andF′ ∈ Sj share some constraints and border a clip that also
has these constraints on every frame. For the resulting motion to
be continuous, we require thatFSi andFSj (when transformed to
be aligned withF andF′) place the constrained joints in the same
location;FSi andFSj are linked on these constraints. Since con-
straints can exist anywhere in the original motions, common poses
can be linked arbitrarily.

Linked constraints are not an artifact of having a bizarre set of mo-
tions. On the contrary, they occur in quite ordinary datasets. Con-
sider, for example, a set of motions of someone waiting around im-
patiently. The character might shuffle its feet, tap its toes, and make
subtle shifts in posture to redistribute its weight. In the likely event
that constraints exist on every frame of the dataset,everycommon
pose will have linked constraints with every other common pose.

To ensure continuous motion, linked constraint positions ofFSi and
FSj need only be identical up to a2D rigid transform. Recall that
when making a transition we first align the starting and ending mo-
tions so the match frames are in the same position and orientation.
Section 4.2.1 explained how to determine these coordinate trans-
formations based on the values we computed forD (Section 4.1).
However, we are free to pick different transformations, and in par-
ticular we can select ones specifically to align constraint positions.

Figure 11: Up to a rigid2D transformation, the configuration of two feet that are

flat on the floor is uniquely defined by the distance between the centers of the feet and

the orientation of each foot relative to the line connecting the centers.

So: the problem is to ensure that any linked constraint positions are
identical up to a2D rigid transformation, orrigidly similar. We
can determine how common poses are linked simply by looking
at every clip and determining whether the bordering match frames
share constraints that exist throughout the clip. If the only linked
constraints are on joints of the same foot, then since the foot is rigid
the constraint positions are automatically rigidly similar. If linked
constraints exist for all four joints on the feet, then letC1 andC2

be the segments connecting the centers of the feet in, respectively,
the starting common pose and the ending common pose (Figure 11).
Also, letΘL1 andΘR1 be the orientations of the left and right foot
in the starting common pose relative toC1, and letΘL2 andΘR2

be defined similarly. To ensure rigid similarity it is sufficient to
require‖C1‖ = ‖C2‖, ΘL1 = ΘL2 , andΘR1 = ΘR2 . If there
are only two or three linked constraints and they exist on joints of
different feet, then the situation can be reduced to the four-joint case
by rotating any foot with only one linked joint about that joint such
that it is flat on the floor.

We can divide common poses into equivalence classes via con-
straint linkage. Each common pose in an equivalence class has
linked constraints on both feet with at least one other common pose
in that same class. For each equivalence class, we find the aver-
age foot orientations and distance between the foot centers. Each
common pose is then adjusted to have these average parameters.

We have now ensured that every set of linked constraint position are
rigidly similar. However, the coordinate transformations that align
clips (as computed in Section 4.2.1) may not align the constraints
positions. This can be addressed by redefining these coordinate
transformations such that the constraint positions are identical for
the last frame of the starting clip and the first frame of the ending
clip.
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This paper presents an approach to automatically compute animations for virtual (human-like and robot) characters cooperating

to move bulky objects in cluttered environments. The main challenge is to deal with 3D collision avoidance while preserving

the believability of the agent’s behaviors. To accomplish the coordinated task, a geometric and kinematic decoupling of the

system is proposed. This decomposition enables us to plan a collision-free path for a reduced system, then to animate locomotion

and grasping behaviors independently, and finally to automatically tune the animation to avoid residual collisions. These three

steps are applied consecutively to synthesize an animation. The different techniques used, such as probabilistic path planning,

locomotion controllers, inverse kinematics and path planning for closed kinematic chains are explained, and the way to integrate

them into a single scheme is described.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-dimensional Graphics and Realism; G.3 [Probability
and Statistics]: Probabilistic Algorithms

General Terms: Algorithms
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1. INTRODUCTION

Over the last few decades, many attempts to animate the human figure have been made [Parent 2001;
Earnshaw et al. 1998], each of them attaining a certain degree of autonomy, interactivity, and user-
controllability.

The human figure has been frequently represented in computer animation in the same way ar-
ticulated mechanisms are represented in robotics [Badler et al. 1993]. Nevertheless, the techniques
developed to generate the motions for these mechanisms have been different in both areas. In computer
animation, the interest has been mainly in generating realistic-looking motions, while in robotics the
goal has been to automate motion generation regardless of its realism.

In recent years, applications arising in both areas (e.g., ergonomics, interactive video games, etc.) have
motivated researchers to automatically generate human-like plausible motion. Consequently, this work
deals with the development of an automatic motion strategy for the cooperation of two or more virtual
characters that transport an object in a 3-dimensional cluttered environment. The virtual characters are
considered to be either human figures with walking capabilities, referred to in this work as mannequins,
or mobile robots. This work finds its applications mainly, but not exclusively, in PLM (Product Lifecycle
Management) as in the maintenance and operation of industrial facilities [Badler et al. 2002].
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In this context, several behaviors should be combined within a single animation sequence: agents
should walk or slide while manipulating a bulky object coordinately with the other characters. Here,
the main challenge is to achieve 3D collision avoidance while preserving the believability of the agents
behaviors.

From an algorithmic perspective, our approach is a centralized one. Indeed, we show how to model
the global task within a single system which contains all the degrees of freedom (DOFs) of the agents
and the object. This system is automatically built by computing a reachable cooperative space. Then,
three consecutive steps are performed.

(1) Plan a collision-free trajectory for a reduced model of the system.

(2) Animate, in parallel, locomotion and manipulation behaviors.

(3) Tune the generated motions to avoid residual collisions.

These steps are applied by making use of a probabilistic motion planner to compute the collision-
free trajectories; motion controllers adapted to each kind of character for both locomotion and grasping
behaviors; and path planning algorithms for closed kinematic chains to deal with coordinated behaviors.

The remainder of this article is structured as follows. Section 2 gives a brief overview of related work.
Section 3 introduces the different techniques used in this work. In Section 4, our system is described
and the underlying principles of our approach are stated. Section 5 details the three steps performed
in order to generate an animation. Experimental results are shown and discussed in Section 6.

2. RELATED WORK AND CONTRIBUTION

In order to build our motion planner, we have chosen the techniques that best provide the desired char-
acteristics to the resulting animation; that is, believable and automatic motion, precise manipulation
and combined behaviors.

Our system is represented with a tree-like structure with a high number of degrees of freedom and
kinematic constraints. This representation is well suited for probabilistic motion planning techniques.
Several works have proposed motion planners based on this kind of probabilistic approach to produce
collision-free human-like trajectories. However, they have mainly focused on generating trajectories
either for locomotion or for manipulation. Our work addresses motion planning in the context of ma-
nipulating and walking at the same time.

2.1 Motion Planning for Walking Characters

In order to generate plausible human-like motions, techniques based on motion capture have frequently
been used. These techniques have proven to be suitable for real-time motion generation. However, the
examples in a motion library are limited in number, and it is often necessary to modify them to avoid
repetitive motions. This is usually done by using interpolation procedures such as in Witkin and Popovic
[1995]; Unuma et al. [1995]; Rose et al. [1998]. Because we are dealing with eye-believable locomotion
generation which is repetitive by nature, controllers based on motion capture are particularly adequate.

Motion planners exploiting these kind of techniques have been described in the literature. In Kuffner
[1998] and Choi et al. [2003], two-step motion planners for walking virtual mannequins are presented.
The first approach consists in first planning a collision-free path for a cylinder in a two-dimensional
world and then following it by means of a PD controller that uses cyclic motion capture data. The latter
approach is capable of dealing with rough terrains by planning the mannequin’s footprints and then
applying and adapting captured motion to attain the planned footprints. Our work is based on the
first approach, extended in Pettré et al. [2003]. Here, the 3-dimensionality of the environment is taken
into account by applying a collision avoidance-based warping method described in Section 5.3.
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2.2 Motion Planning for Object Manipulation

As far as manipulation and reach planning for virtual mannequins are concerned, the problem has
been tackled using different approaches.

In Liu and Badler [2003], the authors plan and synthesize collision-free reaching motions for 7-DOF
arms in real time by using graphics hardware to detect collisions. Their planning framework reasons
directly in the workspace. However, this kind of planning approach has not proven to be more efficient
than the configuration-space planning approaches used in Kallman et al. [2003] and Yamane et al.
[2004].

In Kallman et al. [2003], the authors plan reaching motions for a 22-DOF system (9 DOFs for each
arm and 4 additional DOFs to specify the mannequin’s body posture). Inverse kinematics algorithms
are used to specify the initial and final configurations, and a roadmap is constructed based on the cost
computed for each configuration. This approach can manage obstacle displacements by dynamically
updating the roadmap.

In Koga et al. [1994] and Yamane et al. [2004], a trajectory is first found for the object to be manip-
ulated or grasped and then the loop is closed between the arms and the object to follow the computed
trajectory. Our work is conducted in the same spirit. Our contribution here is to address the grasping
task at the planning level itself.

2.3 Combining Behaviors

The problem of combining behaviors of articulated human figures has been frequently tackled by apply-
ing behavior-based controllers as in Perlin [1995]; Blumberg and Galyean [1995]; Brand and Hertzmann
[2000]. Here, motion capture data is labeled as containing one particular behavior or characteristic (run,
walk, scratch head, etc.). A new walking-scratching-head sequence can be generated by interpolating
configurations of the original captured data.

Kovar et al. [2002] captures a set of labeled motion examples in a graph. A believable animation
is produced by composing motion captures corresponding to chosen edges and the transitions between
them (nodes). A path can be followed by minimizing the error between the path in the graph and the user-
sketched one. In Kallmann et al. [2004], a sampling approach using parameterized motion primitives
is used to satisfy a given task. Motion primitives are chosen by means of a tree in which nodes are valid
configurations reachable by more than one primitive and edges represent the paths between them.
Their chosen parameterization allows the computation of trajectories maintaining constraints such as
balance along it.

Physically-based solutions are described in Shiller et al. [2001] where a simple motion planner is
presented to combine behaviors (walking, crawling and side-walking) in a sequential manner. Another
approach is presented in Faloutsos et al. [2001] where individual controllers generating different be-
haviors are managed by a supervisor controller.

In our work, behaviors are combined by using the geometric and kinematic decoupling approach
described in Section 4 which consists of the decomposition of the DOFs of the character. In this work,
we combine both grasping and locomotion behaviors in a continuous way.

Therefore, the main contribution of this article is to address all these issues in a single scheme and,
at the same time, deal with three-dimensional collision avoidance.

3. TECHNIQUES OVERVIEW

In order to generate complete motion sequences of one or more virtual characters transporting a bulky
object in cluttered environments, we use three main components:
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—a motion planner that handles open and closed kinematic chains,

—motion controllers adapted for virtual mannequins and for virtual robots,

—a three-dimensional collision avoidance editing strategy.

Many existing techniques can be used to cover these requirements. In the paragraphs that follow, we
describe those that we experienced as the best adapted to our problem.

3.1 Probabilistic Motion Planning Techniques

3.1.1 Probabilistic Roadmaps. The aim of this method is to obtain a representation of the topology of
the collision-free space [Latombe 1991] in a compact data structure called a roadmap. Such a structure
is used to find collision-free trajectories and is computed without requiring an explicit representation
of the obstacles in the configuration space. A roadmap can be obtained by using two types of algorithm:
sampling or diffusion.

The main idea of the sampling technique (introduced as PRM in Kavraki et al. [1996]) is to draw
random configurations lying in the free space and to trace edges to connect them with neighbor samples.
Edges or local paths should also be collision-free and their form depends on the kinematic constraints
of the moving device.

The principle of diffusion techniques [LaValle 1998] consists of sampling the collision-free space with
only a few configurations called roots and to diffuse the exploration in the neighborhood to randomly
chosen directions.

In this work, we use a variant of the first approach, the Visibility PRM [Siméon et al. 2000]. Here,
there are two types of nodes: the guards and the connections. Nodes are added if they are not visible
from previously sampled nodes (guard nodes) or if they allow two or more connected components of
the roadmap (connection nodes) to be linked. The generated roadmap is more compact than the one
obtained using PRM alone.

3.1.2 Planning for Open Kinematic Chains. When using sampling-based methods, a trajectory is
found in a roadmap by using a two-step algorithm consisting of a learning phase and a query phase.
For an articulated mechanism, the roadmap is computed in the learning phase by generating random
configurations within the range allowed for each DOF. In the query phase, the initial and final configu-
rations are added as new nodes in the roadmap and connected with the chosen steering method. Then,
a graph search is performed to find a collision-free path between the start and goal configurations. If
a path is found, then it is smoothened to remove useless detours. Afterwards, it is converted into a
trajectory (a time-parameterized path) by means of classical techniques (e.g., Lamiraux and Laumond
[1997]).

The advantage of using sampling methods when dealing with complex static environments as in this
work, is that the learning phase can be precomputed offline and then the roadmap is used online to
find a trajectory, saving time on each query.

3.1.3 Planning for Closed Kinematic Chains. In order to handle the motions of closed kinematic
mechanisms, some path planning methods have been proposed in the literature [LaValle et al. 1999;
Han and Amato 2000; Cortés and Siméon 2003]. In our work, we have chosen to use the Random
Loop Generator (RLG) proposed in Cortés and Siméon [2003] and summarized in Algorithm 1. In this
method, a closed kinematic chain is decomposed into active and passive parts. The main idea is to
progressively decrease the complexity of the closed kinematic chain processed at each iteration until
only the configuration of the passive part of the chain remains to be solved by means of an inverse
kinematics algorithm.
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Algorithm 1. RLG SINGLELOOP

Input : the loop L
Output : the configurations q[nsol ]
begin

qa ← SAMPLE qa(L);
q p[nsol ] ← COMPUTE q p(L, qa);
if nsol = 0 then return Failure;
else q[nsol ] ← COMPOUNDCONF(L, qa, q p[nsol ]);

end

The joint values of the active chain qa are computed sequentially by using Algorithm 2 where Jb
through Je are the active joints on the chain. The range at which each joint is sampled depends on
the configuration of the previously processed joints. This closure range for each joint is approximated
by a simple bounding volume whose parameters depend on the geometry of the chain. The reachable
workspace of a kinematic chain is defined as the volume which the end-effector can reach. The reachable
workspace is automatically approximated by a spherical shell, defined as the intersection of the volume
between two concentric spheres and a cone. The parameters to construct this volume are mainly the
origin of the chain and the maximum and minimum extensions of the chain. A guided random sampling
of the configuration of the active part is done inside this volume by limiting the value for each joint to the
interval computed in the function COMPUTECLOSURERANGE in Algorithm 2. In function COMPOUNDCONF,
for a sampled value of qa, the value of q p is computed by solving an inverse kinematics problem. When
several loops are present in the mechanism, they are processed as separate closed chains.

When the roadmap is constructed, a trajectory is found in the same way as for open kinematic chains.

Algorithm 2. SAMPLE qa

Input : the loop L
Output : the parameters qa

begin
(Jb, Je) ← INITSAMPLER(L);
while not ENDACTIVECHAIN(L, Jb) do

Ic ← COMPUTECLOSURERANGE(L, Jb, Je);
if Ic = ∅ then goto line 2;
SETJOINTVALUE(Jb, RANDOM(Ic));
Jb ← NEXTJOINT(L, Jb);
if not ENDACTIVECHAIN(L, Je)SWITCH(Jb, Je);

end
end

3.2 Motion Generation Techniques

Once a trajectory is found, the appropriate motions to follow it as accurately as possible should be
produced. In the following paragraphs, we describe the techniques used to generate such motions for
walking as well as for manipulating.

3.2.1 Manipulation Control. Kinematics-based techniques allow the motion to be specified inde-
pendently of the underlying forces that produced them. Motion can either be defined by specifying the
value of each joint (forward-kinematics) or it can be derived from a given end-effector configuration
(inverse-kinematics). These kinds of techniques have been frequently used to generate the motions
of virtual mannequins as in Zhao and Badler [1994]; Yamane and Nakamura [2003]; Baerlocher and
Boulic [2004]. In our approach, IK is used to provide precise control of the grasping behavior. Several
IK algorithms for 7-DOF anthropomorphic limbs have been developed based on comfort criteria in
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Fig. 1. Each captured source is represented as a point in the v–ω space according to their average linear and angular velocities.

A new walking cycle will be obtained by interpolating its three closest sources.

order to best reproduce human-arm motions (e.g. Kondo [1991; Tolani et al. [2000]). We have chosen to
use the analytic IK method presented in Tolani et al. [2000] to specify the configuration of our virtual
mannequin’s arms. To specify the configuration of virtual robot’s 6-DOF arms, we use the algorithm
described in Renaud [2000].

3.2.2 Locomotion Control. In order to specify the configuration of the walking virtual mannequin,
we use the motion capture-based controller described in Pettré and Laumond [2005]. Here, the prob-
lem is modeled in such a way that the best motion examples to be blended as well as their respec-
tive weights are chosen by a simple geometric computation. The key idea is to represent all motion
examples in a given library as single points lying in a 2-dimensional velocity space (linear and an-
gular velocities) as in Figure 1. These points are then structured into a Delaunay triangulation, a
well-known data structure in computational geometry, which allows efficient queries for point loca-
tions and nearest neighbor computations. The control scheme is based on a blending operator that
combines three sources of motion capture. Their respective weights are automatically computed by
solving a simple linear system with three unknown variables. The input parameters of the locomotion
controller are, therefore, the sequence of sampled (vt , ωt), where vt and ωt are the linear and angular
velocities of the virtual characters trajectory. Then, for each pair (vt , ωt) that represents one locomotion
cycle, the three motion capture sources (v1, ω1), (v2, ω2), and (v3, ω3), with the closest average speeds to
the sampled velocities are blended. As a result, a new locomotion cycle with the desired velocities is
computed.

Finally, in order to obtain a continuous animation along the trajectory, the frequency characteristics
of each cycle are computed and cycles are interpolated as described in Pettré and Laumond [2005].

4. MODELING THE SYSTEM

4.1 Virtual Characters

Our system is composed of two or more virtual characters and a movable object lying in a 3-dimensional
cluttered environment. Each virtual character is classically represented as a hierarchy of rigid links
connected by joints. In this work, we consider two kinds of virtual characters, human figures or man-
nequins and mobile robot manipulators.

The skeleton of our virtual mannequins is composed of 20 rigid bodies articulated by 18 joints with 53
degrees of freedom (DOFs). These joints and bodies are arranged in five kinematic chains that converge
in the mannequin’s root located on its pelvis (see Figure 2(a)).
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Fig. 2. Our virtual characters are represented as tree-like structures formed of rigid bodies linked with spherical, rotational,

and planar joints.

Fig. 3. Our system degrees of freedom are decomposed in three groups, locomotion, grasp, and adaptability.

Analogously, our virtual robot manipulators are composed of 7 rigid bodies linked by 6 joints and a
mobile platform giving rise to a model with 9 degrees of freedom. These joints form one kinematic chain
attached to the base of the robot (Figure 2(b)).

On top of the geometric model, kinematic constraints are imposed. For instance, we might want to
consider that virtual human mannequins are allowed to walk only forwards or mobile manipulators
to be differential drive robots. Kinematic constraints can also be imposed upon the object depending
on the application, for example, keeping a tray with wine glasses horizontal. These constraints will be
processed within the motion planning strategy described in Section 5.

4.2 Behavior-Based Kinematic Model

The main underlying principle of our work is a geometric decoupling of the system. This means that the
system DOFs are decomposed in groups according to the main task they perform. The system contains
the three groups of DOFs illustrated in Figure 3, locomotion, grasp, and adaptability.

Locomotion DOFs are the ones involved mainly in the steering of the character in the environment. For
the virtual mannequin, these are the DOFs located in its legs and pelvis. For virtual robots, locomotion
DOFs are the ones moving its base.

In a similar way, Grasp DOFs are in charge of the tasks that involve manipulation, that is, the arms
of the characters. In this work, the mannequin’s arms are redundant 7-DOF kinematic chains, and the
virtual robots are equipped with 6-DOF nonredundant manipulators.

Adaptability DOFs are those involved in neither locomotion nor in manipulation but that allow a
complementary posture control. For virtual mannequins, these DOFs lie in the head and spine. In our
current virtual robots, there are no adaptability DOFs.
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Fig. 4. (a) Individual reachable workspaces (b) To obtain a cooperative space for manipulation, the individual workspaces are

intersected. (b) When manipulating a large object, the individual workspaces are enlarged by the objects size to compute the

cooperative reachable workspace.

The advantage of such a geometric decoupling approach is that a reduced model of the system is
obtained for each of the different steps of the planner. In this way, the control and description of the
current task is simplified.

4.3 Reachable Cooperative Space

To attain cooperation between characters, a description of the space where the object can be manipulated
is needed.

For a single virtual character manipulating an object with both hands, the space in which the object
has to lie in order to remain reachable is defined by the possible solutions of the inverse kinematics
algorithm applied to the arms. In this way, the reachable space can be approximated as described in
Section 3.1.3 with the spherical shells technique consisting of the intersection of simple geometric shapes
with the limits given by the maximal and minimal arm extension. Figure 4(a) shows an approximation
of such a space for each type of character.

In this work, as the characters are supposed to carry the same object, we consider the reachable
cooperative space as the intersection of all individual spaces (see Figure 4(b)). In order to achieve this
intersection, a nonrigid link between the characters is considered.

Note that in the case of a large object, as in Figure 4(c), individual reachable spaces are not inter-
secting, nevertheless both characters are still holding the object. This is achieved by considering the
object as the end effector of the arms kinematic chain for each of the characters. The individual space
is therefore enlarged and the cooperative workspace obtained.

5. THE THREE-STEP ALGORITHM

Our approach relies mainly on three stages: planning, animating, and tuning. Several techniques are
suitable for solving each stage. We have adopted some of them in a hierarchical manner to finally
achieve collision-free planning motions for the whole system.

The user-specified inputs for the algorithm are:

— a geometric and kinematic description of the system A,

— geometric description of the environment E,

— maximal linear velocity and acceleration P ,

— number of the desired frame-rate in the animation also stored in P ,

— a motion library containing captured data from different walking sequences MLib,

— the maximum number of failures before the algorithm stops ntry,

— an initial and a final configuration.
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Fig. 5. Starting and goal configurations of the system for our workout example.

Algorithm 3. GLOBAL PLANNING

Input : the system A, the environment E, the list of parameters P
Output : the configurations A(qi)
begin

stop ← False;
while ¬stop or j < ntry do

path ← COMPUTEPATH(Asimp, E);

if path = ∅∅ then
stop ← True;

end
else

traj ← SAMPLING(path, P );
A(qi) ← GENERATEANIMATION (traj, A, MLib);
if ¬ TUNING(A(qi)) then j ← j + 1;
else

stop ← True;
end

end
end

end

The output is an animated sequence of the combined behaviors A(qi). Algorithm 3 summarizes the
various steps. In the next paragraphs, each stage is described. We use the workout example of Figure 5
to illustrate the algorithm.

5.1 Path Planning

In the planning phase, a reduced geometric model of the system is used. This simplified model is defined
by three different elements: two boxes bounding the locomotion DOFs of each character and the object
DOFs (see Figure 6). This means that a 12-DOF system is considered at this level. Six of them are the
3-dimensional position and orientation of the object. The other six are the planar position and ori-
entation of each character’s box. Three DOFs will be added to the reduced model for each additional
character present in the scene.

Given the user-defined initial and final configurations of the system in the 3D environment
(Figures 5(a) and (b), respectively) , the first procedure, COMPUTEPATH, plans a path for the simplified
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Fig. 6. A 12-DOF reduced geometric model of the system is employed in the planning phase. Each of the bodies will have an

associated steering method while planning a path for the system.

model previously described. For this, the probabilistic roadmap method from Section 3.1.1 is used. This
approach is performed in two steps, a learning and a query phase. The principle of the learning phase is
to generate a random valid configuration for the system within the allowed range of the articulation lim-
its for each DOF. In addition, in this stage, the cooperative reachable space as well as the maximal and
minimal extension of the nonrigid link between the characters is computed. The random configurations
are sampled within these limits.

During the sampling, a local planner tries to connect pairs of random configurations to incrementally
construct a roadmap that captures the topology of the configuration space. Having the precomputed
roadmap, the query phase performs a graph search to find feasible paths between the initial and final
configurations.

The sampling strategy that we use is described in Section 3.1.1. This strategy captures well the
topology of the configuration space in a compact roadmap. Local paths are computed by applying the
adequate steering method. The selection of the steering method depends on the kinematic structure
of each mobile entity that is part of the system. Let us consider, for instance, the construction of the
local path for the virtual mannequin in the 12-DOF reduced model of Figure 6. Here, we chose Bezier
curves of the third degree to approximate human-like trajectories in smooth curves that can be easily
parameterized with four control points. Two of these points are the initial and final configurations
of the mannequin’s root and the mid-points are initial and final configurations translated by a user-
defined distance in the initial or final root’s direction. A Bezier curve is computed to connect each pair
of intermediate configurations in the roadmap, therefore a path is a sequence of Bezier curves that
share extremal control points. For the robot, we use Reeds and Shepp curves [Reeds and Shepp 1990]
that account for the nonholonomic constraints (rolling without sliding) [Laumond 1998]. The object to
be manipulated moves following straight line segments in its 6-dimensional configuration space. Note
that no simplification is done for the model of the object to be carried. Its shape may be as complicated
as desired, that is, there is no bounding box approximation for the object.

