Motion Aftereffects Without Motion: Engaging the Human Motion Perception System With Still Photographs

None of these images contain motion

Yet, some images have more motion than others

Jonathan Winawer
Stanford University
Were the two images the same?
Over a 250 ms delay, we tend to think that we saw B instead of A.

Motion selective areas in human cortex also activated by implied motion in static photos
- people, animals, scenes, and objects
 - Kourtzi & Kanwisher (2000)
 - Senior et al. (2000)
 - Peuskens et al. (2005)
 - Lorteije et al. (2006) [EEG]

BUT, there are between a kagillion and a gazillion neurons even in one voxel
 - Are the same neurons used?
 - Are the same direction-selective mechanisms used?
 - "The psychologist’s microelectrode": The motion aftereffect

Motion Aftereffect (MAE)
- Aristotle 330 BC - streams
- Lucretius 57 AD - streams
- Purkinje 1820 - parade
- Plateau, 1849 - spiraled umbrellas
- Addams 1834 - waterfall
- Wohlgemuth 1911 - motorized gratings

Fall of Foyers
Motion Aftereffect

Theory

Direction-selective reduction in response

- Single Unit:
 - Rabbit retina
 Barlow and Hill, 1963
 - Cat Primary Visual Cortex
 von der Heydt et al, 1978
 - Monkey MT
 Petersen et al, 1985
 - van Wezel & Britten, 2002
 - Kohn & Movshon, 2003

- fMRI:
 - Human MT/MST
 Huk et al, 2001

Neurons have personalities

Excitement is short-lived

Part 1: Motion aftereffects from motion depicted in photographs

Predictions

- IF inferring motion from photographs relies on some of the same direction selective mechanisms used for perception
- AND these mechanisms are engaged and adapted while viewing photos
- THEN viewing implied motion would cause adaptation and an MAE when tested with real visual motion

Test Stimulus

partially coherent dynamic dot displays

- 100 dots per test
- Limited lifetime (coherent dots resampled on each frame to prevent tracking)
- Thought to rely into primary motion processing mechanisms
- Analogous to Random - Dot Stereograms (Bela Julesz)

Winawer, Huk, Borooisly, Psychological Science, 2008
A psychophysical function for motion coherence

Easy to see that dots are moving right

Easy to see that dots are moving left

Predicted shift due to motion adaptation

Null point

rightward adaptation

leftward adaptation

Hiris and Blake (1992)
Blake & Hiris (1993)

Implied motion adaptation (60 s)

"top-up" re-adaptation (6 s each)

Adaptation to Implied motion

19 subjects

What about the error bars?
Implied motion adaptation, individual subjects

- Viewing motion depicted in photographs led to a motion aftereffect in the opposite direction
- Transfer of adaptation demonstrates that implied motion and real motion are represented by at least some shared mechanisms

- How much is the aftereffect from implied motion like the aftereffect from viewing real motion?
- Real motion aftereffects decay with time
- What about the implied motion aftereffect?
• The photos used so far have implied motion to the left or right
• How important is the motion in the picture *per se*?
• What if the foreground objects were oriented to the left or right, but were at rest?
The depiction of motion, and not just the orientation of the objects, was critical for the MAE.

- The photos used so far have implied motion to the left or right.
- Could the stimuli have led subjects to make systematic eye movements in the direction of implied motion?
- Could this explain the MAE?

- Inward and outward implied motion caused a motion aftereffect, arguing against explanations based on eye movements.
• Does adaptation to implied motion interact with adaptation to simultaneous real motion?

• Simultaneous viewing of real motion and implied motion interact:
 – If they are in the same direction there is a robust MAE
 – If they are in opposite directions the MAE is significantly reduced
Another way to measure real and implied MAEs

- Ambiguous, counterphase gratings has been used to measure MAEs:
 - von Grunau (1986)
 - Culham et al. (2000);
 - Nishida & Sato (1995);

Summary - Implied Motion

- Motion implied in photographs produces direction-selective adaptation which
 - has an effect on subsequent on visual perception
 - decays with a brief delay
 - depends on depicted motion (and not just direction) in images
 - occurs with L/R as well as In/Out implied motion
 - interacts with the effect of simultaneous real motion adaptation
Part 2

• Motion aftereffects from mental imagery of motion
 • Can imagination of motion, in the absence of any sensory input, activate direction-selective motion neurons?
 • If you picture something moving up, will you preferentially recruit upward selective motion neurons?

Predictions
 • IF imagery of motion relies on some of the same direction selective mechanisms used for perception
 • AND these mechanisms are engaged and adapted during imagery
 • THEN imagery of motion would cause adaptation and an MAE when tested with real visual motion

This is what subjects had to imagine

Imagination Phase

~36°

~27°
Is it necessary to have the eyes open during imagery to produce an MAE?

Might the subjects have learned about the MAE during the occlusion blocks?
2nd imagery experiment:
Imagery with eyes open or closed (blocked)

real motion imagery adaptation imagery re-adaptation
(60 s) (6 s each)

Instructed here:
- Eyes open / closed
- Imagine up/down

- Mental imagery of motion again led to a motion aftereffect
- The aftereffect did not depend on subjects having their eyes open

Question: Is it possible that subjects made systematic eye movements during imagery?
If so, could this have caused the motion aftereffect?
• The aftereffects cannot be explained by pursuit eye movements

• Across 2 experiments, the MAE was stronger with the eyes closed than open
Summary 2- Mental Imagery

- Imagined motion produces direction-selective adaptation
 - has an effect on subsequent visual perception
 - effect is 15-30% of real MAE
 - occurs with eyes open and closed
 - is not mediated by eye movements

- Transfer of adaptation from imagery to perceived motion suggests that imagining motion involves some direction-selective processing mechanisms shared with perceiving actual motion

Summary: Seeing beyond the image

Inference of motion
- Knowing what is in a picture influences the way we see it
- Implicit, high-level information can be represented by early perceptual mechanisms

Imagination of motion
- Active imagination shares neural substrates and neural mechanisms with perception

Thanks

- Collaborators:
 Lera Boroditsky
 Alex Huk

- Research assistants:
 Jesse Carton (MIT) and Taraz Lee (Stanford)