After the roadmap is constructed, a connecting path between the initial and final configurations is
searched for. If the path is found, then the function SAMPLING transforms it into a trajectory (i.e., a time
parametrized path) with user-defined velocity and acceleration constraints. It is important to note that
at this level only the bodies attached to the locomotion and to the object DOFs are guaranteed to be
free of collisions.

Figure 7 shows an example in the 3-dimensional environment. Here, the system is composed of a
virtual mannequin, a mobile manipulator, and an object. The barrier in the middle of the walk path
forces the robot to take the left side, while the human can still walk on the right side (Figure 7(a)). In
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Fig. 7. (a) In the planning step, a trajectory is found for the 12-DOF system in a 3-dimensional environment. Here, the barrier

in the middle of the scene causes the mannequins to take different paths. (b) Side view of the trajectory performed by the system.

At this stage, locomotion and grasping behaviors are not yet synthesized. (c) The object is raised in order to avoid the barrier.

Figure 7, some of the configurations of the 12-DOF system are illustrated. It can be seen how the object
is raised while traversing the barrier and lowered once it finishes. In this case, each of the characters
follow the trajectory computed for their respective bounding cylinders according to their own steering
methods. Note that the object remains within the reachable space between the virtual mannequin for
the duration of the animation.

5.2 Behavior Control

At this stage, the trajectory for the 12-DOF simplified model is already planned. The next step is to
synthesize the motions for the complete system involving the locomotion, adaptability, and grasp DOFs.
This is done in the function GENERATEANIMATION by applying two different techniques: a locomotion
controller to animate locomotion DOFs (pelvis and legs) and adaptability DOFs (spine and head) and an
inverse kinematics algorithm adapted for each kinematic chain labeled as grasp DOFs (the mannequin’s
and the robot’s arms).

The locomotion controller we have adopted is based on motion capture blending techniques. The
result of this controller is a walking sequence for the virtual mannequin (see Section 3.2.2).

In order to synthesize the coordinated manipulation motions between the virtual characters, the IK
solution for each arm is computed in order to reach the values imposed by the object configurations
in the first stage (see Section 3.2.1). After applying the steps mentioned, a closed-chain mechanism is
formed. As it is shown in Figure 8, two closed-loops exist. One is formed by the virtual mannequin and
the object (body-arms-object) and the other by both characters (body-object-robot-floor).

Bearing in mind that the adaptability, as well as the grasp DOFs of each character could be in a
collision state, a postprocessing stage is performed. In such a tuning phase, closure constraints are
considered while the believability of the motions is preserved.
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Fig. 8. In the animation phase, two closed kinematic chains are formed between the characters and the object.

Fig. 9. (a) A configuration of the synthesized grasping and locomotion behaviors. (b) After the animation stage is performed,

there can still be configurations where the upper body collides with the environment.

Figure 9(a) illustrates a configuration of the synthesized locomotion and grasping behaviors. Note
that the character’s head in Figure 9(b) still collides with the upper bar.

5.3 Automated Tuning

The purpose of this stage is to solve the possible residual collisions along the animated sequence. This
is done by a local kinematic deformation of either the adaptability (spine-head) or grasp (arm-object)
kinematic chains until a random collision-free configuration is reached. First, contiguous portions of
the animation with collision in the same kinematic chain are identified and grouped into blocks. A new
random configuration is generated for the colliding chain. Once the motion is modified there are three
possible scenarios.

(1) The new motion contains a colliding configuration on the same kinematic chain. The random con-
figuration is rejected and a new one is drawn.

(2) A collision for another kinematic chain is detected. In this case, the random configuration is stored
as a solution for this chain.

(3) There is no collision detected. The configuration is kept and a new block is processed.

The collision-free motion generated randomly is usually not believable because of its high amplitude.
To avoid this, a last step is required to progressively move the character away from the obstacle. Here
we apply a warping procedure considering the two blocks, the original and the modified one. Such a
procedure is typical in computer graphics to modify a sequence of key-frames when the two blocks
have the same number of key-frames. The warping procedure consists in interpolating only the DOFs
of the colliding chain. The parameters of the interpolation are controlled by the collision checker in
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Fig. 10. (a) After synthesizing locomotion, a collision is found in the mannequin’s head with the tree branch. (b) The collision is

solved by finding a random collision-free configuration within the joint limits and warped with the previous animation. (c) The

solution is optimized to obtain a smooth motion.

Fig. 11. (a) Some configurations of the resulting animation without residual collisions. (b) The collision with the upper bar is

avoided in the tuning step.

order to provide a new configuration for the kinematic chain which is as close as possible to the original
configuration while being free of collisions. This procedure is computed in function TUNING. Figure 10(a)
shows a sequence where the mannequin’s head collides with a tree branch. The colliding configurations
are identified and a new, collision-free, solution is found as shown in Figure 10(b). Finally, the motion is
optimized to preserve the eye-believability of the final animation as shown in Figure 10(c). In our barrier
example, the tuning procedure was automatically applied at the end of the sequence of Figure 11(a),
where the mannequin lowers its head in order to avoid the upper bar. This method has proven to work
well when small deformations are needed.

If we consider the case of collisions involving the grasp DOFs, a local planner based on closed kine-
matic chains is used. In order to deal with multiloop closure constraints, we use the variant of RLG
algorithm for multiple robots (see Section 3.1.3). For this, we consider the object DOFs as the active
part of the closed kinematic chain, and the grasp DOFs as the passive part. The goal is to make the ac-
tive chain reachable by all passive chains simultaneously. This is done by performing a guided-random
sampling of the active chain within the intersection space formed between the reachable space of each
passive chain. The configurations of passive chains are found using inverse kinematics. This procedure
is illustrated in the pizza delivery example in Section 6.

5.4 Failure Recovery

After these three stages, if all configurations are not collision-free, the path generated in the first
planning stage is invalidated. We remove from the roadmap the edge corresponding to the local path
where the tuning step failed. Then a new global search is performed in order to find a new path.
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Fig. 12. (a) Initial configuration. (b) Final configuration. (c) Some configurations of the computed trajectory. (d) The mannequin

moves his elbow in order to avoid collision with the bookshelf.

6. EXPERIMENTAL RESULTS

Our algorithm has been implemented within the motion planning platform Move3D [Siméon et al.
2001]. In the following paragraphs, examples of various scenarios and characters are presented.

6.1 Pizza Delivery Service

In this example, the virtual pizza delivery boy has to take a pizza box from one office to another. Here,
we would like the mannequin to keep the boxes horizontal along the trajectory to prevent the pizzas
from losing their toppings. For this, we impose kinematic constraints by restricting two of the six DOF
of the free-flying object. This means that, in roll-pitch-yaw angle representation, we have removed the
DOF allowing the object to pitch and roll.

Once the initial and final configurations (Figures 12(a) and (b)), velocity and acceleration constraints,
and the number of frames are specified by the user, the algorithm is applied and the animation gen-
erated. In Figure 12(c), the resulting trajectory is shown as a sequence of configurations selected for
image clarity.

After the locomotion and grasping behaviors were generated, a residual collision was found between
the mannequin’s arm and the bookshelf at the second office entrance. In this case, a solution was quickly
found by modifying the elbow’s configuration as shown in Figure 12(d). Here, this collision was not likely
to be avoided in the original path because the doorways are narrow and the bookshelf is very near the
final configuration.

In these examples, only four motion capture examples were used to synthesize locomotion. These
capture examples included two straight lines at different speeds and two 45 degree turns, both left and
right. This lack becomes evident when sharp turns are present in the path. This effect is apparent when
the character turns and his feet slide on the floor. This can be corrected using more captured sources
but it is interesting to note the good performance of the locomotion controller even with a low number
of motion captured examples.

6.2 In the Factory

In this example, a virtual mannequin and a robot character have to transport a slab in a typical
industrial environment with plenty of complex obstacles (pipes, drums, beams, ventilation units, etc.).
Figure 13 shows some configurations of the resulting animation illustrating the trajectory followed
by the system. As the system approaches the final configuration, the slab is turned as a result of the
planning step in order to avoid the pipes.

In the animation stage, the locomotion behavior is animated and inverse kinematics is applied in order
to grab the object in its new configuration. At the beginning of the trajectory, the human mannequin
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Fig. 13. The characters deal with several obstacles while cooperatively transporting a slab.

Fig. 14. Some configurations extracted from the final animation.

head collides with the balcony. This collision is automatically solved in the tuning step by bending the
spine and head of the mannequin. It should be noted that, if the balcony were lower, it would be very
difficult, if not impossible, to find a bending collision-free configuration for the mannequin. This is due
to the fact that the tuning stage is only applied to the upper part of the body and, in order to avoid
a lower balcony, a knee flexion would be required. Once the obstacle is left behind, the mannequin
smoothly regains its posture to continue the cooperative task until the final configuration is reached.

Figure 14 shows a set of frames extracted from the final animation. Here, we can see that the motion
of the system remains plausible after applying the three steps in the algorithm. Note that the trajectory
planned for each of the agents in the scene remains collision-free and their position close enough to
keep holding the slab.

6.3 Buren’s Columns

This example in our version of the Buren’s Columns involves two virtual mannequins that handle a
large plate. Here, we have introduced kinematic constraints on the plate in order to keep it horizontal.
Because of this, a 10-DOF reduced model is considered in the planning step. Figure 15 shows a view of
the complexity of the environment and the system.

Figure 16 illustrates some frames from the resulting animation. The virtual mannequins walk along
the computed trajectory carrying their plate. The object configuration is then modified because of the
increasing height of the columns. In the third frame, an upper view of the system shows that the
computed trajectory for the plate is collision-free. The mannequins continue to raise their object until
it is safe to put it down. The final two frames show that one of the agents collides with the bar. This
collision is solved in the tuning step by bending the mannequins spine.
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Fig. 15. In our version of Buren’s Columns, two virtual mannequins interact to handle a plate.

Fig. 16. Selected frames of the resulting animation.

Fig. 17. Two mobile manipulators and a virtual mannequin cooperating to transport a piano.

6.4 Transporting the Piano

In our last example, we treat a version of the piano mover’s problem with two mobile manipulators and
a virtual mannequin. Here, we want to transport the grand piano in our living room environment. The
livingroom is small and contains large objects (tables, a desk, etc.), the walkways are therefore narrow
and collisions are likely to occur.

A collision-free path for the 15-DOF reduced system was found between the desk and the piano chair.
Figure 17 illustrates some of the synthesized motions for the mobile manipulators and the human man-
nequin. The virtual robots move away from each other to avoid the stool and then regain their posture.

The cooperation among the characters is ensured during the animation. The 3-dimensionality of the
resulting animation is mainly seen in the piano configuration. Figure 18 shows sequenced frames of
the planned animation in order to avoid collision between the piano and the desk. In this example, no
residual collisions were found.
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Fig. 18. The piano should be raised in order to avoid collision with the desk.

Table I. Model Complexity (Number of

Polygons)

Environment System

Office

- Complete 148,977 17,239

Factory

- Complete 159,698 18,347

- Col.Test 92,787

Buren’s Columns

- Complete 44,392 24,837

Living Room

- Complete 19,077 16,210

Table II. Office (time in seconds)

In the Office

No. Frames 308 609

Stages

I. Planner

- Path 0.5–0.5

- Trajectory 2.0–3.8

II. Animation

- Locomotion 0.8–1.6

- Manipulation 0.3–0.5

III. Residual Col. 0.2–0.4

Total 3.8–6.80

6.5 Computational Time

The planner has been tested on a workstation Sun-Blade-100 with a 500MHz UltraSparc-IIe processor
and 512MB RAM. In Table I, the number of polygons in the different environments as well as the
polygons in the system are presented. In the industrial environment, we have identified the polygons
that participate in the collision test (i.e., the ones below the mannequin’s head level). In the columns
and in the living-room environment, all polygons are considered for collision tests purposes.

The required time to compute the examples presented are given in Tables II, III, IV and V (averaged
over 100 runs). Here, the results of the planning step are expressed considering a precomputed graph
of the environment product of the learning phase. The time taken to build this roadmap was 1.69 sec-
onds, 31.4 seconds, 15.1 seconds and 3.2 seconds for the office, the factory, the columns and the living
room, respectively. The time it takes to compute such graphs varies with the complexity of the en-
vironment and the fact that it is a probabilistic approach. The tables present only the results of the
queries. Two different animations were generated for each trajectory, the second doubling the number of
frames.
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Table III. Factory (time in seconds)

In the Factory

No. Frames 268 530

Stages

I. Planner

- Path 6.5–6.5

- Trajectory 2.1–4.5

II. Animation

- Locomotion 0.8–1.6

- Manipulation 0.4–0.8

III. Residual Col. 5.7–11.4

Total 15.5–24.8

Table IV. Columns (time in seconds)

Buren’s Columns

No. Frames 204 405

Stages

I. Planner

- Path 0.01–0.01

- Trajectory 2.8–6.1

II. Animation

- Locomotion 0.6–1.1

- Manipulation 0.6–1.3

III. Residual Col. 3.1–5.6

Total 7.11–14.11

Table V. Living Room (time in seconds)

Transporting the Piano

No. Frames 78 151

Stages

I. Planner

- Path 3.3–3.3

- Trajectory 0.6–1.3

II. Animation

- Locomotion 0.2–0.5

- Manipulation 0.1–0.3

III. Residual Col. 0.0–0.0

Total 4.2–5.4

Given the significantly higher size and complexity of the industrial environment, it is not surprising
that it took more time to compute a collision-free path than the other examples. Note that the time
it takes to compute the path at the planning stage is independent of the number of frames in the
animation.

In the animation step, the fastest in the algorithm, it is clear that computational time increases
proportionally with the number of frames.

The tuning step relies heavily on the complexity of the environment but also on the number of frames
where there is a colliding configuration. Note that in the living-room example, the time it takes to tune
the animation is zero because residual collisions were not found.
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6.6 Videos

Animated sequences of the examples presented in this work can be found at: http://www.laas.fr/
Gepetto/motion-character.

7. CONCLUSIONS AND FUTURE WORK

We presented an approach to plan and synthesize collision-free motions for virtual mannequins han-
dling a bulky object in a 3-dimensional environment. To accomplish this coordinated task, a geometric
and kinematic decoupling of the system is proposed. This decomposition enables us to plan collision-
free paths for a reduced system, then to animate the locomotion and grasping behaviors in parallel and
finally to clean up the animation from residual collisions. These three steps are applied consecutively by
making use of different techniques such as motion planning algorithms, locomotion controllers, inverse
kinematics techniques, and path planning for closed-kinematic mechanisms.

At this stage, behavior synthesis is based on the functional decomposition of the system’s DOFs
(locomotion, grasping, adaptability). The advantage of such decomposition is that the complexity of
the system is reduced allowing, for instance, the use of very fast IK algorithms. This decomposition
also greatly simplifies the combination of behaviors independently generated. The main limitation
of this approach is that the motion planner is not as flexible as it could be. For instance, the char-
acters can not bend to pick the object up from the floor because the grasping DOFs cannot modify
the locomotion DOFs. This problem can be solved by using approaches that take into account the
whole character’s body, such as in Yamane et al. [2004] and Kallman et al. [2003], but at the cost of
performance.

As future work, we intend to improve the believability of the resulting animation taking into ac-
count the forces working in the environment from the planning stage itself. In this work, we have seen
that generated motions are not convincing when the characters handle heavy objects as in the Piano
example. Our challenge is thus to combine motion-capture-based control with a physical model of the
mannequin. This should be done while preserving as much as possible the current performance of the
method.
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Crowds of Moving Objects: Navigation Planning and Simulation

Julien Pettré, Helena Grillon and Daniel Thalmann

Abstract— This paper presents a solution to interactive nav-
igation planning and real-time simulation of a very large
number of entities moving in a virtual environment. From the
environment geometry analysis, we deduce a structure called
navigation graph, which is the base to our method. After the
description of this structure, we introduce a set of algorithms
dedicated to answer navigation queries with a set of various
solution paths and to execute the planned navigation in an
efficient manner. We equally demonstrate method performance
and robustness over several examples.

I. INTRODUCTION

Robotics has made great efforts to develop motion plan-
ning methods in order to allow mechanical systems to
navigate autonomously in their environment. Recently, the
application field of these methods significantly expanded,
such as to Biochemistry, Architecture, Ergonomics, and
Computer Graphics (CG). For CG applications, motion
planning increases the autonomy of digital actors, eases a
user’s navigation in a virtual world and solves user queries
from high level directives (e.g., commanding an army in a
video game) among other functionalities. A specificity of CG
applications is a frequent need for interactivity: performance
and robustness are main issues. We principally consider the
specific case of a large number of moving entities evolving
on the terrain of a given virtual environment. We have
developed an architecture able to solve users’ navigation
queries interactively, and to update the position of each entity
in real time.

A number of criteria and objectives have conditioned our
technical choices. First of all, performance: computer power
increase has doubtlessly improved computational times to
those of previous approaches. However, the complexity of
environments’ geometric models and the number of moving
entities in them has increased even more. Our method
allows the abstraction of environment geometries. Then,
transferability: our method is applicable to a large class of
environments and moving entities. It is based on simple
geometrical expressions and properties. It is thus easily
adaptable. Finally, scalability: our architecture is scalable. In
other words, the user can distribute the computing resources
locally in space and time during simulations, and focus them
where most needed.
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Our method’s contributions are, first, a cell-decomposition
method which captures the environment’s topology and ge-
ometry and is adapted to environments combining uneven
terrains and multi-layered surfaces. Second, it proposes a
data structure designed for both navigation planning and
simulation. Third, it offers a specific navigation planning
technique which searches for various solutions to a single
problem. Finally, it proposes a set of algorithms to respond
to user queries such as navigation, neighbor or visibility
requests.

II. RELATED WORK

Navigation planning is a specific case of motion planning,
[1], [2], [3], which is mainly studied by the Robotics commu-
nity. However, we will once again focus on their application
or development by the CG community [4]. Basically, three
main classes of solutions to the motion planning problem
can be distinguished: local approaches, probabilistic ones and
deterministic ones.

Local approaches fit the problem of collision avoidance
between two moving entities: the potential fields method
[5] is very popular and has inspired many solutions [6].
However, when used for global path planning, they generate
many problems: parameters tuning (naturalness vs. collision
freeness), goal conflicts and local minima. Probabilistic
approaches randomly explore the free configuration space
[7] of a given problem, while capturing its connectivity into
a roadmap. Multi-query (PRM) [8] or single query (RRT) [9]
solutions exist, as well as many variants. These have been
successfully applied to computer animation problems such as
to the locomotion of human-like characters [10], [11], [12],
[13]. Such approaches fit high-dimensional problems, with
systems having numerous degrees of freedom, whilst the nav-
igation problem is frequently lowered to a 3 or 4-dimensional
problem (position and orientation of the system). Paths syn-
thesized by PRMs require optimization which dramatically
increases the solution’s computational cost. Moreover, when
dealing with multiple moving entities, PRM solutions tend
to always produce similar paths (the ones captured by the
roadmap), which increases the potential number of collisions
between entities and may have an impact on path naturalness.
Deterministic approaches use an exact and continuous repre-
sentation of the space and of the considered system mobility.
This generally results in a very complex system, making
them unenforceable. Environments are therefore discretized
to overpass these limitations. The use of a grid laying on
the floor to capture obstacle position and navigable space
is the most frequent solution. A* or Dijkstra’s algorithms
are used to search for solution paths [14], [15]. To optimize



Fig. 1. left: Geometric representation of a NG in a 2D academic
environment. right: NG itself for the same example.

search times, multi-resolution or hierarchical grids can be
used [16], [17]. A classical drawback to these solutions is
the low aspect quality of the results: jagged paths and sharp
corners. A solution consists in post-processing the solution
paths, which increases computation time. Our approach falls
into the deterministic class by decomposing the environment
into a set of 3D navigable cells. However, we compute
this decomposition from a discrete space representation.
Decomposition methods have already been used for crowd
simulation, like in [18], and proved to be efficient. Our
method improves such approaches by considering a larger
class of terrains (uneven and/or multi-layered), by extending
data structures to efficient navigation, neighborhood and
visibility queries, and by providing scalable simulations.

III. NAVIGATION GRAPHS

A. Principle

A Navigation Graph (NG) results from a cell decomposi-
tion of the navigable parts Cnav of a considered environment.
As in classical decomposition methods, NG vertices are cells
free of obstacle and adjacent cells are linked by an edge. The
decomposition is not exact as the computation is based on
a discrete representation of the obstacles (see next section).
The method is dedicated to entities moving on a floor or
terrain. Cnav is thus the union of the environment surfaces:

• flat enough: for a surface to be navigable, its slope must
be within the bounds of a user defined limit angle,

• free of obstacle,
• with a high enough free-space above them - still ac-

cording to considered entities characteristics.
Cells are cylinders laying on Cnav and are theNG vertices.

Cells are adjacent when the corresponding cylinders overlap.
Adjacency is naturally modeled by the NG edges. In order
to capture Cnav in a compact manner, cylinders are centered
on the Voronoı̈ diagram [19] of the navigable surfaces and
their center is excluded from any other cell. As for others
decomposition-based techniques, a property of NG is that
any point belonging to a given navigable cell can reach any
point belonging to an adjacent cell, passing by any point
of their intersection (depending on conditions). Thus, the
navigation planning is reduced to a graph search problem.

Fig. 1 schematically illustrates a NG computed for a
simple 2D environment. However, a novelty of our method
is to fit 3D environments, even for those combining uneven
and multi-layered surfaces.

B. NG computation

We previously introduced a technique to compute NGs
[20] using an intermediate grid and graphics hardware-based
operators. The method consists in 5 main steps:

1) environment geometry sampling: we create a regular
grid of points matching the environment surfaces.
As multi-layered environments may be considered, a
simple elevation is insufficient since several elevations
may correspond to given horizontal coordinates.

2) grid mesh: two neighboring grid points are intercon-
nected when the slope of the in-between space is
beneath the user-defined maximum slope angle and
free of obstacle. With this stage, we provide a mesh
capturing Cnav in a discrete manner.

3) clearance map: we compute the clearance for each grid
point, i.e. the distance to the nearest obstacle or high-
slope. Given the the grid mesh computation method,
this distance is approximated by the distance to the
nearest grid point not connected to all of its direct
neighbors. Indeed, The lack of connection reveals the
presence of an obstacle or a high-slope.

4) NG deduction: we then use a subset of grid points to
compute the NG vertices. A graph vertex (cylinder)
is created from a grid point by using it as centre and
its corresponding clearance as radius. The grid point
with maximum clearance is selected to create the graph
vertex and all the grid points covered by the vertex are
disabled for selection. The process is then reiterated
until no more grid points remain for selection. Doing
so, a majority of cylinders are centered on the Voronoı̈
diagram corresponding to the environment.

5) visibility pre-computation: for each NG vertex, we
compute the visibility of all other vertices according
to the four main cardinal points. We can then use
this information for visibility queries between moving
entities.

Some examples of environments and corresponding NG,
as well as computing times, are given in the Results section.

C. Data Structures

In order to allow the implementation of our method, and
for a better understanding of the algorithms we use, we here
detail the contents of our data structures. NG captures the
following information:

1) For each vertex. Navigable cylinder geometry: center,
radius and height. Local elevation map: the portion
of the intermediate grid - used for NG computation
- located under the cylinder is copied and stored. As
NG handles multi-layered environments, this allows
to solve elevation queries efficiently. Visible vertices:
the list of all vertices that can be partially or totally
seen from the current vertex. This allows to solve
visibility queries efficiently. Included moving entities:
the list of all moving entities currently navigating in
the vertex. This information is managed and updated
by the simulation loop. Adjacent vertices: the list of



vertices sharing an edge with the current vertex. This
allows to solve neighbor queries efficiently.

2) For each edge. Linked vertices: the pair of vertices
sharing this edge. Gate geometry: the coordinates of a
line segment at the linked cylinders’ intersection. Cost:
the distance between the two linked cylinders’ centers.

3) For each mobile entity. Steering methods: able to
steer the mobile entity toward a way-point, whilst
avoiding other mobile entities. Optionally, we can
scale the steering method, i.e., we can change its
complexity and precision with a parameter. This will
be discussed in the Simulation part of the next section.
Currently crossed vertex: in order to know in which
navigable area the mobile entity is currently located.
This information is managed by the simulation loop.
Currently followed path: resulting from a navigation
query. Currently followed way-point: which is selected
along the currently followed path.

D. Discussion

As mentioned before, our method is inspired by cell-
decomposition motion planning techniques. However, our
method is not perfectly accurate: the decomposition does not
capture the complete navigable space, and the graph com-
putation uses a discrete representation of the environment.
A high-precision grid may therefore be required in order to
capture narrow passages, which results in long comuptations.
Nevertheless, advantages of our method are its robustness
(we have tested it on many environments whose meshes
were crude from design), its ability to consider both uneven
and multi-layered environments, and the lack of need for
expertise to use it.

Another advantage of our method is its use of very
simple geometric expressions to model the navigable space:
cylinders and line segments for the graph vertices and edges
respectively. This representation is not perfect in all cases:
for example, long corridors require many adjacent cylinders
to be captured. However, our model allows to solve basic
queries efficiently. For example, a simple distance test allows
to determine if a moving entity is contained in a vertex or
not. It equally requires little memory for storage.

The next section illustrates the use of NG for crowd
navigation planning.

IV. NAVIGATIO AND OTHER INTERACTIVE
QUERIES

A. Navigation Planning Queries

We use 2 navigation planning algorithms, one to plan the
navigation of a single entity between two locations (Alg. 1)
and one to create a navigation flow between two locations,
i.e., for a large number of entities all moving between
identical locations (Alg. 2).

We solve Single Navigation Queries (Alg. 1) in a classical
manner: given a navigation graph NG, and two locations to
join (for which the corresponding NG vertices vi and vd

are found), we launch a Dijkstra’s shortest path search. We
deduce the resulting path from the set of edges between both

Fig. 2. Solution paths to a navigation flow query between locations 1 and
2: the proposed algorithm provides several solutions to a single query. The
objective is to dispatch many entities moving between identical locations.
Each entity can select its own path, and use the full width of the corridors
composing the path to obtain a unique trajectory.

Algorithm 1: Single Navigation Query
Data: current location pinit, destination pdest and NG
Result: a solution path (set of edges)

Psol = {e1, ..., en}
begin1

vi ← the vertex including pinit2

vd ← the vertex including pdest3

Psol ← Dijkstra(vi, vd,NG)4

end5

locations. As edges are line segments (we also call them
gates), we can model the path as a corridor between the
two desired locations. An example of Navigation Query is
illustrated in Fig. 2. This first algorithm provides path 1 as
unique solution.

Another problem is to compute a trajectory for a moving
entity which is always confined to the free space. For
example, if way-points are picked within each successive
gate and a linear steering is used to join them, the trajectory
is contained in the solution path (the solution corridor).
However, in the case of mechanical constraints (e.g. non-
holonomy), the user must take care of this issue.

Our objective is to address the problem of numerous
entities navigating in a same environment and particularly,
the case were many of them navigate between identical
destinations. In this case we create a Navigation Flow
between the two locations. We avoid the concentration of all
entities on a same trajectory in order to limit the potential
number of inter-collisions (solving interactions also has a
high computational cost) and increase realism. In order to do
this, we can exploit corridor width to dispatch the entities.
However, this can be insufficient, especially when the gates
are narrow: a congestion may appear. The second navigation
planning algorithm Alg. 2 is aimed at providing a second
level of variety by answering queries with a set of paths
instead of a single one. As in Alg. 1, the shortest path is our
first solution path. We then search for an alternative path
avoiding the narrowest gate: the gate’s cost is increased and
Dijkstra’s search is invoked again. Edge cost can only be
modified once and the algorithm stops when no more edge
cost can be modified. Optionally, the process stops when a



Algorithm 2: Navigation Flow Query
Data: current position pinit, destination pdest, NG and

optionally a max. number of paths to find Nmax

Result: a set of solution paths Fsol = {Psol1 , ..., Psoln}
begin1

vi ← the vertex including pinit2

vd ← the vertex including pdest3

Einc ← {∅}4

Stop← false5

while Stop is false and card(Fsol) < Nmax do6

Stop← true7

Psol ← Dijkstra(vi, vd,NG)8

if Psol /∈ Fsol then9

Fsol ← Fsol

⋃{Psol}10

if11

∃e \ e← Thinnest({e | e ∈ Psol ∧ e /∈ Einc})
then

e cost = e cost× 1012

Einc ← Einc

⋃{e}13

Stop← false14

end15

number of solution paths is reached. Note that we developed
a variant stop criterion where the relative path lengths are
used: the algorithms stop when the last found path length is
a times longer than the first and shortest one, a ∈ [1..∞].

At the end of the planning stage, the data structure is
completed: the entities are placed at their initial location
and each vertex’s list of included moving entities is setup
accordingly. The currently crossed vertex, followed path and
way-point are listed for each entity as well. The real-time
simulation, i.e., the iterative udpate of the situation for each
entity according to the results of the planning stage then
starts.

B. Simulation

The objectives of our simulation loop are specific. We
want the highest performance possible in order to allow real-
time updates (25Hz at least) along with visualization. In
our case, we look for believability. A spectator observing
the scene with moving entities should be presented with a
simulation of the best quality level on the foreground. For
background areas, we want the entities to achieve their goal,
but assumptions and simplifications are permitted.

Algorithm 3 is looped to update the simulation. Whereas
classical solutions loop over each moving entity, a specificity
of our simulation is to consider each area successively. These
areas are delimited by the NG vertices. Before update (line
2), Levels of Simulation (LoS) are computed. A LoS is a
score assigned to each NG vertex which depends on the the
point of view location (view centrality and distance). Vertices
having a high LoS are close to the point of view and located
in the central part of the screen. Vertices having low LoS are
far from the point of view, on the borders of the screen or

Algorithm 3: Simulation Loop
Data: simulation initialized
Result: updated situation
begin1

ComputeLoS2

for all vertex V ∈ NG do3

if UpdateRequired then4

for all MovingEntity M∈ V do5

SteeringMethod6

if WayPointReached then7

if EndOfPath then8

GoBackward9

ChooseCurrentBestPath10

ComputeNewWayPoint11

MoveToNextVertex12

UpdatePathsCosts13

RenderScene14

end15

even invisible.
When a vertex is visited, update is required or not (line 4),

depending on the LoS. If the LoS is high, update is required
frequently (25Hz). On the contrary, if the LoS is low, the
udpate is done at lower frequencies (from 1 to 15Hz).

When update is required, the position of each moving
entity included in the vertex is updated. Once again, update
quality depends on the LoS (line 6). For low LoS, entities
are steered in a simplified manner: we use linear steering
and do not consider collisions between entities since we
assume they are not detectable at a far distance and even
less in invisible areas. For high LoS, we steer entities using
smooth trajectories and velocity accelerations. We equally
take into account inter-collisions by using Reynolds’ [21]
steering method.

Steering methods require way-points to lead the entities
along the followed corridors. For a given entity, once the
tracked way-point is reached, a new one is picked within
the next gate to be crossed (line 7). We use an individual
parameter to compute the way-point (line 11), so that the
entity crosses a gate always on the same side (the parameter
continuously changes from 0 to 1 while the way-point
position in the gate line segment continuously moves from
left to right). The moment a gate has just been crossed also
corresponds to a change of area for the entity. The vertices
included moving entities lists are updated accordingly (line
12), as well as the other entity-related variables. Doing so,
we always know where a given entity is, and which entities
are in a given place. This consists in crucial information
in order to solve interactive queries, presented in the next
section.

If the end of the path is reached, the entity turns around
and is sent back to its original location. Entities go back
and forth indefinitely. However, new goals can be assigned



interactively. A different path can be assigned to the entity,
within the set of solutions provided by Alg. 2. The best
solution is not necessarily the shortest one. We consider the
current occupation of each path to compute the best solution.
We take into account both the distance to a given edge and
the local population density to compute an average travel
time. The lowest travel time path is selected and assigned to
the entity. The paths’ travel times are recomputed at the end
of the update loop (line 13) if necessary: as it is not a highly
dynamic variable, it can be updated at low rates. Finally, the
situation is rendered to the screen, however, this is not this
paper’s main issue.

C. Neighbor and Visibility Queries

During the simulation we use neighbor queries in order
to solve collisions between moving entities. Alg. 4 allows
to compute the list of moving entities potentially in contact
with a considered entity E. As each vertex stores the list
of entities currently included in it, the complete list can be
computed with a limited number of distance tests. Note that
adjacent vertices are visited since they may contain close
enough entities. Recursively, the search may be extended to
other linked vertices, at a deeper level, if neighboring entities
at a farther distance are to be searched for.

Algorithm 4: Neighbor Query
Data: an entity E
Result: list of entities Lneighb potentially in collision
begin1

VE ← E :: current vertex2

for all entity ei ∈ VE :: included entities do3

if DistanceTest(E, ei) then4

Add ei to Lneighb5

for all vertex vi ∈ VE :: linked vertices do6

for all entity ei ∈ vi :: included entities do7

if DistanceTest(E, ei) then8

Add ei to Lneighb9

end10

Each NG vertex equally refers to a list of visible areas. A
list of visible entities to a given entity E can be computed
with a limited number of tests (Alg. 5). Such queries may
remain too complex to be solved interactively in the case
of complex environments and high density areas. Indeed,
visibility tests (line 5) complexity depend on the number
of triangles composing the environment. Tests may be done
by casting rays (using a collision checker) or by occlusion
tests using OpenGL extensions.

V. RESULTS

We have applied our technique to crowds of virtual pedes-
trians. Fig. 3 illustrates some of the tested environments, with
snapshots of the computed NG. Outcomes to Navigation
Queries are also shown. The Stonehenge-like environment
is representative: the presence of pillars in the middle of

Algorithm 5: Visibility Query
Data: an entity E
Result: the list of all visible entities Lvis

begin1

VE ← E :: current vertex2

for all vertex vi ∈ VE :: visible vertices do3

for all entity ei ∈ vi :: included entities do4

if VisibilityTest(E, ei) then5

Add ei to Lvis6

end7

Fig. 3. left column: A Stonehenge-like environment and a set of paths
solution to a Navigation Flow query with varying maximum relative path
length values (Alg. 2). right column: A virtual city, a set of paths solution
to a Navigation Flow query and a crowd navigating in the city.

the scene creates many congestion points. In such a case, it
is important to obtain alternative solutions to a navigation
flow query. Indeed, many entities navigating along a single
solution path would result in congestions whereas parts of the
environment close to the pedestrians would remain empty.
This would seem very unrealistic to a spectator. Figure 3
shows solutions to a query for which we have limited the
number of solutions (limitation is stronger in the middle
image). Without limitation, the union of solution paths covers
the whole environment, as shown in the accompanying video.
The accelerated part of the video illustrates a real-time sim-
ulation of 1000 pedestrians all navigating between identical
locations, but dispatched according to the distribution done
line 10 of the Algorithm 3. In the virtual city environment,
our simulator is able to reach a 35’000 pedestrians crowd
with interactive rates (10-20Hz, including rendering tasks,
according to the point of view). The obtained performance



is possible thanks to the scalable simulation and rendering:
at the forefront, complex articulated characters are rendered
whereas in the background simplified representations of
humans are used. The crowd is dispatched on the whole city
using 7 Navigation Flows of 5’000 pedestrians each, joining
main buildings (hotel, church, train station, circus, etc.). Each
navigation flow is created in a second (the correspondingNG
is made of 1’500 vertices), which allows interactive crowd
setup. The environment geometries are complex: 10’000
and 100’000 triangles approximately for the Stonehenge-like
and the City examples respectively. NG allows to abstract
the geometries of the environment and the complexity of
both our planning and simulation. Complexity then becomes
mainly dependent on the number of vertices and edges
composing the graph.

VI. CONCLUSIONS AND FUTURE WORKS

We have presented a method to plan and simulate the
navigation of crowds of moving entities in large virtual
environments. Our solution is based on a structure called
Navigation Graphs, which decomposes an environment of
any kind in sets of interconnected navigable areas. A specific
navigation planning technique allows to dispatch a crowd
of moving entities navigating between any pair of given
locations. We have also introduced a scalable simulation
loop, which allows crowd situation update while distributing
the available computational resources in space and time.
We have equally been able to preserve quality at its best
in the foreground of the central area of the screen as well
as real-time rates. Finally, we have presented algorithms to
solve useful neighbor and visibility queries. Our method is
efficient in the case of large crowds. Indeed, the moving
entities’ positions are updated block by block, according to
their current relative position to the actual observation point
of view. We save precious computation time by not accessing
each of the entities at each update loop. Our method is
demonstrated on crowds of virtual pedestrians with real-time
visualization experience, however, its principle is general.

In Robotics, the method is applicable to the simulation of a
robot in presence of a crowd of virtual humans (VHs). The
simulation of VHs can then be scaled using our method:
their behavior is complex enough to simulate interactions
with the robot, while VHs in the background only execute
a navigation task. Another application for the Robotics field
is to adapt the navigation flow algorithm to obtain several
solutions to a single query. Thus, additive criteria could be
used to select a solution path to a robot navigation query:
width of the passages to cross, visibility over given areas
along the path, access goal destination from given direction,
etc.

Further works are in progress to address dynamic envi-
ronments, and more specifically to treat the case in which a
passage is partially or totally obstructed by a new obstacle
(permanently or not) while the simulation runs. In this case,
the Navigation Graph must be adapted interactively (deletion,
split or addition of vertices and edges) and previously com-
puted paths must be reconfigured (validity checks, new path

searches), as well as moving entities’ path reconfiguration.
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ABSTRACT

We present a novel approach for real-time path planning of mul-
tiple virtual agents in complex dynamic scenes. We introduce a
new data structure, Multi-agent Navigation Graph (MaNG), which
is constructed from the first- and second-order Voronoi diagrams.
The MaNG is used to perform route planning and proximity com-
putations for each agent in real time. We compute the MaNG using
graphics hardware and present culling techniques to accelerate the
computation. We also address undersampling issues for accurate
computation. Our algorithm is used for real-time multi-agent plan-
ning in pursuit-evasion and crowd simulation scenarios consisting
of hundreds of moving agents, each with a distinct goal.

Keywords: crowd simulation, Voronoi diagram, motion planning.

Index Terms: I.3.5 [Computing Methodologies]: Computa-
tional Geometry and Object Modeling—Geometric algorithms;
I.3.7 [Computing Methodologies]: Three-Dimensional Graphics
and Realism—Animation, virtual reality

1 INTRODUCTION

Crowds, ubiquitous in the real world from groups of humans to
schools of fish, are vital features to model in a virtual environment.
Realistic simulation of virtual crowds have diverse applications in
architecture design, emergency evacuation, urban planning, person-
nel training, education and entertainment. Existing work in this area
can be broadly classified into agent-based methods that focus more
on individual behavior, or crowd simulations that aim to exhibit
emergent phenomena of the groups.

In this paper, we address the problem of collision-free path compu-
tation for agents moving in a complex virtual environment. Since
individuals constantly adjust their behavior according to dynamic
factors (e.g. another approaching individual) in the environment,
agent-based techniques that focus on modeling individual behav-
iors and intents offer many attractive benefits. They often result in
more realistic and detailed simulations. One of the key challenges
in a large-scale agent-based simulation is global path planning for
each virtual agent. The path planning problem can become very
challenging for real-time applications with a large group of moving
virtual characters, as each character is a dynamic obstacle for other
agents. Many prior techniques are either restricted to static envi-
ronments or perform local collision avoidance computations. The
latter can result in unnatural behavior or “getting stuck” in local
minima. These problems tend to be more visible in a dynamically
changing scene with multiple moving virtual agents.

Main Results: In this paper, we present a novel, real-time al-
gorithm for path planning of multiple virtual agents in a dynamic
environment. We introduce a new data structure called “multi-agent

navigation graph” or MaNG and compute it efficiently using GPU-
accelerated discrete Voronoi diagrams. Voronoi diagrams have been
widely used for path planning computations in static environments
[6, 20] and we extend these approaches to dynamic environments.

Voronoi diagrams encode the connectivity of the space and provide
a path of maximal clearance for a robot from other obstacles. In
order to use them for multiple moving agents in a dynamic scene,
prior approaches compute the Voronoi diagram for each agent sep-
arately by treating the other agents and the environment as obsta-
cles. This approach can become very costly as the number of virtual
agents increases. Instead, we compute the second order Voronoi
diagram of all the obstacles and agents, and show that the second
order Voronoi diagram provides pairwise proximity information for
all the agents simultaneously. Therefore, we combine the first and
second order Voronoi graphs to compute the MaNG for global path
planning of multiple virtual agents.

The MaNG computes paths of maximal clearance for a group of
moving agents with different goals simultaneously and does not
require a separate path planning data structure for each virtual
agent. Furthermore, we compute a discrete approximation to this
graph structure by using the rasterization hardware and propose an
adaptive culling technique to accelerate the computation. We also
address the undersampling issues that arise due to discretization.
Some of our key results include:

1. A new global data structure, the “multi-agent navigation
graph” (MaNG) for parallel computation of maximal clear-
ance paths among multiple virtual agents moving indepen-
dently;

2. Interactive global path planning and local collision avoidance
for multiple virtual agents, each with possibly different goals,
in a complex virtual environment;

3. A fast two-pass algorithm with adaptive culling techniques for
computing a discrete MaNG using GPUs;

4. Resolving undersampling issues in discrete graph computa-
tion.

The resulting technique is scalable for global path planning of many
dynamic agents in a complex virtual world, not necessarily mov-
ing in groups. Although our approach is specifically well suited
for simulating multiple virtual agents with distinct intentions, it
can also be used in conjunction with a crowd simulation. We
have demonstrated our algorithm on two challenging scenarios: a
pursuit-evasion game of many fruit pickers chased by farmers and
crowd simulation. In both these environments, our algorithm is able
to perform real-time global path planning and collision avoidance
simultaneously for hundreds of virtual agents with distinct goals.

Organization: The rest of the paper is organized as follows. Sec-
tion 2 reviews prior literature in related areas. In Section 3, we
define our notation and give an overview of our approach. We in-
troduce our data structure, MaNG, and show how it can be used for
path planning of multiple agents in Section 4. Section 5 describes
our efficient algorithm to compute the MaNG in real-time using
GPUs. We describe the implementation and highlight two applica-
tions of our planning algorithm to complex virtual environments in
Section 6, and analyze the algorithm performance in Section 7.



2 RELATED WORK

In this section, we briefly survey related work on multi-agent sim-
ulation and Voronoi diagrams for path planning.

2.1 Multiple Agent Simulation

Agent-based methods, such as the seminal work of Reynolds [28],
generate fast, simple local rules that can create visually plausible
flocking behavior. Numerous extensions that account for social
forces [7], psychological models [26], directional preferences [34],
sociological factors [23], etc. have been proposed. Interesting tech-
niques for collision avoidance have also been developed based on
grid-based rules [22] and behavior models [37].

Most agent-based techniques perform local collision avoidance.
However, global path planning techniques are needed to provide
goal seeking capability. In practice, global planning algorithms typ-
ically use graph search techniques for each agent [2, 11, 19, 35].
Pettre et al. [27] proposed a graph structure that decomposes the
space into multi-layered terrains to support fast graph search for
multiple characters.

Most recently, a novel approach for crowd simulation based on con-
tinuum dynamics has been proposed by Treuille et al. [36]. This
work computes a dynamic potential field that simultaneously inte-
grates global navigation with local obstacle avoidance. The result-
ing system runs at interactive rates and demonstrate smooth traffic
flows for three to four groups of large crowds that are moving with
common goals. However this work does not address the case where
each person’s or agent’s path needs to be computed separately.
Multi-agent path planning has also been investigated extensively
in robotics, mostly for performing collaborative tasks [3, 21, 25].
In addition, crowd simulation has also been heavily studied in other
fields [14, 18, 29, 30]. We provide detailed comparisons with some
closely related methods in Section 7.

2.2 Voronoi Diagrams and Path Planning

Voronoi diagram is a fundamental proximity data structure used
in computational geometry and related areas [24]. Generalized
Voronoi diagrams (GVD) of polygonal models have been widely
used for motion planning [5, 20]. The boundaries of the generalized
Voronoi diagram represent the connectivity of the space. Moreover,
they are used to compute paths of maximal clearance between a
robot and the obstacles based on potential field approaches [4, 16]
or bias the sample generation for a randomized planner [10, 13, 39].
However, sampling-based methods are limited to static environ-
ments and the potential-field based planners have been used for 2D
environments with very few robots or agents.

A disadvantage of using the GVD is the practical complexity
of computing it efficiently and robustly. Hence, several ap-
proaches have been proposed to compute an approximation of the
GVD. Vleugels and Overmars[38] use adaptive spatial subdivision.
Choset and Burdick [5] define a related structure called hierarchical
generalized Voronoi graph which is computed using continuation
methods. Wilmarth et al. [39] compute points on the GVD without
explicitly computing a representation of the entire set. Another set
of approaches compute a discrete Voronoi diagram along a uniform
grid using graphics hardware [15, 33, 8].

3 BACKGROUND AND NOTATION

In this section we introduce the notation used in the paper, give
a background on Voronoi diagram based motion planning, and
present an overview of our approach.

3.1 Notation

A geometric primitive or an object (in 3-dimensions) is called a
site. In this work, a site refers to a point, an open edge, an open
triangle, or a connected polygonal object, and we restrict ourselves
to 2D environments. An entity for which a path needs to be com-
puted is called an agent (or a robot). All obstacles and agents are
represented as sites. The center of mass of a site pi is denoted as
π(pi).

Given a site pi, the scalar distance function d(q, pi) denotes the
distance from the point q ∈ Rn to the closest point on pi. Given a
set of sites P in domain D, and a subset T of P, with |T| = k, the
k-th order Voronoi region is the set of points closer to a site in T
than to any other site:

Vork(T|P) = {q ∈D | d(q, pi)≤ d(q, p j) ∀ pi ∈ T, p j ∈ P\T}.

The k-th order Voronoi diagram is a partition of of the domain D
into the k-th order Voronoi regions:

VDk(P) =
⋃

pi∈P

Vork(T,P) , |T|= k.

The standard Voronoi diagram is the same as the 1st order Voronoi
diagram VD1(P). We are specifically interested in the 1st and
2ndorder Voronoi diagrams, denoted as VD1(P) and VD2(P), re-
spectively. A 1storder Voronoi region Vor1(pi|P) contains points
closest to site pi, and the 2ndorder Voronoi region Vor2({pi, p j}|P)
contains points closest to two sites pi and p j . For ease of notation,
we drop the superscript for the 1st order Voronoi diagram VD(P).
The complement of a sub-domain X is denoted as Xc and given by
D\X.

The set of closest k-tuples of sites to a point is called the k-th order
governor set. For a point q∈D, let the set of closest k-tuple of sites
be U = {T0, . . . ,Tm}, |Ti| = k, i.e. q ∈ Vork(Ti|P). Then the k-th
order governor set of q is denoted as Govk(q|P) = U. The 1st order
governor set is the set of closest sites, while the 2nd order set of a
point is the set of closest pairs of sites.

In 2D, the boundaries of Voronoi regions consist of Voronoi edges
which are subsets of the bisector between two sites, and Voronoi
vertices which are equidistant from three or more sites. The ar-
rangement of all Voronoi edges and vertices in the k-th order
Voronoi diagram is called the k-th order Voronoi graph, denoted
VGk(P). Formally, VGk(P) = (V,E), where,

V ={v ∈D | |Govk(v|P)| ≥ 3}
E ={e | e = (v1,v2),v1 ∈ V,v2 ∈ V,∃ connected curve c, s.t.

c = Vork(pi|P)∩Vork(p j|P),v1 ∈ c,v2 ∈ c}

The k-th order Voronoi diagram is closely related to the k-th near-
est neighbor diagram. The k-th nearest neighbor diagram is the
partition of D into k-th nearest neighbor regions. The k-th nearest
neighbor region of site pi is the set of points for which pi is the k-th
nearest site. Similarly, the arrangement of the vertices and edges in
the k-th nearest neighbor diagram is called the k-th nearest neigh-
bor graph, denoted NGk(P). Examples of the 1st and 2nd order
Voronoi diagrams, Voronoi graphs, and nearest neighbor diagrams
are shown in Figure C.2. The 1st nearest neighbor diagram is iden-
tical to the 1st order Voronoi diagram. Further properties of higher
order Voronoi diagrams are presented in [9, 24].



3.2 Motion Planning Using Voronoi Diagrams

Voronoi diagrams have been used in motion planning in many ways,
including roadmap computation, sample generation, or combined
with potential field methods. The set of sites P is the set of ob-
stacles, and the Voronoi diagram of the workspace VD(P) is com-
puted. The Voronoi graph VG(P) captures the connectivity of the
workspace and provides paths of maximal clearance between the
obstacles. The Voronoi vertices closest to the robot and goal are
classified as source and destination and the minimum weight path
is then computed.

For complex 3D environments, an approximate Voronoi diagram is
computed. The computation of discrete Voronoi diagrams and dis-
crete Voronoi graphs can be accelerated using GPUs and has been
used for motion planning in dynamic 2D [17] and 3D environments
[33]. The Voronoi vertex closest to the agent is set as an interme-
diate goal and the Voronoi diagram is recomputed as the obstacles
move.

However, these approaches are inefficient for computing the path
of multiple agents in a dynamic environment. For an agent pi, the
remaining agents need to be considered as obstacles, i.e. the set of
obstacles is P \ {pi}. Hence to compute the path for agent pi, the
modified Voronoi graph VG(P\{pi}) needs to be computed. Thus
the cost of computing the path for all agents is O(nc), where n is the
number of agents and O(c) is the cost of computing each modified
Voronoi graph VG(P\ pi) for 1≤ i≤ n.

3.3 Overview

Our approach for motion planning of multiple agents uses the 1st

and the 2nd order Voronoi diagrams to compute a global navigation
data structure, the MaNG. The MaNG graph is the union of the 1st

and the 2nd order Voronoi graphs and is formally presented in Sec-
tion 4. We treat each agent as a site (in addition to other obstacles
in the environment) and the MaNG is computed. The MaNG can be
computed in time O(c), and provides a path of maximal clearance
for each agent. In addition, we compute the proximity information
from the second order Voronoi diagram [31] and apply it within a
potential-field based simulator [16].

4 MULTIPLE AGENT PLANNING USING HYBRID VORONOI
GRAPH

In this section we introduce the multi-agent navigation graph and
demonstrate its application to multiple agents planning.

4.1 Multi-agent Navigation Graph (MaNG)

For multi agent planning, each moving agent represents a dynamic
obstacle for the remaining agents. Hence, our goal is to compute
a global navigation data structure that provides the clearance in-
formation for each agent. In particular, for each agent we want to
compute a graph that provides maximal clearance to the obstacles
and remaining agents.

We partition the set of sites P into two subsets - the set of obsta-
cles Po and the set of agents Pa. The multi-agent navigation graph
(MaNG), denoted MG(P), is a union of the first order Voronoi
graph VG1(P) and a subset of the second order Voronoi graph
VG2(P) contained inside the 1st order Voronoi region of each agent.

Formally,

MG(P) = (V,E), where

V = {v | v ∈ V1∪ (V2∩Vor(pi|P))∀pi ∈ Pa},

E = {e | e ∈ E1∪ (E2∩Vor(pi|P))∀pi ∈ Pa},

VG1(P) = (V1,E1) and VG2(P) = (V2,E2).

The MG(P) consists of vertices and edges from the 1st and the
2nd order Voronoi graphs VG1(P) and VG2(P). Some vertices
in MG(P) are common to both VG1(P) and VG2(P), however
VG1(P) and VG2(P) do not share any edge [24].

We assign a coloring to each edge and vertice in MG(P) based on its
membership in VG1(P) or VG2(P). Edges from VG1(P) are col-
ored red and edges from VG2(P) are colored black. Further, ver-
tices in VG1(P) are colored red, and vertices in VG2(P)\VG1(P)
are colored black. Finally, each edge in the MaNG is assigned
weight based on the cost of traveling that segment. Details on
weight computation are presented in Section 5. A 2D example of
the MaNG for some point agents and obstacles is shown in Fig-
ure C.2.

MG(P) is closely related to the 2nd nearest neighbor graph NG2(P).
In particular, we state the following result about their relation. De-
tailed proofs are provided in a technical report.
Lemma 1. Given a set of sites P, the 2nd nearest neighbor graph
NG2(P) and the MaNG MG(P):

• MG(P)⊆ NG2(P),

• Given an edge e∈NG2(P) incident on two 2nd nearest neigh-
bor regions of sites pi and p j . For any point x ∈ e: If
d(x, pi) = d(x, p j) = d(x,P)⇒ e ∈ VG1(P). If d(x, p j) =
d(x, pi) > d(x,P)⇒ e ∈ VG2(P).

As a consequence of lemma 1, both the 1st and 2nd order Voronoi
graphs can be extracted from the 2nd nearest neighbor diagram. We
use this result to efficiently compute the MaNG from the 2nd nearest
neighbor diagram in Section 5.

4.2 Multiple Agent Planning

In this section, we present our approach for efficient path planning
of multiple agents using the MaNG. The path planning problem for
each agent is defined as follows: we are given an agent pi ∈ Pa,
its current position in the workspace given by its center of mass
π(pi), and a goal position of the center of mass gi. We wish to
compute a path for pi from π(pi) to gi, which is maximally clear
and collision free to the remaining sites P \ {pi}. Such a path can
be computed using the Voronoi graph VG1(P \ {pi}). We state a
result on the equivalence of the paths computed using the 1st order
Voronoi graphs and the MaNG.
Lemma 2. Given an agent pi, and the Voronoi graphs VG1(P \
{pi}), MG(P):

1. VG1(P\{pi})⊆MG(P)

2. VG1(P\{pi})∩Vor(pi|P) = MG(P)∩Vor(pi|P).

Lemma 2 provides an approach for extracting the Voronoi graph
VG1(P \ {pi}), for each agent pi, from MG(P). The complete
algorithm for computing a path for an agent pi is given in Algo-
rithm 1, and an example path is shown in Figure C.4. The function
LocatePoint(gi) returns the 1st order Voronoi region which contains
gi. The source and goal positions are connected to vertices in the
MaNG using green edges. ShortestPath(pi,gi,MG(P)) computes



the minimum weight path from π(pi) to gi following only the green
and red edges in MG(P). This is equivalent to computing the short-
est path by following the 2nd order Voronoi graph inside the 1st

order Voronoi region of agent pi, and the 1st order Voronoi graph
everywhere else (see Figure C.4). The first vertex along this path is
chosen as an intermediate goal for agent pi.

Input: Agent pi, Goal position gi, Set of sites P, MaNG
MG(P)

Output: Path Si from current position to goal position

k← LocatePoint(gi)
if k = i then

Si← edge(π(pi),gi)
return

Compute Vi← set of black vertices in Vor(pi|P)
Compute Ei← set of black edges in Vor(pi|P)
if Vi 6= /0 and π(pi) /∈Vi then

Augment MG(P) with green edges
e j = (π(pi),v j)∀v j ∈Vi
Assign weight to e j,w(e j)← d(π(pi),v j)

else
foreach edge e j ∈ Ei do

Compute v j ← closest point on e j to π(pi)
Augment MG(P) with green edge e j = (π(pi),v j)
Assign weight to e j,w(e j)← d(π(pi),v j)

end
Compute Vk← set of red vertices in Vor(pk|P)
Augment MG(P) with green edges e j = (gi,v j)∀v j ∈Vk
Assign weight to e j,w(e j)← d(gi,v j)
Add green labels to each edge e j ∈ Ei
Si← ShortestPath (pi,gi,MG(P))
Remove green labels from each edge e j ∈ Ei
Remove all green edges from MG(P)

Algorithm 1: ComputePath(pi, gi, P, MG(P)): Computes
a path for agent pi to goal gi given the set of sites P and the
MaNG MG(P)

5 MANG COMPUTATION

In this section we present our approach for efficiently computing
the MaNG, which is based on the 1st and the 2nd order Voronoi
diagrams. However, exact computation of generalized Voronoi dia-
grams of polygonal models is non-trivial. Rather, we compute the
discrete Voronoi diagram along a uniform grid using graphics hard-
ware [15]. The 2nd nearest neighbor diagram is computed using
a second pass with depth peeling, as presented in [9]. We com-
pute the generalized 2nd nearest diagram of higher order sites (lines,
polygons) by rendering the generalized distance function for each
site [32]. We compute the 1st order Voronoi diagram in the first
pass, and compute the 2nd nearest neighbor diagram in the second
pass. Finally we extract the 1st and the 2nd order Voronoi graphs
from the 2nd nearest neighbor diagram and compute the MaNG.

5.1 Culling Techniques

The distance field is computed by evaluating the distance function
to each site at each pixel, and this computation is efficiently per-
formed using the rasterization capabilities of the GPU. However,
for a large number of sites, this leads to redundant computation for
each pixel, and the computation becomes fill bound. Hence, we use
culling techniques to compute conservative bounds on the 1st and
the 2nd order Voronoi regions. The distance function to each site
is computed on the pixels that are contained within its conservative
Voronoi region.

Our goal is to efficiently derive a tight upper bound on the 1st and
the 2nd order Voronoi regions for each site. We compute these
bounds by determining the closest site (and closest 2 sites) along
each principle direction (+X ,−X ,+Y ,−Y ). We compute the bounds
using a quadtree, which subdivides the domain. Each node in
the quadtree contains the number of sites contained in the subtree
rooted at the node. Using this quadtree we can efficiently determine
the set of nearest neighbors for each site.

The quadtree is constructed as follows. Each leaf nodes contains
the number of sites contained within the node. Let δ be the size of
a leaf node. Each intermediate node contains the number of sites
contained in each of its 4 children. Let the function E(l) com-
pute the closest non-empty leaf node to the right of node l in the
quadtree. Similarly, W (l) and N(l), S(l), respectively, return clos-
est leaf nodes to the left, top and bottom of node l. To compute
the bound along +X for the 1st order Voronoi region of a site pi,
we first identify the leaf node li that contains the centroid of the
site π(pi). Next we compute the closest leaf nodes E(li), W (li),
N(li) and S(li). Finally we compute the bisectors of the pairs of
nodes E(li),S(li) and W (li),S(li). Then the bound on the first order
Voronoi region along X axis is given by the intersection of these
two bisectors. Similarly, the bounds along Y -axis are computed,
and the first order Voronoi region of site pi is bounded by a quad
covering these bounds. In addition, for a leaf node li, we store the
locations of its closest neighbors E(li), W (li), N(li) and S(li).

We compute the bounds on all the 2nd order Voronoi regions of
site pi in the second pass as follows. Along +X axis, we check
the number of sites stored in the closest node E(li). If the number
of sites in node E(li) is 2 or more, then the bound along +X is
∆X+ = d(li,E(li)) + 2δ . If number of sites in node E(li) is less
than 2, then we lookup the node E(E(li)) (this has been computed
in the 1st pass), and the bound along +X is ∆X+ = d(li,E(E(li)))+
2δ . Similarly we compute bounds along −X ,+Y and −Y axes and
compute the distance function of site pi in a quad that covers these
bounds.

To compute the bounds for a higher order site (a line segment or
a convex polygon), we store the position of the centroid of the site
in the quadtree. We compute the distance bounds for the centroid
using the quadtree, and add the distance between the centroid and a
vertex to compute the distance bounds for the site.

5.2 Undersampling Errors

Computation of the Voronoi graph on a uniform grid may result in
undersampling errors, which may lead to the Voronoi regions to be-
come disconnected [33],and the computed discrete Voronoi graph
may have many small disjoint components [16]. As a result, for
complex environments with a large number of sites, the combinato-
rial complexity of the MaNG becomes very high.

We address the issue of undersampling for motion planning, by re-
ducing the combinatorial complexity of the MaNG without chang-
ing its connectivity. We reduce the complexity by appropriately
modifying the MaNG near undersampled areas. We rely on the fact
that when two Voronoi edges are arbitrarily close, then the agent
might follow either edge, as long as the path connectivity does not
change. Such edges can be removed from the MaNG provided their
removal does not change the connectivity of the MaNG.

We present the details of our algorithm for reducing the complexity
of MaNG. We treat an edge with an adjacent edge less than one
pixel away as a candidate for removal. Such edges are exactly those
edges that bound a discrete Voronoi region of width 1 pixel. Thus
the test for eliminating such edges is equivalent to removing certain
pixels from a discrete Voronoi region, which does not change the



connectivity of the Voronoi graph. Hence our test for removal of a
pixel from a discrete Voronoi region relies on a local 3× 3 stencil
around a pixel. Let pa be the governor of a pixel (i, j), and the set
α denote the governor set of the 4 adjacent pixels (i− 1, j),(i +
1, j),(i, j− 1),(i, j + 1). Then the pixel (i, j) can be removed if
either of the following conditions holds (see Figure C.5):

1. pa /∈ α . Then site pa has an isolated discrete Voronoi region
at pixel (i, j), with 4 Voronoi edges surrounding it. Removal
of this Voronoi region does not change the path connectivity
in the stencil.

2. pa ∈ α and pa occurs in α exactly once. Then the pixel (i, j)
represents an end point of a discrete Voronoi region of site pa
and its removal does not change the path connectivity in the
stencil.

After a pixel (i, j) satisfies the criteria for removal, we assign it
to another discrete Voronoi region to maintain the connectivity of
Voronoi edges. The pixel is assigned to a site in α \{pa} with the
minimum distance to pixel (i, j). The distance of a site in α to pixel
(i, j) can be efficiently computed by relying on the fact that distance
vectors are bi-linearly interpolated [32]. Thus distance computation
involves a vector summation with a basis vector and vector norm
computation.

The operation performed at each pixel is a read followed by a con-
ditional write, and the output of one pixel may affect the connec-
tivity of adjacent pixels. Thus an efficient parallel algorithm is not
feasible, and we perform a sequential scan of the discrete Voronoi
diagram to update the Voronoi graph.

5.3 Graph Construction

We now present our algorithm to compute the MaNG. We compute
the 1st order Voronoi diagram VD1(P) and the 2nd nearest neigh-
bor diagram on the GPU, and refine the connectivity information
based on the algorithm described in Section 5.2. We then perform
sequential tracing of vertices and edges to compute the 2nd nearest
neighbor graph [15].

We use the result presented in Lemma 1 to classify the edges in the
2nd nearest neighbor graph, NG2(P). An edge is classified as be-
longing to the 1st order Voronoi graph if the distance to closest site
for all pixels on the edge is identical in VG1(P) and NG2(P). Due
to pixel resolution errors, we treat two distance values as identical if
they are within one pixel width of each other. Each edge is assigned
a weight proportional to its length and inversely proportional to the
minimal clearance along the edge. An edge belonging to VG1(P)
is labeled red, and the remaining edges are labeled black. A vertex
is labeled red if it has at-least one red edge incident on it, otherwise
it is labeled black. These colors are used by Algorithm 1 to search
for an optimal path.

6 IMPLEMENTATION AND RESULTS

In this section we describe the implementation of our multi agent
planning algorithm and highlight its application to various multi-
agent simulations.

6.1 Implementation

We have implemented our algorithm on a PC running Windows XP
operating system with an AMD Opteron 280 CPU, 2GB memory
and an NVIDIA 7900 GPU. We used OpenGL as the graphics API
and Cg language for implementing the fragment programs. The
discrete Voronoi diagram and distance field are computed at 32-bit
floating point precision using floating point buffers. The Voronoi

diagram is stored in the red channel, and the distance field in the
depth buffer. We use stencil tests to disable 2nd order Voronoi di-
agram computation in the 1st order Voronoi regions of the obsta-
cles. In the first pass, the stencil mask is set for all pixels in the 1st

order Voronoi regions of the agents. In the second pass, distance
functions are evaluated at pixels with stencil mask set. This opti-
mization speeds up both discrete Voronoi diagram computation and
MaNG construction. We perform readback of the discrete Voronoi
diagrams and construct the MaNG on the CPU. The optimal path
is computed using an A∗ search with Euclidean distance metric to
guide the search.

We use a complete quadtree for Voronoi region culling described
in Section 5.1. The depth of the quadtree is set such that one leaf
node corresponds to a block of 32× 32 pixels. We need to deter-
mine if a node contains up to 2 sites - hence the number of sites
per node is encoded in 1 byte. By using a complete quadtree, the
node addresses can be efficiently computed using bit shifts, avoid-
ing pointer addressing.

6.2 Demos

We describe two multi-agent simulations, demonstrating the effec-
tiveness of the MaNG for real-time path planning. The first sim-
ulation involves a coverage problem, while the second one is of a
crowd simulation.

Fruit Stealing Game: The first simulation is of fruit stealing in a
dense orchard (see Figure C.1). There are several agents (thieves)
which attempt to steal the fruit on the trees. The environment also
contains some old farmers who chase the thieves. As the thieves
move through the orchard, they steal fruit in close proximity. The
goal is for each thief to move towards denser regions of fruit while
avoiding the farmers, the trees and other thieves. The thieves, farm-
ers and trees are treated as cylindrical sites. The trees are fixed
obstacles, farmers are dynamic obstacles and the thieves are the
agents. A coarse density map is used to track the density of fruit
remaining in the orchard. Trees with desirable fruit are assigned
higher density. The agents are initially spread near the boundary of
the orchard, and the goal position is set to a distant high density re-
gion. The goal position for each agent is also dynamically updated
as the density of the current goal drops below a certain threshold.

The global path of each agent is computed using the approach pre-
sented in Algorithm 1. We compute the proximity to nearest site for
each agent from the 2nd nearest neighbor diagram, which is used in
a potential planner for local planning. Finally, we also use the 2nd

order Voronoi diagram to compute the closest agent (thief) for each
farmer. This is set as the goal for each farmer and the farmer moves
directly towards this agent. The farmers do not use the MaNG for
path planning, however they use the potential and repulsive forces
to stay clear of other farmers and trees. A thief is eliminated if
caught by a farmer. Hence it is desirable for each thief to compute
shortest paths of maximal clearance from the farmers (dynamic ob-
stacles) and other thieves (agents) in order to collect the most fruit.

Crowd Simulation: We simulate a crowd of people moving in an
urban environment with dynamic obstacles (Figure C.3). We sim-
ulate only the individual behavior and not the group behavior. The
set of sites consists of buildings, cars and humans. The humans
enter the scene from one of the buildings and exit through another
building or the sidewalks. Each human is an individual agent with
an independent goal. The cars are dynamic obstacles, while the
buildings, benches, fountains are static obstacles. Similar to fruit
picking, the proximity information for local planning is computed
using the 2nd order Voronoi diagram. The total force applied on
each agent is a sum of an attractive force to move it towards the
intermediate goal computed by the MaNG, and the repulsive forces



from the nearest neighbors. For goals in close proximity, only the
local potential field planner is used, disregarding the MaNG.

6.3 Results

We now highlight the performance of our algorithm in complex
dynamic environments. Our approach can perform real-time path
planning for each agent in environments up to 200 agents with dif-
ferent destinations, at the rates of 5 to 20 fps. The discrete Voronoi
diagrams are computed on grid of resolution 1K× 1K pixels. The
fruit stealing simulation has 64 trees with a varying number of
thieves and farmers. The crowd simulation has 15 static obstacles
and between 2 and 5 moving cars, with a varying number of hu-
mans. The performance of our approach, with a timing breakup is
presented in Table 1.

Demo Agents Graph Time(ms)
|V| |E| DVD MaNG Plan Total

Crowd 10 206 1051 7 20 0.23 52
Crowd 25 330 1949 9 22 0.8 57
Crowd 50 560 3500 10 36 2.0 73
Crowd 100 946 7058 15 65 5.6 110
Crowd 200 1927 14669 20 150 18 213
Fruit 10 565 2282 8 25 1.0 59
Fruit 100 1378 6099 15 70 20 130

Table 1: Performance of multi-agent path planning algorithm (av-
erage over all frames): |V| and |E| denote number of vertices and
edges in the MaNG. DVD = Time to compute the 2nd order discrete
Voronoi diagram on the GPU, and removing undersampled regions.
MaNG = Time to extract the MaNG from the discrete Voronoi di-
agram. Plan = time for path planning for all agents. Time for
readback of discrete Voronoi diagram and depth buffers at 1K×1K
resolution = 25ms.

7 ANALYSIS AND COMPARISON

In this section, we analyze the performance of our algorithm. We
highlight its computational complexity and compare it with other
approaches for multi-agent path planning.

7.1 Analysis

Let the number of sites be n, and the size of the grid used to compute
the discrete Voronoi diagrams be m×m. We assume the number of
agents |Pa| = O(n). We now present the time complexity of each
stage in our algorithm.

The cost of computing the 1st and 2nd order discrete Voronoi dia-
grams is as follows. The size of the quadtree is O(( m

32 )2), and depth
= O(logm). Then the cost of computing the bounds for each site
(see Section 5.1) is O(logm). The cost of rasterizing the distance
function for a site pi is O(r|Vork(pi|P)|), where |Vork(pi|P)| is the
number of pixels in the Voronoi region of pi and r depends on the
tightness of the computed Voronoi region bounds, 1 < r < O(n).
Typically, we have observed r = O(1). Then the cost of com-
puting the Voronoi diagram is O(n logm + Σn

i=1(r|Vork(pi|P)|)) =
O(rm2 +n logm).

The cost of reading back the framebuffers is O(m2). The cost of
extracting the MaNG is O(|E|), where |E| is number of edges in
MaNG. From lemma 2, the number of edges in MaNG, |E| ≤ |E1|+
|E2|, where |Ek| is number of edges is VDk(P), and |Ek| = O(kn)
[9]. Thus cost of extracting the MaNG is O(n). The cost of path

planning using A∗ is typically polynomial in O(|E|+ |V|). There-
fore cost of computing all paths is O(n(|E|+ |V|))= O(n2). In prac-
tice, as shown by Table 1 the associated constant with path planning
is much smaller and the bottleneck is the discrete Voronoi diagram
computation and graph construction.

7.2 Comparisons

Next we provide qualitative comparisons of our approach with prior
methods for multi-agent planning.

Comparison with 1st order Voronoi diagram: Our approach pro-
vides a global solution for path planning of each agent using the
MaNG. The MaNG computes a roadmap of maximal clearance col-
lision free paths for each agent in O(1) passes, as compared to O(n)
passes for computing O(n) Voronoi roadmaps. In particular, using
the 2nd order Voronoi graph for path planning guarantees that the
position selected as the first intermediate goal along the computed
path is unique. This prevents adjacent agents from moving towards
the same intermediate goal and getting stuck in a local minimum
of the potential function. An example is presented in Figure C.6.
In this example, adjacent agents select the same intermediate goal
from 1st order Voronoi diagram, whereas the intermediate goals
from the 2nd order Voronoi diagram are unique. In addition, the
path computed has maximal clearance. More specifically, vertices
on the Voronoi diagram are used to compute the area of maximum
coverage for a new site [1]. Hence by following the vertices on the
MaNG, our planning approach ensures a maximum coverage region
for each agent.

The closest related work by Pettre et al. [27] computes an initial
roadmap of a static environment using Voronoi diagrams, and con-
structs a set of homotopic paths for a group of agents. This work
implicitly groups agents by their origins and goals. Furthermore,
local collision avoidance is not guaranteed. In contrast our algo-
rithm is able to handle dynamic environments as the roadmap is
updated in real-time, and the use of 2nd order Voronoi diagrams
provides pairwise proximity information which is used to guaran-
tee collision avoidance.

The work on continuum crowds [36] computes a dynamic potential
field and updates the position of each agent by moving along the
gradient of the potential function. The potential field is computed
for a small number of groups of agents moving with common goals.
However, due to the use of a potential function the agents may get
stuck in a local minimum. In contrast, our approach allows for an
independent goal for each agent.

In comparison to agent based methods, our MaNG based path plan-
ning algorithm provides global paths, and may be combined with
rule-based techniques to simulate more complex and realistic agent
behavior.

7.3 Limitations

There are some limitations of our work. We compute the MaNG in
the workspace, hence the approach does not scale well for agents
with many degrees of freedom (e.g. snakes). We use an A∗ graph
search algorithm, which may not be optimal. Finally, we compute
an optimal path for each frame, however there is no guarantee on
coherence of paths across frames, or on convergence over a period
of time. In fact, the optimal paths across two time steps may not be
coherent, potentially resulting in noisy motions.



8 CONCLUSIONS AND FUTURE WORK

We have presented a novel approach for real-time path planning of
multiple virtual agent, based on a new data structure - the Multi-
agent Navigation Graph (MaNG). The MaNG is used to simultane-
ously compute the paths of maximal clearance for a set of moving
agents with independent goals. The MaNG is constructed dynam-
ically using discrete Voronoi diagrams. We also presented culling
techniques for accelerating the discrete Voronoi diagram computa-
tion and addressed undersampling issues due to discretization. We
have demonstrated the application of our approach to real time sim-
ulation involving a large number of independent agents, each with
an individual goal.

There are several avenues for future work. One relevant avenue is
to constrain the graph search to compute temporally coherent paths
which are guaranteed to converge to the final goal. We would like to
exploit coherence in graph search when many agents have similar
goals and initial positions. Efficient parallel algorithms for simpli-
fying the discrete Voronoi graphs and computing the MaNG would
be useful for accelerating the computation. Finally, we would like
to extend our approach to handle agents with high degrees of free-
dom.
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Figure C.1: Fruit stealing simulation: A simulation of 96 fruit pickers (with yellow hair) in an orchard with 64K fruit (dark blue and purple)
on 64 trees (brown trunks) and 4 farmers (in white shirts). Each agent maintains an independent goal. Left: Initial top view of the orchard.
Middle: Top view during the middle of simulation with many fruit collected. Right: Perspective view of path traces of the agents in fruit
stealing simulation. The yellow curves trace the position of each agent over a range of time steps. The trace demonstrates lane formation as
the agents move around obstacles.

(a) (b) (c) (d) (e)

Figure C.2: Voronoi Diagrams and Voronoi Graphs: 8 point sites consisting of 3 obstacles (shown in white) and 5 agents (shown in black).
(a) 1st order Voronoi diagram (b) 2nd order Voronoi diagram of the 8 sites. Each region is closer to one of a pair of sites than to any other site
(c) 2nd nearest neighbor diagram. Each region has the same site as the second closest site. (d) 2nd nearest neighbor graph. Red edges denote
edges from 1st order Voronoi graph, black edges are edges from 2nd order Voronoi graph (e) the Multi-agent Navigation Graph (MaNG) for
the 5 agents, which is a subset of the 2nd nearest neighbor graph.

Figure C.3: Crowd Simulation: Two scenes of a crowd simulation with agents moving
between buildings and the sidewalks. The cars represent dynamic obstacles. Our
MaNG based algorithm can perform path planning on 200 agents, each with distinct
goals, at 5 frames per second.

Figure C.4: Multi-Agent Path Planning using
the MaNG. The MaNG is augmented with green
edges connecting the start position (blue dot) to
the goal position (orange dot). The computed
shortest path for one agent is shown with blue
edges.

(a) (b) (c)

Figure C.5: Discrete Voronoi region shrinking for under-sampling
errors: A 3×3 pixel neighborhood of a discrete Voronoi diagram.
The discrete MaNG is shown in thick orange lines. (a) The green
discrete Voronoi region is disconnected. (b) The center pixel may
be assigned to an adjacent Voronoi region reducing complexity of
the MaNG, without changing its connectivity (c) Reassigning the
center pixel will change connectivity of the MaNG.
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Figure C.6: Comparison of 1st order Voronoi graph and MaNG:
4 agents, with goals in opposite corners. Left: Intermediate goals
computed from 1st order Voronoi graph. Pairs of agents move to-
wards same goal. Right: Intermediate goals from MaNG. Each
agent has a unique intermediate goal.
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Abstract

We present a novel algorithm for navigating a large number of in-
dependent agents in complex and dynamic environments. We com-
pute adaptive roadmaps to perform global path planning for each
agent simultaneously. We take into account dynamic obstacles and
inter-agents interaction forces to continuously update the roadmap
by using a physically-based agent dynamics simulator. We also in-
troduce the notion of ‘link bands’ for resolving collisions among
multiple agents. We present efficient techniques to compute the
guiding path forces and perform lazy updates to the roadmap. In
practice, our algorithm can perform real-time navigation of hun-
dreds and thousands of human agents in indoor and outdoor scenes.

1 Introduction

Modeling of multiple agents and swarm-like behaviors has been
widely studied in virtual reality, robotics, architecture, physics, psy-
chology, social sciences, and civil and traffic engineering. Realistic
visual simulation of many avatars requires modeling of group be-
haviors, pedestrian dynamics, motion synthesis, and graphical ren-
dering. In this paper, we address the problem of real-time motion
synthesis for large-scale independent agents in complex, dynamic
virtual environments. These agents may correspond to virtual or
digital characters that consist of non-uniform distributions of many
distinct entities, each with independent behavior, characteristics,
and goals. Examples of such environments include virtual humans
in large exposition halls, avatars in wide festival arenas, digital ac-
tors in busy urban streets, etc.

Figure 1: Navigation within an indoor environment: An exhibit
hall of a trade show that consists of 511 booths and 1,000 hu-
man agents. Each agent has a distinct goal (i.e. visiting one of
the booths) and behavior characteristic. Our navigation algorithm
based on AERO can compute collision-free paths simultaneously
for all 1,000 agents at 22 fps on a PC with 3Ghz Pentium D CPU.

∗e-mail: {sud,rgayle,andersen,sjguy,lin,dm}@cs.unc.edu

A major challenge is automatic navigation of each agent through a
complex, dynamic environment. More specifically, real-time global
path computation for each agent can become a bottleneck, as the
number of independent agents in the environment increases. The
route planning problem can become intractable, as each individual
character moving independently needs to perform collision avoid-
ance with remaining agents. The problem of computing a collision-
free path has been extensively studied in robot motion planning,
crowd simulation and character animation. Prior global motion
planning algorithms are mainly limited to static environments with
a fewmoving robots. Most algorithms for dynamic scenes are based
on local collision-avoidance methods, which suffer from conver-
gence and local minima problems. Most of existing work in crowd
simulation has been applicable to only a few groups or swarms of
agents with the same goal, and not a large number of independent
agents with different intentions [Treuille et al. 2006]. Our work is
complementary to these work by addressing the navigation prob-
lem simultaneously for many virtual agents with distinct goals and
individualized behavior characteristics.

Main Results: In this paper, we present a new algorithm for real-
time navigation of large-scale heterogeneous agents in complex dy-
namic environments. Our approach is based on a novel represen-
tation called “Adaptive Elastic ROadmaps” (AERO). AERO is a
global connectivity graph that deforms based upon obstacle motion
and inter-agent interaction forces.

We use AERO to perform dynamic, global path planning simulta-
neously for independent agents. We also take into account moving
obstacles and the local dynamics among the agents. AERO contin-
uously adapts to dynamic obstacles and deforms according to local
force models and global constraints, in order to compute collision-
free paths in complex environments. In addition, we introduce the
notion of link bands to augment the local dynamics and resolve col-
lisions among multiple agents. Due to lazy and incremental updates
to the roadmap and efficient computation of guiding-path forces
using link bands, our approach can scale to hundreds and thou-
sands of individual agents and perform real-time global navigation
of many independent agents in complex, changing environments,
with generic obstacles and no restrictions on agent motion.

We demonstrate our approach on complex indoor and outdoor sce-
narios, including a city scene consisting of 2,000 pedestrians with
50 moving cars and an exhibition hall with 511 stationary booths
and 1,000 individual agents on foot and avoiding each other. In or-
der to highlight global navigation, we also place upto 1,000 agents
in a dynamic maze environment. Our initial proof-of-concept im-
plementation is able to perform motion simulation of independent
agents for these highly challenging scenes in a fraction of a second
per frame on a PC with an 3Ghz Pentium D CPU and 2GB mem-
ory. As compared to the prior approaches, our algorithm is perhaps
among the first to interactively navigate upto thousands of inde-
pendent agents each with distinct goals and individualized behavior
characteristics, by providing real-time global path planning for all
agents simultaneously and performing fast local collision avoidance
among them.

Organization: The rest of the paper is organized as follows. Sec-
tion 2 presents related work on multi-agent planning and crowd
simulation. We describe “adaptive elastic roadmaps” in Section 3
and use them to navigate multiple virtual agents simultaneously in



Section 4. We describe our implementation and highlight its perfor-
mance on different benchmarks in Section 5. We analyze the per-
formance of our algorithm and compare it with earlier approaches
in Section 6.

2 Related Work

In this section, we give a brief overview of prior work related to
multi-agent planning, character animation and crowd simulation.

2.1 Multiple Agent Planning

Extensive literature exists on path planning for multiple agents in
robot motion planning and virtual environments [LaValle 2006]. At
a broad level, these methods can be classified into global (or cen-
tralized) and local (or distributed) methods. The global paths repre-
sent the connectivity of collision-free space in terms of a graph or a
roadmap, and require search algorithms to compute a path for each
agent [Bayazit et al. 2002; Funge et al. 1999; Kamphuis and Over-
mars 2004; Lamarche and Donikian 2004; Pettre et al. 2005; Sung
et al. 2005; Sud et al. 2007]. Most roadmap based algorithms have
been designed for motion planning for a single robot in a static en-
vironment and are generated based on random sampling techniques
[LaValle 2006]. Recently, some algorithms have been proposed to
extend the roadmap-based methods to dynamic environments, mul-
tiple agents and deformable models [Gayle et al. 2005; Garaerts and
Overmars 2007; Li and Gupta 2007; Pettre et al. 2005; Rodriguez
et al. 2006; Gayle et al. 2007; Zucker et al. 2007]. However, they
have only been applied to relatively simple environments composed
of a few robots and restricted obstacles. These approaches may
not scale well to environments with a large number of independent
agents.

As compared to global methods, local methods are mostly reac-
tive style planners based on variants of potential fields [Khatib
1986]. They can handle large dynamic environments, but suf-
fer from ‘local-minima’ problems and may not be able to find a
collision-free path, when one exists [LaValle 2006]. Often these
methods do not give any kind of guarantees on their behavior. Other
route planning algorithms are based on path or roadmap modifi-
cation, which allow a specified path for an agent to move or de-
form based upon obstacle motion. These methods include Elastic
Bands [Quinlan and Khatib 1993] and Elastic Roadmaps [Yang and
Brock 2006]. Our approach bears some close resemblance to these
techniques, but AERO is lazily updated to deal with dynamic obsta-
cles and is a significant extension of these algorithms to plan paths
for multiple agents simultaneously. We will describe it in detail in
Section 4.

2.2 Crowd Dynamics and Human Agents Simula-
tion

Many different approaches have been proposed for modeling move-
ment and simulation of multiple human agents or crowds or individ-
ual pedestrians. [Ashida et al. 2001; Schreckkenberg and Sharma
2001; Shao and Terzopoulos 2005; Thalmann et al. 2006; Reynolds
2006]. They can be classified based on specificity, problem decom-
position (discrete vs continuous), stochastic vs deterministic, etc.

2.2.1 Discrete methods

Discrete methods rely on a sampling of the environment or of the
agents. Some common approaches include:

Agent-based methods: These are based on seminal work of
Reynolds [1987] and can generate fast, simple local rules that can
create visually plausible flocking behavior. Numerous extensions

have been proposed to account for social forces [Cordeiro et al.
2005], psychological models [Pelechano et al. 2005], directional
preferences [Sung et al. 2004], sociological factors [MUSSE and
Thalmann 1997], etc. Most agent-based techniques use local col-
lision avoidance techniques and cannot give any guarantees on the
correctness of global behaviors.

Cellular Automata methods: These methods model the motion
of multiple agents by solving a cellular automaton. The evolution
of the cellular automata at next time step is governed by static and
dynamic fields [Hoogendoorn et al. 2000]. While these algorithms
can capture emergent phenomena, they are not physically based.
Different techniques for collision avoidance have been developed
based on grid-based rules [Loscos et al. 2003] and behavior models
[Tu and Terzopoulos ].

Particle Dynamics: Computing physical forces on each agent is
similar to N-body particle system [Schreckkenberg and Sharma
2001; Helbing et al. 2003]. Sugiyama et al. [2001] presented a
2D optimal velocity (OV) model that generalizes the 1D OV model
used for traffic flow. Our formulation is built on some of these ideas
and we elaborate them in Section 4.

2.2.2 Continuous Methods

The flow of crowds or multiple agents can be formulated as fluid
flows. At low densities crowd flow is like gases, at moderate den-
sities it resembles fluid flow, and at high densities crowd has been
compared to granular flow [Helbing et al. 2005]. Most recently, a
novel approach for crowd simulation based on continuum dynam-
ics has been proposed by Treuille et al. [2006]. We compare our
approach with these methods in Section 7.

3 AERO: Adaptive Elastic ROadmaps

In this section, we describe our representation for navigating het-
erogeneous agents. We first introduce the notation used in the rest
of the paper. Next, we give an overview of our representation and
present algorithms to compute it.

3.1 Definitions and Notation

We assume that the multiple agents are contained within a domain
D. Each agent is denoted as pi and let the environment consist of
k agents, the set of all agents is denoted A . We assume that each
agent pi has a finite radius ri, a goal position denoted gi. The dy-
namics state of each agent at time t consists of its position xi(t) and
velocity vi(t). For ease of notation, we shall not indicate the time
dependency of the simulation terms as they are implicitly defined.

In addition to agents, the environment also consists of a set of static
and dynamic obstacles. Each obstacle is denoted oi and set of ob-
stacles is denoted O . The free space, is the empty space in the
domain, and is given as D f = D \ (O ∪A ). The motion of each
agent is restricted to the free space.

The unit normal vector from a point p ∈ D to an agent pi is given
by ni(p) = p−xi

‖p−xi‖ . The agent’s velocity bias field φi(p) is de-
fined as the angle between the normal to the agent and its veloc-
ity, φi(p) = cos−1(ni(p) · vi‖vi‖ ). Given a pair of agents (pi, p j), we
define the following: separation distance di j = ‖xi− x j‖, separa-
tion normal ni j =

xi−x j
di j
. For the sake of simplicity, we assume that

all agents have same radius, ri = r j = ra and our algorithm can be
easily modified to account for varying radii.

We use the generalized Voronoi diagrams to compute proximity in-
formation for the roadmap and link bands. A site is a geometric



primitive inR2. Given a set of sitesS , and a domainD, the Voronoi
region of a site si is denoted V (si|S ), and the Voronoi diagram of
all sites is VD(S ). For our work, the sites are the edges on the
roadmap, and the domain is the free space.

Multi-agent navigation problem: Given the state of each agent
pi at time t0, and goal gi, we compute a sequence of states
qi(t0),qi(t1), . . . ,qi(t f ), such that xi(t f ) = gi,xi(t j) ∈D f (t j) for all
i, j. Our goal is to compute a collision-free path for each agent and
ensure that its behavior conforms with prior results in pedestrian

dynamics. Each agent is also assigned a desired velocity vdi , with
the magnitude equal to the maximum velocity, vmax, of the agent
and direction determined by its state and the environment.

3.2 Global Path Planning

Our goal is to use global path planning methods that can help
each agent to reach its goal. Prior global approaches are slow in
terms of handling complex environments with hundreds of inde-
pendent agents in real-time. At the same time, local methods can
give no guarantees in terms finding a collision-free path and can
get stuck in local minima. In order to overcome these problems,
we use a novel path planning data structure called Adaptive Elas-
tic ROadmaps (AERO). AERO provides a global roadmap that is
updated instantaneously in response to motion of the agents and
obstacles in the environment.

Figure 2: Adaptive Elastic ROadmap (AERO): An example with
4 agents (red circles) and goals (yellow triangles). The static ob-
stacles are dark blue rectangles and dynamic obstacles are cyan
rectangles with arrows indicating direction of motion. The green
curves represent links of the reacting deforming roadmap. The dy-
namic obstacles represent cars. As the highlighted car (circled)
moves, the affected link in the roadmap is removed.

AERO is a time-varying roadmap, or a connectivity graph of mile-
stones (M ) and links (L ), R = {M ,L }, and is used to compute
the collision-free guiding path for each agent. Each milestone is a
position xi ∈ D f , and each link lab connects two milestones xa,xb
along a path (see Fig. 2). A link lab is a closed (including the end
points) curve in D f . In path planning literature, this path is often
a straight-line for simplicity. Each agent queries the roadmap to
compute a path between two configurations in D f by using a graph
search algorithm (such as A*).

3.3 Particle-based graph representation

As the agents and dynamic obstacles move, we compute and update
AERO using a physically-based particle simulator. The main com-
ponents of the graph, dynamic milestones and adaptive links, are
built from particles. Particle i, denoted mi, is a point-mass in D f
which responds to applied forces. The state of the particle at time
t is described by its position xi(t) and velocity vi(t). In the con-
nectivity graph, the dynamic milestones M are each represented
as a particle. Similarly, the adaptive links are represented using

a sequence of particles connected by linear springs. The number
of particles in each link can vary as a function of link length. As
the obstacles (which may include other agents) move, the repulsive
forces cause the milestones to move, and the links to deform toward
the open areas of the navigation domain (as shown in Fig. 2).

3.4 Applied Force Computation

We apply forces to move the milestones and links away from ob-
stacles while simultaneously maintaining the connectivity of the
roadmap. For each particle i, we consider two forces for each par-
ticle, roadmap internal forces and repulsive external forces,

Fi = Fiint+Fiext,

where Finti denotes the internal forces and F
ext
i describes external

forces.

The internal forces maintain the length of the links, and are simu-
lated using standard damped Hookean spring. Given two particles
mi and m j, the force on particle mi from an incident particle m j is
given as:

Fi
int = −(ks(‖xij‖−L)+ kd(

vij ·xij
‖xij‖

))
xij

‖xij‖
,

where xi j = xi − x j, vi j = vi − v j , ks is a spring constant, kd is
the damping constant, and L is the initial distance between the par-
ticles. To prevent the entire roadmap from drifting as a result of
moving obstacles, additional springs are attached between the dy-
namic milestones and a particle is fixed at its initial location. Note
that the dynamics milestones are not fixed - instead they are allowed
to move to avoid dynamics obstacles.

The external force is repulsive potential force from the obstacles.
For each obstacle o j, we apply a force on particle i, mi, if it is
sufficiently close to o j . This force given is:

Fi
ext =

{
b

d(mi,o j)
n if d(mi,o j) < δ ,

0 otherwise,

where d(mi,o j) is the minimum distance between a particle mi and
obstacle o j, b is a repulsive scaling constant, n is the normal from
the obstacle to the particle, and δ is a repulsive force threshold.

Given the applied forces, we update the state of AERO, the posi-
tion and velocity of all particles, using numerical integration. In
order to prevent undesirable oscillation in the adaptive links, Verlet
integration is used [Verlet 1967; Jakobsen 2001]. This method con-
siders the particles to be at rest, v(t) = 0, during integration. Based
on forward Euler integration and Newtonian motion, Fi = ma, the
update rule for particle mi with unit mass is given as:

xi(t+dt) = xi(t)+
1

2
ai(dt)2 = xi(t)+

1

2
(Fiint+Fiext)(dt)2.

Since velocity is necessary to compute Fi
int we can locally approx-

imate it as

vi(t+dt) =
xi(t+dt)−xi(t)

dt

This formulation describes how a roadmap can adapt to the motion
of obstacles. In order to compute the initial roadmap, we can use
any of the well known methods in the motion planning literature
[LaValle 2006]. In our current implementation, the initial roadmap
is generated based on edges and vertices of the generalized Voronoi
diagram of the free workspace. This provides good initial clearance
from the obstacles and captures all the passages in the environment.
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Figure 3: Roadmap Link Bands: Link bands are a partition of the freespace based on the links of AERO. (a) Several AERO links, in solid
black lines, respond to a static obstacle, O2 and a dynamic obstacle O1. The link band, B(1), for link l1 is shaded, and the link boundaries
are shown as dashed lines. (b) As O1 approaches link l2 it deforms. Link band B(1)’s boundary is highlighted in bold dashed lines and shows
the two segments of the milestone boundary, Bm(1), and the intermediate boundary Bi(1). (c) Link l2 is removed due O1’s motion while the
link band B(1) changes to reflect the removal.

3.5 Roadmap Update

The previous section described the general representation for
AERO and how it adjusts to moving obstacles. However, this type
of deformation can not guarantee a valid roadmap or that a path
can be found at all times, e.g. when a moving obstacle moves di-
rectly into a link. These cases require additional link removal or
link addition steps to update the roadmap.

3.5.1 Link Removal

In order to maintain a valid roadmap, we remove the links based
on both physically-based and geometric criteria. This combina-
tion works well since the roadmap computation is a combination
of physically-based and geometric approaches.

The physically-based criteria attempts to prune links which have
been considerably deformed. A natural measure of deformation
for a link is its potential energy. The spring potential energy is a
measure of the amount of deformation of a spring. For an adaptive
link lab with n springsS = {s1,s2, . . . ,sn}, the average potential is
given as

Pab =
1

n

n

∑
si∈S

kis

2
(‖si‖−Li)2

where kis is the spring constant of spring i, ‖si‖ is its current length,
and Li is its rest length. A link is removed when Pab > εs, for a
spring energy threshold εs.

The geometric criteria removes links based on proximity and inter-
section with the obstacles. Proximity is measured by the nearest
distance from an adaptive link lab to the obstacles,

dab = minsi∈S ,o j∈O(d(si,o j)).

Links are removed when this distance is less than the largest radius
assigned to an agent, i.e. dab < ra.

3.5.2 Link Addition

As the links are removed, AERO may no longer capture the con-
nectivity of the free space and maybe unable to find paths. To
remedy the situation, it is necessary to repair and add links to the
graph. Since our initial roadmap is based on Voronoi diagram, it
almost captures the connectivity of the freespace for static obsta-
cles. Based on this assumption, we can bias the link addition step
to repair links which have been previously removed. When a link is
removed, it is placed in a list and re-inserted into AERO when the

straight-line path between link’s two milestones becomes collision-
free. This has the added advantage that our roadmap will try to
maintain the connectivity of the freespace of the static environment.

However, in a realistic scenario, it may not be the case that the
static and dynamic obstacles are known ahead of time. In this case
we need the ability to add milestones to help explore the freespace
as the environment changes. In this case, we use random sampling
techniques to generate newmilestones and additional links [LaValle
2006].

We modify this approach by biasing our search toward areas behind
obstacle motion. Given the velocity vj of an obstacle o j , we gen-
erate a sample outside of the obstacle’s axis aligned bounding box

in the direction − vj
‖vj‖ from the box’s center. This sample is ran-

domly perturbed to help remove uniformity among samples, which
can lead to overly regular connectivity graphs. The milestones near
to this sample are found and checked to see if an adaptive link can
be added. Since a large number of new links can become compu-
tationally expensive, link addition is only performed when no path
exists.

3.6 Numerical Stability

Since AERO relies upon numerical integration, stability is a con-
cern due to the possibility of applying large spring or repulsive
forces. However, when combined with the removal rules, this has
not been an issue in practice. In general, using Verlet integration
greatly helps in stability by treating the particle to be at rest during
integration. Also, our link removal steps also help to ensure stabil-
ity. Any link which is likely to become unstable will also likely be
close to an obstacle or otherwise highly deformed. These types of
links will be removed, helping the system remain in a stable state.

4 Navigation using AERO

In this section we describe our approach to compute collision-free
paths for independent agents using AERO. In order to allow the
agents to occupy the entire free space for navigation, we relax the
restriction of constraining the agent’s position to the links of the
roadmap. Rather, we introduce link bands defined by each link of
AERO, and use them for path planning as well as local dynamics
simulation of each agent (See Figure 5).



4.1 Link Bands

The link band associated with a link of the roadmap is the re-
gion of free space that is closer to that link than to any other link
on the roadmap. Formally, the link band of a link li is given by
B(i) = V (li|L )∩D f . The width of the link band is the mini-
mum clearance from the link to the obstacles in the environment,
Bw(i) = mino j∈O(d(li,o j)). The link bands form a partitioning of
the free space based on proximity to the links. Each link band spec-
ifies a collision free zone in a well-defined neighborhood of each
link of the roadmap. Additionally, link bands provide the nearest
link, which is required for path search (Section 4.2), and distance
to the roadmap that is used to compute guiding forces to advance
the agent along the path (Section 4.3).

In a dynamic environment, an agent’s path might require recompu-
tation. We use link bands to detect such events. In particular we
keep track of an agent’s motion across a link band boundary. We
classify points on a link band boundary into milestone boundary
and intermediate boundary (see Fig. 3). A point on the milestone
boundary belongs to two adjacent link bands whose links share a
common milestone. On the other hand, the intermediate boundary
is all points on the boundary that do not belong to the milestone
boundary (see Fig. 3(b)). Formally, the milestone boundary of
a link li, Bm(i) = B(i)∩ B( j), ∀li ∩ l j 6= /0, and the intermediate
boundary of a link li, Bi(i) = δB(i)\Bm(i). In the next section we
show how the link bands are used for global path planning and to
detect replanning events.

4.2 Path Planning

We use AERO for global path computation for each agent. Since
an agent is not constrained to the roadmap, we initially compute the
link band it belongs to. This link is set as the source link. Similarly
the link band containing the goal position is computed and the cor-
responding link is set as the goal link. We assign a weight to each
link as a combination of the link length, the reciprocal of the link
band width, and the agent density on the link as:

w(li) =

{
∞ if 2Bw(i) < ra,

α |li|+β 1
Bw(i)

+ γ n
|li|Bw(i) otherwise,

where α ,β ,γ are constants,|li| is the length of link li, and n is the
number of agents on link B(i). The third term approximates the
agent density on the link and causes the agents to plan using less
crowded regions. The relative values of the constants are deter-
mined by the behavior characteristics of individual agents. A high
relative value of α allows for choice of shortest path, a high value
of β avoids narrow passages and a high value of γ demonstrates
preference of less crowded passages. In our experiements, we used
a high value of α for slow agents, whereas aggressive agents are
assigned a higher value of γ . Given a weighted roadmap, an A∗
graph search is performed to compute the minimum weight path
from the source to goal link band, which is stored by the agent.
Once the agent reaches its goal link band, it proceeds to its goal
position within the band.

As the simulation progresses, the nearest link to an agent may
change. Based on link boundaries, we determine events that re-
quire a path recomputation. Crossing a milestone boundary indi-
cates agent motion along the global path, and does not require a
path recomputation. However, it is also possible for an agent to
cross over the intermediate boundary. This typically occurs as a
result of roadmap modification. In this case, it is possible that an
alternative path to the goal exists. However, we allow the agent to
move back to its previous path since this should be its path of least
cost.

4.3 Local Dynamics Computation

Given a path on AERO, the motion of each agent is computed us-
ing a local dynamics model. In this section, we describe the lo-
cal dynamics model used to guide an agents along the computed
path. Our local dynamics model is based on the generalized force
model of pedestrian dynamics proposed by Helbing et al [2003].
This force model has been shown to capture emergent crowd be-
havior of multiple agents at varying densities of crowds. We define
the social force model in terms of force fields that are defined over
each link band.

We modify the social force model, to include a force Fr that guides
an agent along a link band on the roadmap. In addition, there is a
repulsive force Fsoc to the nearby agents, an attractive force Fatt to
simulate the joining behavior of groups, and a repulsive force from

dynamic obstacles Fobs. Let the agent pi belong to link band B(k),
then the force field at a point p is given as

F(p) =∑
j

[
Fsocj (p)+Fattj (p)

]
+Frk(p)+ΣoF

obs
o (p),

p j ∈ A , j 6= i,o ∈ O

where,

Fsocj (p) =Ai exp(2ra−‖p−x j‖)/Bi n j(p)(
λi+(1−λi)

1+ cos(φ j(p))
2

)
,

Fattj (p) =−C jn j(p)
Fobso (p) =Ai exp(ra−d(p,o))/Bi no(p)(

λo+(1−λo)
1+ cos(φo(p))

2

)
Frk(p) =

vdk (p)−vi
τi

+Did4(p, lk)nlk (p)

where Ai and Bi denote interaction strength and range of repul-
sive interactions andC j strength of attractive interaction, which are
culture-dependent and individual parameters. λi reflects anisotropic
character of pedestrian interaction. The obstacle force field Fobs

simulates the repulsion of the agents from other obstacles in the en-
vironment. Since the obstacles may be dynamic, we introduce an
additional anisotropic term which biases the repulsive forces along
the motion of the obstacles. This effect has also been modeled in
other approaches by creating a ‘discomfort zone’ in front of dy-
namic obstacles [Treuille et al. 2006]. For efficient computation of

repulsive force Fsoc and obstacle force Fobs, we compute forces to
agents and obstacles within a radius Bi.

The roadmap force field Frk guides the agent along the link lk. The
link band B(k) is used to define the region which is used to compute
the force field for lk. The first term in F

r
k makes the agent achieve

a desired velocity along the link, whereas the second term attracts
the agent within the link band. nlk (p) is the unit normal from point
p to the closest point on lk, d(p, lk) is the distance from p to lk. The
desired velocity vdk (p) = vmaxek(p), where ek(p) is a unit vector
field orthogonal to nlk (p). The direction of the normal is chosen
such that ek(p) points along the roadmap towards the next milestone
on an agents path. Di is a weighting term and the attractive force
term keeps an agent inside the link band, reducing toggling across
intermediate boundaries.



Figure 5: Left: Navigation of 500 virtual agents in a maze consisting of 8 entrance and 8 exit points. Center: Each agent computes an
independent path to the nearest exit using adaptive roadmaps. Right: Our local dynamics simulation framework based on link bands captures
emergent behavior of real crowds, such as forming lanes. We perform real-time navigation of 500 agents at 100fps.
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Figure 4: Navigation System: Given a description of the environ-
ment, an AERO is computed and updatehd. This is used in conjunc-
tion with our local dynamics model to simulate the motion of each
agent.

4.4 Behavior Modeling

Once the agent motion has been determined by local dynamics, this
motion needs to be animated. Behavioral modeling allows us to
translate from this motion to an animated character. To accomplish
this task, we use a minimal set of predetermined behaviors; a stop,
walk, and jog. A finite state machine is then used to transition and
switch between them, as shown in Fig.4.

Transitions between states are determined by an agent’s velocity
and predefined thresholds. When the velocity is at or very close to
zero, the agent moves to a stop state. Similarly, as the agent’s speed
increases, it transitions to a walk state and then to a jog state a
higher speeds. To prevent oscillation between states, the threshold
for increasing speeds is different than that of decreasing speeds.
This is analogous to the idea that a slow jog can be the same speed
as a fast walk.

Depending on the application, some agents are set to be more ag-
gressive by specifying a higher maximum velocity. These agents
will be more likely to be in the jogging motion in order to reach
their goals.

5 Implementation and Results

In this section we describe the implementation of our multi-agent
navigation system and highlight its performance on various envi-
ronments. We have implemented our algorithm on a PC running
Windows XP operating system, with an 3Ghz Pentium D CPU,
2GB memory and an NVIDIA 7900 GPU. We used Visual C++ 7
programming language and OpenGL as the graphics API for ren-
dering the environments. The initial Adaptive Elastic Roadmap

(AERO) for an environment is initialized by computing the Voronoi
diagram of the static obstacles in the environment. This computa-
tion helps initialize the roadmap with links that are optimally clear
of obstacles when the simulation begins. To simulate particle dy-
namics of the agents, we used a semi-implicit verlet integrator [Ver-
let 1967; Jakobsen 2001].

Proximity computations to dynamic obstacles are accelerated us-
ing a spatial hash data structure to identify the nearby objects. We
maintain a spatial hash table of all dynamic obstacles, agents and
links. Briefly, spatial hashing uses a hash function and table to com-
press and update a regular spatial decomposition. This step enables
efficient lookups and proximity computation. In addition, to accel-
erate proximity computations to static obstacles, we precompute a
discretized Voronoi diagram of the obstacles using the GPU [Sud
et al. 2006]. The discrete Voronoi diagram provides proximity in-
formation to the nearest obstacle. To get the set of all obstacles
within a given radius r, we scan the discrete Voronoi diagram (and
distance field) within a window of size r× r and check if the dis-
tance value at the discrete samples is less than r. Thus the proximity
computation is reduced to a small number of table lookups.

5.1 Benchmarks

We demonstrate our system on three complex scenarios.

• Maze: The maze scenario considers the case of multiple
agents navigating a maze. The maze has 8 entry and 8 exit
locations, and 1288 polygons. The initial roadmap consists
of 113 milestones and 281 links. By using AERO, they have
complete knowledge of how to navigate the maze despite its
complexity and thus are able to quickly move toward their
goals. See Fig. 5.

• Tradeshow: The tradeshow scenario is an indoor environ-
ment of an exhibit hall in a trade show. The exhibit consists
of 511 booths and 110K polygons. The initial roadmap con-
sists of 3996 links and 5996 milestones. Numerous agents
walk around and visit multiple booths. The goals for each
agent are updated as the agent arrives at a booth. Some agents
stop when they reach their goal in order to simulate observa-
tion of a particular point of interest. After a certain amount
of time, the agents will resume walking towards their next
goal. Also, certain booths have fixed agents whose orienta-
tion changes according to passing agents. As agents move
freely through the floor, they act as dynamic obstacles, and
update the AERO. See Fig. 7.

• City: The city scenario is an outdoor scene consisting of mul-
tiple city blocks. The model consists of 924 buildings and
235K triangles. The initial roadmap for the environment con-



sists of 4K links. The environment also consists of 50 moving
cars as dynamic obstacles. As the cars move through the ur-
ban setting, links on the path deform around the obstacles and
get invalidated. We add a higher potential in front of the cars
along their direction of motion, which decreases the proba-
bility of the agents from selecting paths in front of moving
obstacles. The environment is populated with a non-uniform
density of agents moving along the side walks or crossing the
streets. Additional behavior characteristics of each agent are
assigned at run-time. These individualized behavors includes
updating the goals, varying the maximum speed, and chang-
ing interaction range of the agents. See Fig. 6.

Demo Agents Sim Path AERO Total
Search Update Time

Maze 500 9.1 0.005 0.58 9.64
Maze 1000 31.2 0.01 0.58 31.79
Trade Show 500 8.73 3 5.5 17.23
Trade Show 1000 32.95 7 5.5 45.45
City 500 9.75 7.4 15.1 32.25
City 1000 35 13.1 15.1 63.2

Table 1: Performance on each scenario. Timings reported here
are the average simulation time per frame (step) broken down into
the time for simulating local dynamics (Sim), performing path
search (Path Search), and updating AERO on the fly (AERO Up-
date). All timings are in milliseconds.

5.2 Results

We highlight the performance of our algorithm on the complex
benchmarks. Our approach can perform real-time simulation of
crowds with up to 1,000 independent agents at interactive rates –
ranging from 16 to 104 frames per second, depending on the scene
complexity and the crowd density. Our current implementation is
unoptimized and does not make use of all optimized computations
on the GPU. The performance of our algorithm in the environments
(with different complexity) and varying number of agents is high-
lighted in Table 1.

6 Analysis and Discussion

In this section we analysis the time complexity of various stages
of our algorithm, and provide a qualitative comparison with prior
work.

6.1 Analysis

Performance of our approach depends on a number of factors. At
each time-step, AERO’s complexity is O(|M|+ |E|), or linear in
the number of particles and edges. The tasks per timestep in-
clude force computations, numerical integration, as well as path
search and roadmap maintenance. Agent motion also depends lin-
early in the number of agents, but each agent also performs a path
search, thus making the agent portion of computation complex-
ity O(|N|+ |E||N|). But, in all of these cases, the performance
scales linearly with the number of agents or the complexity of the
roadmap. Therefore, this approach should be able to scale well to a
large number of agents.

6.2 Comparison and Limitations

We compare some of the features of our approach with prior algo-
rithm and highlight some of its limitations. Our adaptive roadmap
based agent navigation algorithm is designed to perform real-time

global navigation for a large number (e.g. hundreds or thousands)
of independent or heterogeneous agents, each with different goals.
We also take into account dynamic obstacles and the local dynamics
among the agents. AERO continuously adapts to dynamic obstacles
and is used to compute collision-free paths in dynamic environ-
ments. As compared to local or potential field methods, AERO can
compute a global path for each agent. In addition, we use elastic
bands and link bands to augment the local dynamics and resolve
collisions among multiple agents. Due to lazy and incremental
updates to the roadmap and efficient computation of guiding-path
forces with link bands, this approach can scale well to hundreds or
thousands of agents.

Comparisons: Our work is complementary to several existing
works on crowd simulation and multi-agent planning. Continuum
Crowds [Treuille et al. 2006] targets navigation for a small umber
(2−5) groups of human agents, where each group consists of many
(upto thousands) agent with identical goals and behavior character-
istics. Moreover, this approach uses local collision avoidance and
its accuracy is governed by the underlying grid resolution. This
approach has not been shown to extend well to a large number of
groups or when there are challenging narrow passages in the free
space, as shown in our maze and trade show benchmarks.

Graph based approaches[Pettre et al. 2005; Lamarche and Donikian
2004; Li and Gupta 2007] use proximity graphs to capture the
connectivity of the navigable space and use it for agent coordina-
tion. However, the navigation graphs are precomputed and thus are
mainly restricted to static environments. Multi-agent Navigation
Graphs [Sud et al. 2007] efficiently compute dynamic navigation
graphs for simple agents. However, this approach is limited to a
few hundred agents and does not scale with the number of agents.
It cannot guarantees coherent and smooth paths, as shown in our
video. Corridor Maps [Garaerts and Overmars 2007] use similar
proximity ideas as link bands to define navigable space, and can
adapt to dynamic obstacles. However, corridor maps cannot easily
handle dynamic topology of the roadmap and model emergent be-
haviors like agents following each other in lanes. Local agent-based
and potential-field methods [Reynolds 1987; Shao and Terzopoulos
2005] perform well for a large number of agents and exhibit inter-
esting crowd-like behaviors, but cannot provide same guarantees in
path finding as global approaches.

Limitations: Our approach has some limitations. Our current im-
plementation address collision-free navigation of a large number of
3-DoF agents, therefore our work does not produce realistic motion
in situations where each human is modeled as a high DoF avatar.
Although AERO uses a global roadmap at each given time step
for path computation, the local dynamics formulation to update the
links can potentially result in an agent getting stuck in a local min-
imum across space-time. In other words, our work may not be able
to provide convergence guarantees or provide completeness on the
existence of a collision-free path for each agent in all environments.
Furthermore, we currently treat each agent as an individual agent
and do not exploit all the behavior-related characteristics of real
crowds such as grouping. Finally, the performance of proximity
queries is sensitive to choice of hash function parameters and theo-
retical analysis can be of potential interest for challenging scenarios
with many varying parameters.

7 Conclusion

We present a novel approach for real-time navigation of indepen-
dent agents in complex and dynamic environments. We use adap-
tive roadmaps and present efficient algorithms to update them.
These roadmaps are augmented with link bands to resolve collisions
among multiple agents. The algorithm has been applied to complex



indoor and outdoor scenes with hundreds or thousands agents and
dynamic obstacles. Our preliminary results are encouraging and the
algorithm can compute collision-free paths for each agent towards
its goal in real time.

There are many avenues for future work. First of all, we would like
to develop multi-resolution techniques to handle a very large num-
ber of agents, e.g. 10-20K independent agents at interactive rates.
Secondly, we would like to use better models for local dynamics
and behavior modeling that can result in more realistic crowd-like
behavior. Instead of its current simple model, we would like to use
higher DoF articulated models for each agent to generate more re-
alistic motion. However, this would increase the dimensionality of
the configuration space and significantly increase the compleixty of
the navigation algorithm. Finally, it may be useful to extend these
results to generate truly heterogeneous crowd behavior [Bon 1895],
using example based models to guide the simulation [Lerner et al.
2007].
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Figure 6: Crowd simulation in an urban landscape: A street in-
tersection in a virtual city with 924 buildings, 50 moving cars as
dynamic obstacles and 1,000 pedestrians. We show a sequence of
four snapshots of a car driving through the intersection. As the
car approaches a lane of pedestrians (top), the lane breaks (middle
two images) and the pedestrians re-route using alternate links on
the adaptive roadmap. Once the car leaves the intersection (bot-
tom) the pedestrians reform the lane using the adaptive roadmap.
We are able to perform navigation of 1,000 pedestrians in this ex-
tremely complex environment at 16fps on a 3Ghz PC.

Figure 7: Sequence of 4 snapshots from Tradeshow demo. The envi-
ronment contains 511 booths with 110K polygons. The agents move
toward different booths and avoid each other using link bands.
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Figure 1: In order to avoid collisions between the umbrella and the two posts the arm motion was planned in sync with a walking sequence.

Abstract

Editing recorded motions to make them suitable for different sets of
environmental constraints is a general and difficult open problem.
In this paper we solve a significant part of this problem by mod-
ifying full-body motions with an interactive randomized motion
planner. Our method is able to synthesize collision-free motions
for specified linkages of multiple animated characters in synchrony
with the characters’ full-body motions. The proposed method runs
at interactive speed for dynamic environments of realistic complex-
ity. We demonstrate the effectiveness of our interactive motion
editing approach with two important applications: (a) motion cor-
rection (to remove collisions) and (b) synthesis of realistic object
manipulation sequences on top of locomotion.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction Techniques.

Keywords: character animation, motion capture, motion editing,
virtual humans, object manipulation

1 Introduction

Techniques based on libraries of motion capture produce the most
realistic animations of virtual humans to date. However one of the
main drawbacks of such techniques is their inability to offer, with-
out additional mechanisms, any variations from the exact recorded
motions. The virtual environments where the playback of motion
occurs differ from the environment in which the motion was cap-
tured. Virtual environments often contain obstacles and characters
that were not present in the motion capture studio. The motion cap-
ture data must be modified to accommodate the virtual environment
∗e-mail: ashapiro@cs.ucla.edu
†e-mail:mkallmann@ucmerced.edu
‡e-mail:pfal@cs.ucla.edu

in order to preserve the appearance of realism. For example, a vir-
tual human may need to swing its arm away to avoid a virtual object
or lift its leg higher in order to step over an obstacle that lies on the
ground.

Designing in advance all required motions for a given virtual en-
vironment or scenario involves tedious and time-consuming design
work. Furthermore, it is not practical to rely on pre-designed mo-
tions when object grasping and manipulation are required for arbi-
trarily located objects in arbitrary scenes. A recorded motion cap-
tured of a person catching a ball with two hands at chest-level will
not be effective for catching a different sized ball with one hand at
waist-level. The problem is even more complex when the charac-
ter, the target and the obstacles in the environment move. This is
the problem that we address in this work.

We introduce a new motion editing approach that combines
recorded motions with motion planning in order to produce realistic
animations of characters avoiding and manipulating moving objects
in dynamic environments. The approach has two applications: 1)
Motion correction, where a prerecorded motion played on a virtual
human is automatically corrected to respect obstacles in the virtual
environment, and 2) Object manipulation, where virtual humans are
instructed to grab, drop and touch various objects, either moving or
fixed, while playing back recorded motion and respecting both fixed
and moving obstacles As an example of motion correction, Figure 1
shows a walking character manipulating an umbrella so that it can
walk through the two posts without hitting them. The motion of
the character’s arms was synthesized interactively by our planner
on top of the original locomotion.

Our approach is based on a motion planner that generates collision-
free motions for specified linkages of a character, making them
reach desired targets at specified times. In order to address the time
constraints, the planner considers time as one additional dimension
in the search space. Therefore moving targets, moving obstacles
and synchronization with keyframe animations can all be taken into
account together. Our method proves to be very efficient for pro-
ducing object manipulation sequences as well as for adjusting mo-
tions to avoid collisions with obstacles. We are also able to control
stylistic aspects of the resulting motions by customizing the search
heuristics that our planner employs when exploring the space of
possible configurations. Furthermore, we employ an anatomically
meaningful skeleton parameterization that helps us enforce realistic
limits on the motion of the character’s joints. To demonstrate the ef-
fectiveness of our approach, we present several complex examples
solving highly dynamic tasks.



Contributions. We present: (a) a hybrid motion synthesis solution
that combines recorded motions with motion planning, and (b) how
to control the obtained results by choosing different configuration
sampling strategies for the motion planner.

In general our method can be applied to generic task-oriented mo-
tion editing problems respecting collision-free and spatio-temporal
constraints. It requires about one second of time to compute mo-
tions of average complexity making it suitable for interactive use.

2 Related Work

Motion planning research for animated characters has traditionally
been segmented into two different areas; 1) full-body motion plan-
ning for the purpose of locomotion, and 2) reach and arm planning
for the purpose of object manipulation.

Full-body locomotion planning. Motion synthesis, whose pri-
mary goal is to generate plausible motion that adheres to given
constraints, such as a movement path, has been explored by past
research [Lau and Kuffner 2005; Kwon and Shin 2005; Lai et al.
2005; Kovar et al. 2002; Arikan and Forsyth 2002; Choi et al.
2002]. The goal of our method differs in that rather than generating
locomotion sequences as these other methods do, it targets arm and
leg movements corrections that either adhere to constraints in the
virtual environments or allow object manipulations not included in
the original motion. Our method uses the time dimension in plan-
ning in order to handle dynamic obstacles. Of particular note, [Lau
and Kuffner 2005] uses the time dimension in order to plan for dy-
namic obstacles. In contrast, our method uses the time dimension
in concert with a locomotion clip to handle object manipulation and
arm linkage adjustments, rather than to generate the underlying lo-
comotion clip. Also, our method does not require a preprocessed set
of motion clips that have already been segmented and transformed
into an FSM, and can use any motion clip that propels the animated
character. The inclusion of the time dimension in a motion planner
has also already been proposed in Robotics [Hsu et al. 2002]; how-
ever, we present a planner that uses the time dimension for a specific
set of tasks; to plan the motions of some limbs in synchronization
with external motions affecting the same character.

Given the complementary nature of our work to the research in lo-
comotion synthesis, our method could be enhanced with the inclu-
sion of such methods as a preliminary motion editing stage. The
locomotion generation method would create a motion clip, which
would subsequently be used as input into our system which would
in turn edit and arm and leg movements of the resulting animation.

Of relation to our work, [Pettré et al. 2003] uses a two-stage lo-
comotion planner to first plan the movement of the character, then
correct the upper body for collisions. Our method differs in it can
handle simultaneously moving targets, moving obstacles and mov-
ing characters.

Reach and arm planning Since the first application of motion
planning to computer animation [Koga et al. 1994] which included
grasp planning, several motion planning methods have been pro-
posed specifically addressing human-like characters manipulating
objects.

One approach is to search for a sequence of intermediate suitable
hand locations in the workspace and use Inverse Kinematics (IK) to
derive arm postures reaching each intermediate hand location [Ya-
mane et al. 2004; Liu and Badler 2003; Bandi and Thalmann 2000].
The final valid motion is obtained through interpolation of the pos-
tures. Another approach is to search directly in the configuration

space [Koga et al. 1994; Kuffner and Latombe 2000], yielding sim-
pler algorithms (not requiring IK during the search) that can address
the entire solution space. As the search space grows exponentially
with its dimension, simplifying control layers can be specified for
synthesizing whole-body motions [Kallmann et al. 2003].

Hardware acceleration has been used to generate arm linkage paths
for manipulation purposes [Liu and Badler 2003] for stationary
characters. Our work is similar in that we use a similar analytically-
based IK algorithm [Tolani and Badler 1996], however our method
works with both non-stationary characters as well as moving ob-
jects.

A key feature of our method is efficiency. We choose to perform the
search in the configuration space, relying on a Rapidly-Exploring
Random Tree (RRT) planner [LaValle 1998; LaValle and Kuffner
2000] in its bidirectional version [Kuffner and LaValle 2000] along
with adding the time dimension to the search. This allows our
method to be used interactively by an animator.

The problem of synthesizing human-like arm movements is ad-
dressed by [Yamane et al. 2004] by using examples from motion
capture examples to generate velocity profiles of natural arm mo-
tions. Unlike this method, our method is able to plan motions that
involve moving feet and moving characters. Our method does not
use example motions and thus our arm movements are less likely to
look as natural. However, we are able to generate a solution with
much greater speed, on the order of seconds rather than minutes,
and thus are much better suited for interactive use.

3 Problem Formulation

We represent the character as an articulated figure composed of
hierarchical joints. Let CF be the space of all full configurations
of the character. Let c f = (p,q1, . . . ,qr−1,qr, . . . ,qn) ∈CF be one
full configuration of the character, where p ∈ R3 is the position of
the root joint, and qi ∈ S3, i ∈ {1, . . . ,n}, is the rotational value of
the ith joint, in quaternion representation. The components of c f

are organized in such way that the rear part cp = (qr, . . . ,qn) ∈CP

denotes the degrees of freedom (DOFs) controlled by the planner,
and the fore part cm = (p,q1, . . . ,qr−1) ∈CM contains the remain-
ing DOFs, which are controlled by an external motion. Therefore
CF = CM×CP and c f = (cm,cp).

An external motion controller affecting the DOFs in CM is de-
fined as a time-varying function mm(t) = (p(t),q1(t), . . . ,qr−1(t)).
Therefore p(t) ∈ R3 describes the translational motion of the root
joint, and qi(t) ∈ S3, 1 ≤ i < r, describes the rotational motion of
the affected joints in their local frame coordinates. We assume that
mm is completely defined over a given time interval I ⊂R, as is the
case for motions defined as keyframe animations. We furthermore
assume that mm(t) is collision-free for all t ∈ I.

In order to take into account moving objects in the environment, all
object motions are required to be parameterized by the same time
parameter t ∈ I of motion mm. We therefore construct a function
w(t), which sets the state of the world to the desired time t.

Let cp
init ∈CP and cp

goal ∈CP be initial and goal configurations spec-
ified to be reached at times tinit and tgoal respectively, [tinit , tgoal ]⊂ I.
Our search space includes the time dimension and is defined as
CS = CP × [tinit , tgoal ]. Configuration cs = (cp, t) ∈ CS is valid if
the character’s posture (mm(t),cp) ∈CF respects joint limits and is
collision-free when the world’s state is w(t). We denote by CS

f ree
the subspace of all valid configurations in CS.



Consider now cs
init = (cp

init , tinit) and cs
goal = (cp

goal , tgoal) be initial
and goal configurations in CS

f ree. Our problem is then reduced to
finding a path in CS

f ree connecting cs
init to cs

goal .

Our planner solves the problem by searching for a sequence of valid
landmarks cs

i = (qr
i , . . . ,qn

i , ti) ∈CS, 1≤ i≤ k, such that:

1. cs
1 = cs

init , and cs
k = cs

goal ,

2. the time parameter is monotone, i.e., ti < ti+1, 1≤ i < k,

3. for all pairs of adjacent landmarks (cs
i ,cs

i+1), 1 ≤ i < k, the
motion obtained through interpolation between cs

i and cs
i+1

remains in CS
f ree.

Let q j
i , r ≤ j ≤ n, be the jth quaternion of landmark cs

i , 1 ≤ i ≤ k.
Motion mp(t) can then be constructed as:

mp(t) = (qr(t), . . . ,qn(t)),

with q j(t) = slerp(q j
i ,q

j
i+1,

(t−ti)
ti+1−ti ),

and ti ≤ t < ti+1.

The composite motion m f (t) = (mm(t),mp(t)), t ∈ [tinit , tgoal ], will
be a valid motion satisfying constraints cp

init and cp
goal at times

tinit and tgoal respectively, and therefore solving our problem. We
present in the following section our motion planner, which finds the
sequence of landmarks cs

i required for constructing mp(t).

4 Synchronized Motion Planner

The goal of our planner is to find a sequence of landmarks connect-
ing cs

init to cs
goal in CS

f ree. For solving this problem we propose a
bidirectional RRT planner algorithm that supports landmarks with
monotone time parameters.

4.1 Algorithm

Algorithm 1 summarizes our implementation. Two search trees Tinit
and Tgoal are initialized having cs

init and cs
goal respectively as root

nodes, and are sent to the planner. The trees are iteratively expanded
by adding valid landmarks. When a valid connection between the
two trees can be concluded, a successful path in CS is found. Oth-
erwise when a given amount of time has passed, the algorithm fails.

Algorithm 1 SYNCPLANNER (T1,T2)
1: while elapsed time ≤ maximum allowed time do
2: cs

sample← SAMPLECONFIGURATION().
3: cs

1← closest node to cs
sample in T1.

4: cs
2← closest node to cs

sample in T2.
5: if INTERPOLATIONVALID (cs

1,cs
2) then

6: return MAKEPATH (root(T1),cs
1,cs

2,root(T2)).
7: end if
8: cs

exp← NODEEXPANSION (cs
1,cs

sample,ε).
9: if cs

exp 6= null and INTERPOLATIONVALID (cs
exp,cs

2) then
10: return MAKEPATH (root(T1),cs

exp,cs
2,root(T2)).

11: end if
12: Swap T1 and T2.
13: end while
14: return failure.

Line 2 in algorithm 1 requires a sampling routine in CS for guid-
ing the search for successful landmarks. Our sampling routine is
customized for human-like characters and is explained in detail in
section 4.2.

Lines 3 and 4 require searching for the closest configurations in
each tree. A linear search suffices as the trees are not expected
to grow much. The metric used is a weighted sum of time and
arm posture metrics. Let cs

1 and cs
2 be two configurations in CS,

such that cs
j = (qr

j, . . . ,qn
j , t j), j ∈ {1,2}. Let pi

j be the position (in
global coordinates) of the joint affected by rotation qi

j , r ≤ i ≤ n.
The distance between cs

1 and cs
2 is computed as:

dist(cs
1,cs

2) = wt |t1− t2|+wa max
i
‖pi

1− pi
2‖,

where wt and wa are the desired weights.

Lines 5 and 9 check if the interpolation between two configurations
is valid. It is considered valid if two tests are successful:

1. the configuration in Tinit has to have its time component
smaller than the configuration in Tgoal ,

2. the interpolation has to remain in CS
f ree.

The simplest approach for testing item 2 above is to perform several
discrete collision checks along the interpolation between the two
configurations. In order to promote early detection of collisions,
we use the popular recursive bisection for determining where to
perform the discrete tests, until achieving a desired resolution. Note
that continuous tests not requiring a resolution limit are available
and can be integrated [Schwarzer et al. 2002].

The algorithm tests at lines 5 and 9 if a valid connection between T1
and T2 has been found, and in such cases a path in CS is computed
and returned as a valid solution. The path is computed using routine
MAKEPATH(cs

1,cs
2,cs

3,cs
4) (lines 6 and 10), which connects the tree

branch joining cs
1 with cs

2 to the tree branch joining cs
3 with cs

4, with
the path segment obtained with the interpolation between cs

2 and cs
3.

The node expansion in line 8 uses cs
sample as growing direction and

computes a new configuration cs
exp as follows:

cs
exp = interp(cs

1,cs
sample, t), where

t = ε/d, d = dist(cs
1,cs

sample).

Null is returned in case the expansion is not valid, i.e. if the inter-
polation between cs

1 and cs
exp is not valid or if the time component

in the configurations do not respect the monotone condition. Oth-
erwise cs

exp is linked to cs
1, making the tree grow by one node and

one edge. The factor ε represents the incremental step taken during
the search. Large steps make the trees grow quickly but with more
difficulty in capturing the free configuration space around obsta-
cles. Inversely, too small values generate roadmaps with too many
nodes, slowing down the algorithms.

Path Smoothing. When a solution is found, a final step for smooth-
ing the path is required. We use here the popular approach of apply-
ing several linearization steps. Each linearization consists of select-
ing two random configurations cs

a and cs
b along the solution path in

CS (not necessarily landmarks) and replacing the subpath between
cs

a and cs
b by the straight interpolation between them, if the replace-

ment is still a valid path. Note that the time component in cs
a and

cs
b are as well interpolated and smoothed. The process is repeated

until valid replacements are difficult to find or until a time threshold
is reached. This simple process works well in practice and has both
the effect of smoothing and shortening the path, which are obvious
properties expected in natural motions.



4.2 Configuration Sampling

The sampling routine guides the whole search and is of extreme im-
portance in determining the quality of a solution and how fast it is
found. It is therefore important to define meaningful joint parame-
terizations, joint limits and search heuristics for both reducing the
search space and guiding the search to more realistic postures. We
pay particular attention here to the joints of the arm linkages due to
their importance for object manipulation.

Joint Parameterization. The first step for ensuring anatomically
plausible postures is to impose meaningful joint range limits on the
articulations of the skeleton. For anatomical articulations with a
3 DOF rotation, e.g. the shoulder, we use the natural swing-and-
twist decomposition [Grassia 1998]. The remaining joints are either
parameterized with Euler angles or by a swing rotation.

For instance in the arm linkages the swing-and-twist decomposi-
tion is used to model the shoulder (3 DOFs). The elbow has flexion
and twist rotations defined with two Euler angles (2 DOFs), and
the wrist has a swing rotation (2 DOFs) parameterized exactly as
a swing-and-twist, however considering the twist rotation to be al-
ways 0. The linkages of the legs are similarly parameterized.

Joint Limits. The swing parameterization allows the use of spheri-
cal polygons [Korein 1985] for restricting the swing motion. Spher-
ical polygons can be manually edited for defining a precise bound-
ing curve. However we follow a simpler, more efficient, and still
acceptable solution for bounding swing limits based on spherical el-
lipses [Grassia 1998]. In this case, a swing rotation can be checked
for validity simply by replacing the axis-angle parameters into the
ellipse’s equation. The twist and flexion rotations of the remaining
DOFs are correctly limited by minimum and maximum angles.

Collision Detection. In order to achieve complex collision-free
motions, we take into account the full geometries of the characters
and the environment when checking for collisions. The VCollide
package [Gottschalk et al. 1996] is employed for querying if body
parts self-intersect or intersect with the environment.

Search Heuristics. We control the overall quality of the planned
motions by properly adjusting sampling heuristics. Uniformly sam-
pling valid postures has the effect of biasing the search toward the
free spaces. For example, in several cases where the character ma-
nipulates objects, there are obstacles in front of the character and
larger volumes of free space are located at the sides of the charac-
ter. Although these are indeed valid areas, realistic manipulations
are mainly carried out in the smaller free spaces in front of the char-
acter.

A simple correction technique for such cases consists of highly bi-
asing the sampling towards the bent configuration of the elbow.
This has the effect of avoiding solutions with the arm outstretched,
resulting in more natural motions. As we perform a bidirectional
search, it also contributes to decomposing the manipulation in two
distinct phases: bringing the arm closer to the body and then ex-
tending it towards the goal. Our biasing method starts sampling the
elbow flexion DOF with values in the interval between 100% and
90% of flexion, and as the number of iterations grow, the sampling
interval gets larger until reaching the joint limits.

For other less important joints, e.g. the wrist or spine joints if used,
the sampling is also similarly biased to a smaller range than their
validity range, resulting in more pleasant postures as these joints
are usually secondarily used for avoiding obstacles.

The sampling routine can be even interactively customized by
choosing different values for the sampling intervals used for sam-
pling each considered DOF. For example by adjusting the intervals

Figure 2: Two alternative solutions for correcting arm collisions
obtained by choosing different sampling heuristics.

of the shoulder DOFs we are able to control the overall location of
the obtained arm motion. The top row of Figure 2 shows an ex-
ample where the x-component of the shoulder swing was sampled
between 50 and 100 degrees, generating only relatively low arm
postures during the search. In the solution shown in the bottom row
however, we choose to sample higher arm postures. Such exam-
ple illustrates that we are able to control the overall quality of the
motion and avoid repetitive results.

Final Sampling Routine. The final sampling routine can be sum-
marized as follows:

1. Configuration cs
rand = (cp

rand , trand) ∈CS is generated having
the values in cp

rand randomly sampled in the described param-
eterizations based on swings, twists and Euler angles; inside
individually placed range limits and following the appropriate
sampling heuristics. The time component trand is uniformly
sampled in [tinit , tgoal ].

2. The state of the world is set with w(trand) and configuration
mm(trand) is applied to the character.

3. Configuration cp
rand is applied to the character.

4. Finally the positions of all objects are updated and tested for
collisions; if no collisions are found cs

rand is returned as a suc-
cessful valid configuration, otherwise the sampling routine re-
turns to step 1.

5 Inverse Kinematics

Inverse Kinematics is an important component of our overall
method. Although the planner does not require the use of IK during
its execution, our IK allows us to easily (and interactively) specify
goal arm and leg postures to be used as input to the planner. In
particular for interactive grasping, the use of IK allows the user to
define goal arm postures for the planner on-line, by simply selecting
goal hand positions in the workspace.

In order to obtain realistic and fast results, we implemented an ana-
lytical IK formulation [Tolani and Badler 1996] that produces joint
values directly in our arm and leg parameterizations with meaning-
ful joint limits based on swings and twists. Note that for each arm
or leg, there are 7 DOFs to be determined for reaching a given hand
position and orientation goal. The problem is under-determined and
the missing DOF is modeled as the swivel angle, which is an extra
parameter specifying the desired rotation of the elbow (or knee)
around the wrist-shoulder (or ankle-hip) axis.



We have furthermore integrated in the IK a simple search strategy
that automatically searches for a swivel angle leading to a valid
(and therefore collision-free) configuration. Equipped with such
automatic posture search, the IK and the planner are able to produce
complex collision-free animations for reaching given hand targets
interactively.

We start solving the IK with the desired initial swivel angle, which
is usually extracted from the current character posture. Then, the
posture given by the IK solver is checked for validity. If the posture
is not valid, the swivel angle is incremented and decremented by δ
and the two new postures given by the IK solver are again checked
for validity. If a valid posture is found the process successfully
stops. Otherwise, if given minimum and maximum swivel angles
are reached, failure is returned. Faster results are achieved in a
greedy fashion, i.e. when ∆ increases during the iterations. As the
search range is small this simple process is very efficient and the
whole process can be limited to a few number of tests. Note that
both joint limits and collisions are avoided in an unified way.

6 Applications and Results

We have integrated the methods described in this paper in the
DANCE animation system [Shapiro et al. 2005]. Multiple arms and
leg targets can be specified and solved by our planner interactively.
Targets can be dynamic and/or attached to any objects or body parts.
Characters can be instructed to grab, drop and move objects. Sev-
eral tasks can be specified simultaneously and synchronized with
arbitrary keyframe motions applied to the characters.

In the remainder of this section we present several results obtained
with our system. We group them by two key applications that
demonstrate the versatility and the effectiveness of our approach.
For a better presentation of the results we refer the reader to the
accompanying video and our website (removed for anonymity).

6.1 Motion Correction

Our planner introduces an effective way to correct portions of mo-
tions that are found to produce collisions with new objects in the
environment or with new objects attached to the character. Such
situations are common when reusing motions in new environments
or new characters. Our planner is able to search for an alternative
motion for the problematic limb which is both valid and in synchro-
nization with the original motion and any moving objects.

Let m be a given motion affecting the full configuration space CF of
the character. We want to correct a portion of m that was found to
obtain collisions. For solving this kind of problem, we define times
tinit and tgoal such that interval [tinit , tgoal ] spans the problematic
period of the motion.

Let m be decomposed in two parts, such that m(t) =
(mm(t),mp(t))∈CM×CP. The problem is then solved by planning
a new path between (mp(tinit), tinit) and (mp(tgoal), tgoal) in CS. If
the planner is successful, the result will be a collision-free motion
that is used to replace mp during interval [tinit , tgoal ].

We present several examples in this paper. Figure 4 (a) presents a
valid walking motion that becomes invalid when an umbrella is at-
tached to the right hand of the character. The umbrella collides with
the post in several frames of the sequence. Figure 4(b) presents the
corrected motion after the planner is applied to produce a new syn-
chronized motion for the joints of the right arm. The same walking
motion was also successfully corrected by our planner in a new

environment containing two posts (Figure 1). Other correction ex-
amples are shown in Figure 2 and Figure 4(c,d).

6.2 Interactive Object Manipulation

Object manipulation tasks for moving characters can be complex
and computationally expensive to synthesize. Our planner gener-
ates realistic results of such highly complex tasks by synchronizing
synthesized arm motions with locomotion sequences. For instance
in Figure 4(e) we generate a motion where the character grasps a
dynamic target through a moving ring while under the influence of
an idle motion affecting its body. Figure 4(f) shows an even more
complex motion where the character is asked to solve the same task
but while transitioning from walking to running. Figure 4(g) shows
a character walking and at the same time grabbing the hat of another
walking character.

For this kind of problem we first specify hand targets on the objects
to be grasped. Let h = {p,q}, h ∈ R3× S3, be a hand target de-
scribed as a target position and orientation for the wrist joint of the
character in global coordinates, to be reached at a given time tb.

Let again m(t) = (mm(t),mp(t)) ∈ CM ×CP be a motion as de-
scribed in Section 6.1. We want now to modify motion m such that
at time tb the character wrist joint is located at the given hand target
h, and as the modified motion has to be performed in a cluttered
environment, it has to be collision-free.

We now determine times ta and tc such that ta < tb < tc. Then
the problem is solved in two steps: first a path in CS is planned
between (mp(ta), ta) and (cp

h , tb) and then a second path in CS is
planned between (cp

h , tb) and (mp(tc), tc). Configuration cp
h ∈CP is

determined by employing our IK (Section 5), in order to determine
the best arm configuration that reaches the hand target h.

The sequences in Figure 4(h-j) show several complex manipu-
lation examples. The obtained results show realistic motions
where planned arm manipulation sequences are perfectly synchro-
nized with the walking motion. In this example, 10 planned se-
quences were used for synchronizing 5 different object manipula-
tions: grasping a piece of cheese from inside a box, dropping it on
the table, grasping a hat with the right hand, turning off the lights
with the left hand and then placing the hat on the head.

We have also implemented a system to interactively instruct a char-
acter to reach for arbitrarily located objects, in synchronization with
an on-line locomotion planner. We therefore compute the final mo-
tion in two steps: first a path is planned such that the character
arrives close enough to the object to grasp with the hand. A motion
captured sequence is then deformed to fit the computed path, and
before the locomotion is finished, we compose a synchronized arm
motion with the locomotion.

7 Discussion

One important characteristic of our method is the random nature
of the planner. It ensures that the obtained motions are always dif-
ferent, greatly improving the realism in interactive applications of
autonomous characters. At the same time, we are also able to con-
trol the overall aspect of the obtained results by choosing different
body motions to synchronize with and search heuristics (Figure 2).

The performance of the planner greatly depends on the complexity
of the environment. For instance in the complex scenario of Fig-
ure 4(h-j), the collision detection is handling 30K triangles and the



planner took about 2 seconds to both compute and smooth each of
the planned motions. In the simpler environments the performance
is about two times faster.

Limitations and Extensions. Although our results are realistic,
further processing could still be employed. For instance, dynamic
filters could be applied for ensuring the balance of the charac-
ter. However, this would penalize the overall performance of the
method. We chose not to employ a more time-consuming method,
such as those described by [Yamane et al. 2004] in the interests
of speed. Our method currently serves as an interactive application
whereby an animator can quickly edit and change the motion within
seconds to his or her tastes.

Although the examples presented here show the planner is mainly
applied to arms and legs, it can also be applied to any set of open
linkages. It can be as well employed sequentially, for example for
synchronizing the motions of several limbs: first, the motion of one
limb is planned in synchronization with the given external motions,
resulting in a new composite motion. Then, a second limb motion
can be synchronized with the previously obtained motion. The pro-
cess can be repeated until all limbs are planned and synchronized.
The result achieved is a decoupled priority-based (due to the chosen
order) planning process. Note that limbs may belong to different
characters, as in the example shown in Figure 3.

The examples here could also use longer linkages on the same char-
acter, such as those that include the arm and torso to accommodate
bending and twisting of the waist and trunk. The risk of using larger
IK linkages is the deteriorating effect on the resulting realism that
such a solution would provide. Since many IK solutions do not take
into account physics or changes to the COM or momentum of the
body, the longer the IK chain used, the less realistic the final mo-
tion will be. This could be overcome by either using an additional
dynamic filtering as a postprocessing step, or employing an IK that
accommodates changes to the rest of the body, such as shown by
[Grochow et al. 2004].

Figure 3: The motion of the character on the left side was planned
after the motion of the character on the right side, achieving syn-
chronized simultaneous graspings.

8 Conclusion

We have presented a new approach for motion editing based
on planning motions in synchronization with pre-designed (or
recorded) motion sequences and moving objects. In general, our
method is able to solve arbitrary spatio-temporal constraints among
obstacles and takes into account dynamic environments.

By relying on a hybrid approach, we are able to address the diffi-
cult constraints imposed by object manipulations, achieve realistic
results and still leave space for designers to customize and person-
alize the underlying motion sequences.
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locomotion planner for digital actors. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, 258–264.

SCHWARZER, F., SAHA, M., AND LATOMBE, J.-C. 2002. Exact
collision checking of robot paths. In Proceedings of the Work-
shop on Algorithmic Foundations of Robotics (WAFR’02).

SHAPIRO, A., FALOUTSOS, P., AND NG-THOW-HING, V. 2005.
Dynamic animation and control environment. In GI ’05: Pro-
ceedings of the 2005 conference on Graphics interface, Cana-
dian Human-Computer Communications Society, School of
Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 61–70.

TOLANI, D., AND BADLER, N. 1996. Real-time inverse kinemat-
ics of the human arm. Presence 5, 4, 393–401.

YAMANE, K., KUFFNER, J. J., AND HODGINS, J. K. 2004.
Synthesizing animations of human manipulation tasks. ACM
Transactions on Graphics (Proceedings of SIGGRAPH’04) 23,
3, 532–539.



(a) (b)

(c) (d)

(e)

(f)

(g)

(h)

(i) (j)

Figure 4: Sequences (a) and (c) have collisions and are corrected by our planner, which produced (b) and (d). Sequences (e) and (f) show
examples of a moving cube being grasped from inside a moving ring. The character in sequence (g) steals the hat of another character while
both are walking. Sequence (h) shows several object manipulations planned around obstacles and in synchronization with a long walking
motion. Details of grabbing and dropping the cheese are shown in sequences (i) and (j).
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Abstract
We present new techniques that use motion planning algorithms based on probabilistic roadmaps to control 22
degrees of freedom (DOFs) of human-like characters in interactive applications. Our main purpose is the auto-
matic synthesis of collision-free reaching motions for both arms, with automatic column control and leg flexion.
Generated motions are collision-free, in equilibrium, and respect articulation range limits. In order to deal with
the high (22) dimension of our configuration space, we bias the random distribution of configurations to favor
postures most useful for reaching and grasping. In addition, extensions are presented in order to interactively
generate object manipulation sequences: a probabilistic inverse kinematics solver for proposing goal postures
matching pre-designed grasps; dynamic update of roadmaps when obstacles change position; online planning of
object location transfer; and an automatic stepping control to enlarge the character’s reachable space. This is, to
our knowledge, the first time probabilistic planning techniques are used to automatically generate collision-free
reaching motions involving the entire body of a human-like character at interactive frame rates.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Recent research in the character animation domain has
mainly concentrated on the generation of realistic move-
ments using motion capture data. Probably on account of
its difficult nature, the problem of automatically synthesiz-
ing collision-free motions for object manipulation has re-
ceived little attention from the Computer Graphics commu-

† Work done while at EPFL - Virtual Reality Lab

nity. Most of the techniques developed1 have not sufficiently
explored this domain.

The automatic generation of collision-free grasping se-
quences has several direct applications in virtual real-
ity, games, and computer animation. And yet, producing
collision-free grasping motions currently involves lots of te-
dious manual work from designers.

Motion planning originated in Robotics, with an em-
phasis on the synthesis of collision-free motions for any
sort of robotic structure2. Some works have applied mo-

c© The Eurographics Association and Blackwell Publishers 2003. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.
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tion planning to animate human-like characters manipulat-
ing objects3, 4. However, the nature of the articulated struc-
tures being controlled is usually not taken into consideration.
Most often, only one arm is used for reaching while the rest
of the body remains static.

We present in this paper a collection of new tech-
niques based on probabilistic motion planning for control-
ling human-like articulated characters. Our goal is to syn-
thesize valid, collision-free grasping motions while taking
into account several human-related issues, such as: control
of the entire body (including leg flexion, spine and clavicle-
shoulder complex), joint coupling (e.g. spine), articulation
limits, and comfort criteria.

We mainly concentrate on the reaching phase problem,
i.e., how to compute a valid collision-free motion between
two postures. Our method operates on 22 degrees of freedom
(DOFs) of an abstract control layer, mapped to the actual
DOFs of the character (over 70).

In order to deal with the reduced yet high dimensional
configuration space defined by the abstract control layer,
we make use of a pre-computed Probabilistic Reaching
Roadmap encoding comfort criteria. This roadmap is con-
structed with a carefully tailored sampling routine that effi-
ciently explores the free regions in the configuration space
and favors postures most useful for grasping.

In addition, we present several extensions applied to the
problem of object manipulation: a probabilistic inverse kine-
matics method used to automatically propose goal postures
for designed grasps, a technique to dynamically update the
roadmap when obstacles change position, a method for plan-
ning transfer motions when objects are attached to the char-
acter’s hands, and an automatic stepping control mechanism
to enlarge the character’s reachable space.

We have fully implemented the methods proposed herein
as integrated interactive tools for the production of object
manipulation sequences. After a preprocessing of a few min-
utes (to compute the required roadmaps and manipulation
postures), manipulation motions are quickly synthesized.
Several animation sequences of a character reaching for and
manipulating objects are presented to demonstrate the effec-
tiveness of our method.

2. Related Work

It is common sense that the use of motion captured data is
the best approach to achieve realistic human-like motions
for characters. Several advances have been proposed on this
subject5, 6, 7, 8, 9. However, for motions such as object manip-
ulation, the main concern is on the precise control and cor-
rectness of motions, and thus captured data are hard to re-
use.

The key problem for object manipulation is to solve the
reaching phase for a given target 6-DOF hand location. The

most popular approach is to somehow solve the underlying
inverse kinematics (IK) problem9, 10, 11, 12. However, three
main difficulties appear when devising IK algorithms. First,
as the problem is under determined, additional criteria are
needed in the system formulation in order to select valid and
natural postures among all possible ones. Second, IK algo-
rithms alone do not ensure that generated postures are free
of collisions. Last, IK algorithms are more suitable for syn-
thesizing postures than animations.

Computing collision-free reaching motions is in fact a
motion planning problem2. Among the several existing
methods, those based on probabilistic roadmaps13, 14, 15, 16

are particularly amenable to high-dimensional configura-
tion spaces. Roadmaps can typically be computed in a pre-
processing step and re-used for fast on-line querying.

Different strategies have been proposed to construct
roadmaps. Visibility-based Roadmaps16 use a visibility cri-
terion to generate roadmaps with a small number of nodes.
Rapidly-Exploring Random Trees (RRTs)14, 17 generate a
tree that efficiently explores the configuration space. Be-
cause of this important property, we make use of RRTs as
the growing strategy to construct our roadmap.

Other kinds of motion planners have been applied to the
animation of human-like characters3, 4, 18. However, these
works are limited to the control of only one arm at a time. In
another direction, a posture interpolation automaton19 was
proposed, however with collision avoidance treated as a post
process based on a force-field approach, which is highly sen-
sitive to local minima.

In order to compute complete grasping and object ma-
nipulation sequences, several extensions are required. We
follow the idea of predefining grasps (hand locations and
shapes) for each object to be manipulated20, 21, 22, and de-
veloped a probabilistic IK algorithm to automatically pro-
pose goal postures matching the predefined grasps. The IK
algorithm is inspired by some approaches based on Genetic
Algorithms23, 24.

Other works have also addressed the dynamic update of
roadmaps25, allowing to cope with object displacement in
the workspace. We present here a similar technique except
that we maintain a roadmap that is always a single connected
component.

3. Method Overview and Paper Organization

A character posture is defined using a 22-DOF abstract con-
trol layer divided as follows: 9 DOFs to control each arm, 3
DOFs to control spine and torso movements, and 1 DOF to
control leg flexion. Hereafter, when we speak of configura-
tions, postures and DOFs, we are referring to configurations,
postures and DOFs of the abstract control layer.

Let C be the 22-dimensional configuration space of our

c© The Eurographics Association and Blackwell Publishers 2003.
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control layer. LetCf ree denote the open subset of valid con-
figurations inC. A configuration is said to be valid if the
corresponding posture: is collision free, respects articulation
range limits, and is balanced.

A sampling routine is responsible for generating random
valid configurations inCf ree. As the dimension ofC is high,
several heuristics are implemented in order to favor the gen-
eration of postures most useful for grasping. The configura-
tion sampling routine and the abstract control layer specifi-
cation are presented in Section 4.

The sampling routine is used to construct our roadmap.
We first run the standard RRT algorithm14, 17 to build a
roadmap from the initial rest posture, and then apply a pro-
cess which adds extra valid edges (or links) to existing
nodes. Valid extra edges are added only if they represent a
shorter path in the roadmap, i.e. if they represent a shortcut.
The final step is to perform a proper weighting according to
comfort criteria. As a result we obtain a Probabilistic Reach-
ing Roadmap, hereafter simply referred to as roadmap. The
roadmap construction process is detailed in Section 5.

Let R be a roadmap which was computed during an off
line phase. Letqc be the current character configuration and
let qg be a given valid goal configuration. A pathP in Cf ree
joining qc andqg is determined by finding the shortest path
in R joining the nearest nodes ofqc andqg in R. PathP is
said to be valid if all configurations interpolated alongP are
valid, and in this case a final smoothing process is applied in
order to obtain the final reaching motion. This entire process
is described in Section 6.

As configurations have 22 DOFs, we allow designers to
specify only target 6 DOFs hand locations to be reached, and
a probabilistic IK algorithm automatically proposes valid
goal configurations. This probabilistic IK algorithm and sev-
eral other extensions useful for creating animations involv-
ing grasping and displacement of objects are presented in
Section 7.

Section 8 presents and discusses obtained results, and fi-
nally Section 9 presents conclusions and future work.

4. Configuration Sampling

Configuration Definition. A complete configuration of our
abstract control layer is defined by a set of 22 DOFs. Each
arm is defined by 9 DOFs, five of which are devoted to the
shoulder complex, the four remaining ones being equally
distributed on the elbow and wrist. The character’s spine,
which comprises the lumbar and thoracic vertebrae, is com-
pletely determined by three DOFs, each of which controlling
a unique rotational direction. Finally, 1 translational DOF
controls the flexion of the legs.

We represent the arm’s kinematic chain by four rotational
joints: clavicle, shoulder, elbow and wrist. Except for the el-
bow, which is parameterized by two Euler angles (flexion

and twist), we use the natural swing-and-twist decomposi-
tion defined by Grassia26:

R= RtwistRswing, where

Rtwist = Rz(θ), andRswing=
[
Sx Sy 0

]
The swing motion is performed by a rotation parameter-

ized by the above axis-angle. Note that the rotation axis for
the swing always lies in the x-y plane perpendicular to the
skeleton segment. The axial rotation (or twist) that follows
occurs around the (arbitrarily chosen) z-axis of the local
frame. In practice, the axial rotation is not used for clavicle
and wrist joints and we simply setθ = 0.

The one singularity of the parameterization is reached
when the swing vector has normπ. Consequently, the sin-
gularity is easily avoided for the motion range of human
joints by choosing an appropriate zero posture (i.e., when
Sx = Sy = 0). For the shoulder joint for instance, we choose
a reference posture in which the arm is outstretched.

We place limits on each arm joint individually. Elbow
flexion, elbow twisting and shoulder twisting are limited by
confining the corresponding angles to a given range. The
direction of the upper arm is restricted to the interior of a
spherical polygon27. The same kind of directional limit is
applied to the clavicle and wrist joints.

The many joints in the spine are controlled by a reduced
set of three DOFs, which determine respectively the total
spine flexion (bending forward and backward), roll (bend-
ing sideways) and twist. While roll and twist are distributed
uniformly over the spine joints, we apply the flexion mainly
on the lumbar vertebrae. This distribution ensures that when
the character bends forward, its back remains straight and
not unnaturally hunched. This approach gives good results
(see Figure 2) and is simpler than other spine coupling
strategies28.

Leg flexion is determined through the use of an IK solver.
We first constrain the position and orientation of the feet to
remain fixed with respect to the ground. Then we analyti-
cally compute the required rotations at the hips, knees and
ankles to lower the waist according to the value of the DOF,
which represents the vertical translation of the pelvis. Note
that the same DOF could be used to make the character stand
on tiptoes so as to reach higher.

Sampling. The sampling routine is responsible for gen-
erating random valid configurations. The random generation
takes place in the 22-DOFs parameter space. For the most
part, parameters are randomly generated directly within the
allowed range (i.e., articulation limits). For DOFs that con-
trol a swing movement, however, directly generating param-
eters that respect directional limits is difficult for lack of an
analytic formulation of the spherical polygon. In such cases,
we simply keep iterating until the directional limits are re-
spected (shoulder), or project the current direction onto the
borders of the spherical polygon (wrist). Before accepting
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the random posture, we finally check if it is balanced and
free of collisions.

The balance test performs a projection of the character’s
center of mass onto the floor, and check if it lies inside the
support polygon defined as the convex hull of the feet base.

Rigid objects representing body parts are attached to the
skeleton and used for collision checking. We first deactivate
collision checking for all pairs of body parts that intersect in
the rest posture (assumed to be valid collisions). Deactivated
pairs are mainly adjacent body parts in the skeleton. After
this initialization process, a collision is said to take place
if any activated pair of body parts intersects, or if any body
part collides with the environment. Note that rigid body parts
are used for collision checking but that a regular skinning
technique is used for displaying a realistic character with de-
formable skin. We employ the V-Collide library29 for colli-
sion checking.

As the dimension of our configuration space is high, we
bias the random distribution of configurations in order to fa-
vor postures most useful for reaching and grasping. More
specifically, we distinguish two posture types:

• Regular postures have little spine motion, little leg flexion,
no clavicle motion and random arm poses.

• Distant-reaching postures have large spine motion and/or
large leg flexion, little elbow flexion, shoulder-clavicle
coupling, arm-legs coupling, and arm-torso coupling.

In our current implementation, regular and distant-
reaching postures are generated with a respective likelihood
of 60% and 40%. Also, 66% of distant-reaching postures use
the right hand as if the character were right-handed (see Fig-
ure 1).

Figure 1: Example roadmap (with little knee flexion). Each
configuration in the roadmap is graphically represented with
two graph nodes, which are the positions of the right (purple
color) and left (blue color) wrist. Asymmetry results from the
preference given to the right arm.

Regular postures are useful when spine motion is not
needed to reach a location with the hand. Note that, how-
ever, we always generate a small amount of spine motion to
avoid robotic-like motions due to a completely static verte-
bral column.

Distant-reaching postures are suitable for remote objects

that cannot be reached with arm motion only. Example pos-
tures can be seen in Figure 2. An important concept for
generating distant-reaching postures is the use of couplings.
These serve to favor configurations that expand the reachable
space of the character. Leg flexion for instance, is authorized
if one arm points downwards as if to reach for a low ob-
ject. Similarly, the spine is bent so that the up-most thoracic
vertebra travels in roughly the same direction as that of the
arm. Finally, the clavicle is moved in such a way that another
few centimeters are gained toward the imaginary location the
arm points at.

Figure 2: Examples of distant-reaching postures.

Instead of computing two separate roadmaps for the right
and left arms, we generate a single roadmap encoding mo-
tions of both arms. Besides reducing memory consumption
and storage costs for large roadmaps, we guarantee that
while reaching with one arm, possible motions of the spine
will not induce collisions with the other arm. A further ben-
efit is that our roadmap can also handle multi-hand reaching
motions.

5. Roadmap Computation

The roadmap construction relies mainly on three functions:
the sampling routine, the distance function and the interpo-
lation function. We now describe the latter two.

Distance function.Good results are usually obtained with
distance functions based on the sum of the Euclidean dis-
tances between corresponding vertices lying in the shape of
the articulated structure2, 7. We use a similar yet simplified
approach based on a selected set of articulations: the bottom-
most lumbar vertebra, the top-most thoracic vertebra, the ar-
ticulations of both arms (shoulder, elbow and wrist), and fi-
nally the thumb and pinky base joints to capture arm twisting
and wrist rotations. Letq1 andq2 be two configurations. Our
distance functiondist(q1,q2) returns the average sum of the
Euclidean distances between the corresponding selected ar-
ticulations at configurationsq1 andq2.

The primary advantage of our distance function is its
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speed. Another important property is that it remains inde-
pendent of both the skin deformation module and the ver-
tices density distribution in the skin mesh.

Interpolation function. The interpolation function
interp(q1,q2, t) returns, for eacht ∈ [0,1] a configuration
varying from q1 (t = 0) to q2 (t = 1). The interpolation
function applies spherical linear interpolation between cor-
responding joints, except for the translational joint control-
ling leg flexion and the elbow, which is parameterized with
Euler angles. For these joints, linear interpolation is applied.

The interpolation is said to be valid if, for all values of
t ∈ [0,1], the interp function returns a valid configuration.
The implementation of the interpolation validity test is ap-
proximate: An interpolation is considered valid ifn equally
spaced interpolated configurations betweent = 0 andt = 1
are valid. The numbern trades computation precision for
speed, and its value is also adjusted according to the distance
between the two configurations.

Roadmap growing process.The roadmap construc-
tion starts with the tree growing process of the RRT
algorithm14, 17. The initial posture is the character’s rest pos-
ture, i.e. standing straight with arms lying by the side. This
rest posture is well suited for generating a tree with nearly
uniform branch depth.

In the RRT algorithm a random configurationqrand is used
as a growing direction. The nearest configurationqnear in the
current tree is determined and a new configurationqnew is
computed as:

qnew= interp(qnear,qrand, t), where

t = ε/d, d = dist(qnear,qrand)

If qnew is valid and the interpolated path toqnear is also
valid, qnew is linked toqnear, making the tree grow by one
node and one edge. The new edge is assigned the costε.
The factorε represents the roadmap edge length, i.e. the in-
cremental step by which the tree is grown. Large steps make
the roadmap grow quickly but with more difficulty to capture
the free configuration space around obstacles. Inversely, too
small values generate roadmaps with too many nodes, thus
slowing algorithms down. Good values forε mainly depend
on the complexity of the environment.

The tree generation process runs until a specified number
of nodes is reached. In our experiments, we worked with
graphs made up of around 1500 nodes.

Shortcuts. Once the tree is constructed we transform it
into a graph with the process of shortcuts creation: for each
pair of leaf nodes(l1, l2) in the tree, an edge linkingl1 to l2
is added to the roadmap if:

• the interpolation betweenl1 andl2 is valid,
• dist(l1, l2) < shortest path in the tree joiningl1 andl2,
• dist(l1, l2) < r.

Shortest paths are easily determined by running anA∗

algorithm2 over the roadmap, taking into account the costs
associated to the roadmap edges. The radiusr is a parameter
that specifies a limit on the length of shortcuts created and
serves also to control the total number of shortcuts added to
the roadmap.

Figure 3 illustrates the effect of adding shortcuts in the
simpler 2-dimensional configuration space problem. In this
example, the square is the sole obstacle and the root of the
tree is on the left side of the square.

Figure 3: The roadmap before (left image) and after (right
image) the insertion of shortcuts.

Single arm costs.The roadmap constructed so far en-
codes in each edge a cost defined as the distance between the
two configurations linked by the edge. These configurations
contain random positions for both arms of the character. As
we use the same roadmap to determine single-arm motions
as well, we also store in each edge of the roadmap two ad-
ditional costs. The right arm motion cost is calculated with
a distance function that simply does not take into considera-
tion the joints in the left arm. Conversely, the left arm motion
cost is determined by ignoring joints in the right arm.

Weights. In the final stage, we assign to each roadmap
edge a proper weight to favor the determination of paths
with better comfort characteristics. Different heuristics can
be used to determine such weights. We use the central idea
of favoring motions passing near the rest posture. We first
compute the distance between the rest posture and the mid-
point of each roadmap edge. Each edge is assigned this dis-
tance scaled to the interval[k,1],k∈ [0,1). Parameterk gives
the amount of influence of the weighting and is controlled
through the user interface. The weighting scheme helps,
among others, to generate motions with the arm closer to
the body.

6. Roadmap Querying

Let Rbe a roadmap computed during an off line phase, as de-
scribed in the previous section. Letqc be the current (valid)
character configuration and letqg be a given valid goal con-
figuration to reach. Note thatqc and qg are not necessar-
ily contained inR (and in fact, normally they are not). The
desired reaching motion is obtained by determining a valid
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path inCf ree havingqc andqg as endpoints. The path is de-
termined in two phases: path finding and path smoothing.

Path finding. We first find N(qc) ∈ R and N(qg) ∈ R,
which are respectively the nearest nodes toqc andqg in R. It
is required that the interpolation betweenN(qc) andqc and
the interpolation betweenN(qg) andqg are valid. If not, it
means that the graph has not grown sufficiently, or that the
goal configuration is not reachable.

Then, the correct cost in the roadmap is activated accord-
ing to the desired grasping type (right, left or both hands),
and the shortest path inR joining N(qc) andN(qg) is found.
Note thatRensures that the shortest path is valid. Valid paths
are represented as a sequence of configurations, where the
interpolation of each pair of consecutive configurations is
valid. The final reaching pathP is obtained by adding to the
shortest path configurationsqc andqg as end nodes.

Path Smoothing. Because of the random nature of the
nodes in R,P normally does not represent a useful motion
and a smoothing process is required. We basically smoothP
by incremental linearization.

Let q1, q2 andq3 be a corner ofP, i.e three consecutive
configurations inP, and letq = interp(q1,q3, t) wheret is
set according to the relative distances of the three configura-
tions. If the interpolation betweenq1 andq, and betweenq
andq3 are both valid, a local smooth can be applied andq2
is replaced withq.

Our smoothing algorithm always selects the corner ofP
that deviates most from a “straight line”. The distance be-
tweenq2 and q gives us a measure of the deviation. This
process quickly results in a smooth path. After a while, it
also tends to bring the path closer to obstacles.

We propose additional operations, which are applied dur-
ing the basic smoothing process:

• Whenever two consecutive configurations inP get too
close, they get merged into a single one; conversely, if
they are too distant, a new configuration is inserted in-
between by interpolation witht = 0.5.

• At everyk steps during the iterative local smoothing pro-
cess, we try to apply a group smoothing: two configura-
tions in P are randomly selected and, if their interpola-
tion is valid, all nodes between them are removed fromP
(note that a re-sampling may occur due to the operation
described in the previous item). This procedure greatly
accelerates the process in many cases, and even permits
to escape from local minima. In our experiments we have
usedk as the number of nodes inP. Finally, we also ob-
tained significant speed-ups by applying group smooth-
ing hierarchically before entering the iterative loop: from
both endpoints inP, we perform a recursive binary parti-
tion until pairs are smoothed or until consecutive pairs are
reached.

• Last but not least, when the application of one of the
smoothing procedures fails due to non-valid interpolation

between configurations, we test again the same interpo-
lation on different combinations of groups of DOFs (and
not on all DOFs at the same time). Groups of DOFs are
defined as: left arm, right arm, spine and legs. This pro-
cess keeps smoothing for instance the motion of one arm
when spine motion cannot be smoothed anymore because
of obstacles.

7. Extensions for Object Manipulation and Grasping

Probabilistic IK. It is not an easy task for the artist to spec-
ify a realistic 22-DOFs goal configurationqg (used as input
for roadmap querying). To overcome this difficulty we al-
low designers to simply place a three-dimensional model of
a hand anywhere in the workspace, and run a probabilistic
IK algorithm to automatically propose goal configurations
matching the specified 6-DOFs hand location. A probabilis-
tic approach is effective because we already have nodes in
the roadmap with the hand close to the required posture.
In addition, our framework enables us to easily generate
collision-free postures. In contrast, Jacobian-based methods
exhibit better convergence but cannot guarantee collision-
free postures.

Our method is inspired by some Genetic Algorithms
implementations23, 24. Let H be a target hand location. We
first select thek closest configurationsqi , i ∈ 1, . . . ,k in the
roadmap, according to a distance function that only consid-
ers the distance betweenH and Hi , whereHi is the same
objectH, but placed at the hand location specified by con-
figurationqi . The distance function takes the average sum of
the Euclidean distances between each corresponding pair of
vertices inHi andH.

Configurationsqi , i ∈ 1, . . . ,k constitute the initial popu-
lation that converges towardsH by minimizing the distance
function. Usually the configurations in the initial population
are already very close toH, and thus, instead of developing
all usual operators of a Genetic Algorithm approach, we ob-
tain satisfactory results with simple and faster strategies (see
Figure 4).

We use a variation of the roadmap growing procedure.
Random configurationsqrand are generated, and if the in-
cremental interpolation fromqi towardsqrand gives a valid
and closer configuration toH, qi is replaced by the incre-
mented version. However, ifH is located close to the limits
of the reachable workspace, the convergence of this method
may become problematic. In such cases, we adopt a different
strategy and apply perturbations on random DOFs of every
qi . A perturbed configuration is kept only if it is valid and
closer toH. In both methods, backtracking is applied when
a local minimum is reached.

Grasping. We follow the usual approach of having pre-
designed hand shapes for every object to be grasped20, 21, 22.
A complete grasping sequence results from the concatena-
tion of any number of reaching motions and a final grasping.

c© The Eurographics Association and Blackwell Publishers 2003.



Kallmann et al / Planning Collision-Free Reaching Motions

Figure 4: The closest configuration in the roadmap in re-
lation to the target hand (left column), and after the proba-
bilistic IK process (right column).

The final grasping is generated like a reaching motion ex-
cept that it moreover includes the interpolation of finger joint
angles towards target angles defined in the grasping hand
shape. An additional finger-object collision test can be used
to ensure perfect grasping as well as to diminish the required
design precision of hand shapes.

Dynamic roadmap update.Each time an object in the
workspace moves, the roadmap needs to be updated accord-
ingly. The approach is to detect and remove the nodes and
edges that become invalid after a change in the workspace.
As a result, disconnected roadmap components may appear.
Instead of managing disconnect parts25, we follow the phi-
losophy of keeping a single connected roadmap that repre-
sents the reachable configuration spaceCf ree at all times.
Whenever an obstacle in the workspace is inserted, removed,
or displaced, a global roadmap validation routine is per-
formed in three steps:

• All invalid edges and nodes are removed. Disconnected
components may appear.

• We try to connect each pair of disconnected components
by adding valid links joining thek closest pairs of nodes
in each component (in our experiments,k = 0.2n where
n is the number of nodes in the smaller component of a
pair). If disconnected components still linger, we simply
keep the largest component.

• Due to the operations described above, the roadmap may
no longer coverCf ree very well. “Holes” in the coverage
of Cf ree are likely to appear because some regions become
free due to an obstacle displacement, and because of re-
moved components in the roadmap. Hence, the roadmap
is grown again (see Figure 5) as described in Section 5.
Note that the sampling routine can easily be biased to

generate postures only in the parts ofCf ree that are in-
sufficiently covered.

Figure 5: Left: original roadmap. Middle: roadmap exhibit-
ing “holes” due to obstacles displacements. Right: roadmap
is grown again.

Transfer paths.We call a transfer path a motion enabling
the character to move an object from one place to another.

The main difficulty of computing transfer paths is that
roadmap nodes can no longer be guaranteed to be valid be-
cause of objects attached to the character’s hand(s). One first
option is to pre-compute specific roadmaps for each object
that needs to be carried by the character. This solution could
be used, for instance, to plan motions for a character with a
sword in its hand.

We developed an alternative method that returns transfer
paths on the fly. We first compute a reaching pathP between
the first and the last posture of the desired transfer path, with-
out considering the object being transferred. Then the object
is attached to the character’s hand andP is checked for va-
lidity, this time taking the attached object into account. If the
object is small,P may still be valid and directly useful as a
transfer path. If not, the invalid nodes and edges ofP are re-
moved, and disconnected nodes inP are reconnected at run
time using a standard single query RRT17.

The performance of this method greatly depends on the
complexity of the transfer path to be computed, ranging from
extremely fast in simple cases to extremely slow in complex
transfer cases.

After a transfer path has been computed, the displaced
object needs to be removed from the roadmap and inserted
again at its new position. This must be done in both methods,
i.e. when using additional pre-computed roadmaps or when
planning transfer motions on the fly.

Stepping control.Although we control the entire body of
the character when generating motions, we are still limited to
grasping sequences with the feet fixed on the floor. In some
cases, much more realistic results are achieved if the charac-
ter takes some steps. Typically, steps are used for obtaining
better balance and for reaching distant objects.

We developed a multi state approach to let the character
step. As a pre-process, we createk short stepping animations
with different lengths and directions. Each of these anima-
tions transfers the character’s rest posturepr into the final
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posturepi of the stepping animation i,i ∈ 1, . . . ,k. Each final
posture is considered to be a valid state if the animation link-
ing pr andpi can be played without collisions. Furthermore,
adjacent states are also linked with pre-defined stepping an-
imations if these do not incur collisions.

For each validpi , a roadmapRi is computed considering
pi as the start node of the roadmap generation. In the end,
several roadmaps co-exist, the original reaching roadmapR
being centered atpr while adjacent roadmapsRi are centered
at various positionspi aroundR (see Figure 6).

Figure 6: Distinct roadmaps are generated and connected
with predefined stepping animations.

Let qi andqg be the initial and goal configurations of a
reaching animation to be determined with stepping control.
We first detect the closest configurations toqi andqg in any
of the roadmaps, determining the initial and goal roadmaps
to be used (Ri andRg respectively). Then we determine path
P1 joining qi and pi in Ri , and pathP2 joining pg and qg

in Rg. The final pathP is obtained by concatenatingP1, the
shortest sequence of animations joiningpi and pg, and fi-
nally P2.

A final smoothing process is applied overP, taking into
account only the motions of the upper body limbs. Further
explanations and examples are omitted for lack of space.

8. Analysis and Results

Results.Figure 7 presents animation stills of a virtual char-
acter reaching for objects in a fridge, and as well an ex-
ample of object relocation. In these examples and others
shown in the videos accompanying this article, we have
grown roadmaps using an incremental distanceε of 4 cm
until reaching 1500 nodes. In each example, the design work
was limited to the definition of a few goal postures. Then, the
motions were automatically generated by the planner with-
out any user intervention. The only exception is the head ori-
entation, which was specified by hand in some sequences.

All motions were produced with constant velocity along
planned paths. The timing could easily be improved by the
designer or automatically adjusted e.g. according to Fitts’
law30. Note also that the left arm is not animated while the
right hand is reaching, which creates a somewhat stiff look in
some postures. Additional controllers need to be integrated

in order to correct this, for instance simulating dynamics
over that arm.

The method works extremely well providing that enough
free space exists between obstacles. The roadmap encoun-
ters some difficulty to explore portions of the workspace
containing many obstacles, especially when these are situ-
ated on the borders of the character’s reachable space. This
is exemplified by the refrigerator sequence. Even for small
values ofε, postures where the hand reaches inside the re-
frigerator are not present in the first computed roadmap. Our
probabilistic IK routine elegantly solves this problem. The
designer simply specifies 6-DOF hand postures within the
refrigerator and thus forces the roadmap to grow inside the
refrigerator.

The encoded comfort criteria help to favor natural look-
ing movements. However, the simple criterion currently used
cannot capture all the subtleties of human movement. More
complicated comfort criteria e.g. from biomechanics should
be introduced. It is also important to note that the efficacy
of the weighting scheme is restricted to cases where several
paths exist.

Performance.With roadmaps consisting of around 1500
nodes, shortest paths are instantaneously determined (a few
milliseconds) with anA∗ algorithm. Construction times are
listed in Table 1. In order to accelerate the computation of the
distance function, joint positions relative to configurations in
the roadmap are cached.

The smoothing phase gives good results in less than a
second. Actually, in the presented results, we stopped the
smoothing process when the time limit of 1 second was
reached. It is important to mention that the group smooth-
ing strategy tremendously accelerates the process.

The convergence of the probabilistic IK procedure greatly
depends on the distances between the nodes in the initial
population and the target hand posture. In our examples,
we had cases ranging from a few seconds to a few minutes.
Transfer paths calculated in relatively clear spaces, such as
the example in Figure 7(b), could be computed in approxi-
mately 1 second.

The results and times reported in this paper were obtained
with tools developed in a Maya plug-in, running on a Pen-
tium PC at 1.7 GHz.

9. Conclusions

Contribution. This work makes a number of contributions
that allow to plan grasping motions for a 22-DOF human-
like character in interactive applications. More specifically,
our main contributions are:

• A 22 DOFs abstract control layer that poses the entire
body of the character: arms, shoulders, torso, spine and
leg flexion.
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Number Roadmap Shortcuts Shortcuts
Scene Triangles Computation Computation Created

No Obstacles 0 70 6 565
Only Body Parts 10153 78 7 559
Cubes 10249 78 11 508
Kitchen 26088 145 18 486

Table 1: Performance measurements. The second column
gives the number of triangles considered for collision detec-
tion. The third and fourth columns give computation times in
seconds. The last column lists the number of shortcuts cre-
ated using the maximum shortcut length of 16 cm.

• A biased sampling method that efficiently covers most-
used parts of the free configuration space with random
human-like grasping postures.

• A new roadmap structure: the probabilistic reaching
roadmap, which is dense in connections between nodes
and encodes comfort criteria.

• Several extensions for generating complete object manip-
ulation sequences.

Future Work. We believe that the techniques presented
herein open several new research directions, and show that
motion planning can greatly benefit computer animation.

The notion of balance can be extended to take into account
supports when hands or other body parts get in contact with
objects. Motion constraints can be added to allow the dis-
placement of objects with fixed orientation, e.g. like a glass
of water. Additional DOFs can be included to control move-
ments that are coordinated with objects, e.g. to control chair
translation (when sitting), or to plan motions like opening a
drawer or pressing a button.

Finally, motion capture data could improve the personal-
ity of movements and could be included at two levels: in
the posture sampling routine during the generation of the
roadmap7, and during the smoothing process by adding mo-
tion texturing8.
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